Assignment 4

Due date： 17 November 2023
TA：鄒冠勳 E814
1．（20\％）Diagonalize $\left[\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right]=\mathbf{P D P}^{\top}$ such that \mathbf{P} consists of orthonormal column vectors．
2．（20\％）Given $\mathbf{A}=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0\end{array}\right]$ ．Find a singular value decomposition for \mathbf{A} ．
3．（20\％）Compute $\frac{d}{d \mathbf{x}} f(\mathbf{x}, \mathbf{y})$ ，where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $f(\mathbf{x}, \mathbf{y})=\mathbf{x}^{\top} \mathbf{y}$ ．
4．（20\％）Given the formula $\frac{\partial \mathbf{x}^{\top} \mathbf{B} \mathbf{x}}{\partial \mathbf{x}}=\mathbf{x}^{\top}\left(\mathbf{B}+\mathbf{B}^{\top}\right)$ for a square matrix \mathbf{B} ，compute the gradient $\frac{\partial}{\partial \mathbf{s}}\left((\mathbf{x}-\mathbf{A} \mathbf{s})^{\top} \mathbf{A} \mathbf{A}^{\top}(\mathbf{x}-\mathbf{A} \mathbf{s})+\|\mathbf{s}\|^{2}\right)$.

5．（20\％）Compute the derivatives $d f / d \mathbf{x}$ ，where $f(z)=\ln (1+z)$ ，and $z=\mathbf{x}^{\top} \mathbf{x}$ ，for $\mathbf{x} \in \mathbb{R}^{D}$ ．

