Assignment 5

Due date： 6 December 2023

TA：鄒冠動 E814

1．（30\％）Consider a mixture of two Gaussian distributions

$$
0.4 \mathcal{N}\left(\left[\begin{array}{c}
10 \\
2
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)+0.6 \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
8.4 & 2.0 \\
2.0 & 1.7
\end{array}\right]\right)
$$

compute the marginal distributions of each dimension．
2．（30\％）Consider the following example．Compute the conditional distributions $p\left(x \mid Y=y_{1}\right)$ and $p\left(y \mid X=x_{3}\right)$ ．

3．（40\％）Exercise in the slides．

ML Math－Probability \＆Distributions

Gaussian Distribution
Sums and Linear Transformations

Exercise

Another example of reverse transformation．
$Y \sim \mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}\right)$ and $\mathbf{y}=\boldsymbol{A} \mathbf{x}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{M}$ ，and \mathbf{A} is invertible
－$p(\mathbf{y})=\mathcal{N}(\mathbf{y} \mid \boldsymbol{A} \mathbf{x}, \boldsymbol{\Sigma})$ ．
－Compute $\mathbb{E}[\mathbf{x}]$ ．
－Compute $\mathbb{V}[x]$ ．
－Derive $X \sim \mathcal{N}(?$, ？）．

