Assignment 4 Due date: 17 November 2023 TA: 鄒冠勳 E814

- 1. (20%) Diagonalize $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} = \mathbf{P}\mathbf{D}\mathbf{P}^{\top}$ such that \mathbf{P} consists of orthonormal column vectors.
- 2. (20%) Given $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$. Find a singular value decomposition for \mathbf{A} .
- 3. (20%) Compute $\frac{d}{d\mathbf{x}} f(\mathbf{x}, \mathbf{y})$, where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $f(\mathbf{x}, \mathbf{y}) = \mathbf{x}^\top \mathbf{y}$.
- 4. (20%) Given the formula $\frac{\partial \mathbf{x}^{\top} \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{x}^{\top} (\mathbf{B} + \mathbf{B}^{\top})$ for a square matrix **B**, compute the gradient $\frac{\partial}{\partial \mathbf{s}} ((\mathbf{x} \mathbf{A}\mathbf{s})^{\top} \mathbf{A} \mathbf{A}^{\top} (\mathbf{x} \mathbf{A}\mathbf{s}) + \|\mathbf{s}\|^2).$
- 5. (20%) Compute the derivatives $d f/d \mathbf{x}$, where $f(z) = \ln(1+z)$, and $z = \mathbf{x}^{\top} \mathbf{x}$, for $\mathbf{x} \in \mathbb{R}^{D}$.