Assignment 1

Due date： 3 October 2023

TA：郇冠勳 E814

1．(30%) Prove or disprove the following sets are subspaces of \mathbb{R}^{3} ．
a．$A=\left\{\left(\lambda, \lambda+\mu^{3}, \lambda-\mu^{3}\right) \mid \lambda, \mu \in \mathbb{R}\right\}$ ．（10\％）
b．$B=\left\{\left(\lambda^{2},-\lambda^{2}, 0\right) \mid \lambda \in \mathbb{R}\right\}$ ．（10\％）
c．$C=\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}^{3} \mid \xi_{2} \in \mathbb{Z}\right\}$ ．(10%)

2．（20\％）Determine whether the following sets of vectors are linearly independent．
a．$\quad \mathbf{x}_{1}=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right], \quad \mathbf{x}_{3}=\left[\begin{array}{c}3 \\ -3 \\ 8\end{array}\right] . \quad(10 \%)$
b． $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 0 \\ 0\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1 \\ 1\end{array}\right], \quad \mathbf{x}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right]$ ．（10\％）
3．(25%) Write

$$
\mathbf{y}=\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right]
$$

as a linear combination of

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \mathbf{x}_{3}=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
$$

4．(25%) Consider two subspaces of \mathbb{R}^{4} ：
$U_{1}=\operatorname{span}\left(\left[\begin{array}{c}1 \\ 1 \\ -3 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ -1 \\ 1\end{array}\right]\right), U_{2}=\operatorname{span}\left(\left[\begin{array}{c}-1 \\ -2 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 6 \\ -2 \\ -1\end{array}\right]\right)$.
Determine a basis of $U_{1} \cap U_{2}$ ．

