

Midterm Exam of MML

13:10 – 16:00, 3 November 2025; Room INS105

Note: Cell phones and any calculator are forbidden.

Part I: True (T) or False (F) (65%; each for 5%)

1. Every invertible matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable.
2. $0 \in \mathbb{R}$ can be an eigenvalue of a square matrix.
3. Both $\mathbf{A}\mathbf{A}^\top$ and $\mathbf{A}^\top\mathbf{A}$ are symmetric. ($\mathbf{A} \in \mathbb{R}^{m \times n}$, $m, n \in \mathbb{N}$.)
4. Any symmetric matrix is symmetric to a diagonal matrix.
5. For any $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$, we have $\mathbf{x}^\top \mathbf{A}\mathbf{x} = \text{tr}(\mathbf{A}\mathbf{x}\mathbf{x}^\top)$.
6. Every symmetric matrix is positive semidefinite.
7. For any $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{A}\mathbf{A}^\top$ and $\mathbf{A}^\top\mathbf{A}$ have the same **nonzero** eigenvalues.
8. If $\mathbf{A} \in \mathbb{R}^{n \times n}$ consists of n orthonormal nonzero column vectors, then $\mathbf{A}^{-1} = \mathbf{A}^\top$.
9. $S = \{(\lambda^2, -\lambda^2, 0) \mid \lambda \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 .
10. For $A \in \mathbb{R}^{2 \times 2}$, $T(A) = A - A^\top$ is a linear transformation.
11. If \mathbf{b} is a nonzero vector in \mathbb{R}^n , then $T(\mathbf{x}) = \mathbf{x} + \mathbf{b}$ is a linear transformation on \mathbb{R}^n .
12. $\mathbf{A}\mathbf{A}^\top$ always has nonnegative eigenvalues. ($\mathbf{A} \in \mathbb{R}^{m \times n}$, $m, n \in \mathbb{N}$.)
13. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$, $f(\mathbf{x}, \mathbf{y}) := x_1y_1 - (x_1y_2 + x_2y_1) - 2x_2y_2$ is an inner product.

Part II: Calculations. (70%; each for 5%; ONLY THE ANSWERS ARE REQUIRED)

1. (5%) Consider a transformation matrix $\mathbf{A}_\Phi = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ of a linear mapping $\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ with respect to the standard basis. Let $B = ([-1, 1]^\top, [1, 1]^\top)$ be another basis of \mathbb{R}^2 . Please compute the transformation matrix $\tilde{\mathbf{A}}_\Phi$ with respect to B .
2. (5%) Find the transformation matrix \mathbf{A}_T for the linear transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ for which
$$T \left(\begin{bmatrix} -2 \\ 3 \\ -4 \end{bmatrix} \right) = \begin{bmatrix} 5 \\ 3 \\ 14 \end{bmatrix}, T \left(\begin{bmatrix} 3 \\ -2 \\ 3 \end{bmatrix} \right) = \begin{bmatrix} -4 \\ 6 \\ -14 \end{bmatrix} \text{ and } T \left(\begin{bmatrix} -4 \\ -5 \\ 5 \end{bmatrix} \right) = \begin{bmatrix} -6 \\ -40 \\ -2 \end{bmatrix}$$
3. (5%) Find a Cholesky Factorization of $\begin{bmatrix} 4 & 8 \\ 8 & 20 \end{bmatrix}$.
4. (5%) Diagonalize $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} = \mathbf{P}\mathbf{D}\mathbf{P}^\top$ such that \mathbf{P} consists of orthonormal column vectors.
5. (10%) Given $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$.
 - a. Find a singular value decomposition for \mathbf{A} .

b. Let $\|\mathbf{A}\|_2 = \max_{\mathbf{x}} \frac{\|\mathbf{Ax}\|_2}{\|\mathbf{x}\|_2}$ and $\hat{\mathbf{A}}_1$ be the rank-1 approximation of \mathbf{A} , compute $\|\mathbf{A} - \hat{\mathbf{A}}_1\|_2 = \underline{\hspace{2cm}}$.

6. (10%) Given $f(\mathbf{x}) = \mathbf{x}\mathbf{x}^\top$ where $\mathbf{x} \in \mathbb{R}^n$.

- a. What is the shape (i.e., dimensions) of $\frac{d}{d\mathbf{x}}f(\mathbf{x})$?
- b. What is $\frac{d}{dx_1}f(\mathbf{x})$?

7. (5%) Compute $\frac{d}{d\mathbf{x}}f(\mathbf{x}, \mathbf{y})$, where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $f(\mathbf{x}, \mathbf{y}) = \mathbf{x}^\top \mathbf{y}$.

8. (5%) Given the formula $\frac{\partial \mathbf{x}^\top \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{x}^\top (\mathbf{B} + \mathbf{B}^\top)$ for a square matrix \mathbf{B} , compute the gradient $\frac{\partial}{\partial \mathbf{s}} ((\mathbf{x} - \mathbf{As})^\top \mathbf{A} \mathbf{A}^\top (\mathbf{x} - \mathbf{As}) + \|\mathbf{s}\|^2)$.

9. (5%) Compute the derivatives $d f/d \mathbf{x}$, where $f(z) = \ln(1 + z)$, and $z = \mathbf{x}^\top \mathbf{x}$, for $\mathbf{x} \in \mathbb{R}^D$.

10. (5%) Compute the determinant of the matrix $\begin{bmatrix} 2 & 0 & 1 & 2 & 0 & 1 \\ 2 & -1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 & 2 & 1 \\ -2 & 0 & 2 & -1 & 2 & 0 \\ 2 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$.

11. (5%) Given $T_{\mathbf{A}} : \mathbb{R}^5 \rightarrow \mathbb{R}^3$, where $\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 & -1 & -1 \\ 2 & -1 & 1 & 2 & -2 \\ 3 & -4 & 3 & 5 & 3 \end{bmatrix}$,

$$\text{rank}(\mathbf{A}) + \ker(T_{\mathbf{A}}) = \underline{\hspace{2cm}}$$

12. (5%) Given the function $f(\mathbf{x}) = x_1^3 + 3x_1x_2 + x_2^2$ for $\mathbf{x} = [x_1, x_2]^\top$ and $\mathbf{x}_0 = (0, 1)$, please compute the Taylor polynomial

$$T_2(\mathbf{x}) = \sum_{k=0}^2 \frac{D_{\mathbf{x}}^k f(\mathbf{x}_0)}{k!} \delta^k, \text{ where } \delta = \mathbf{x} - \mathbf{x}_0 \text{ and } \delta^k = \overbrace{\delta \otimes \delta \otimes \cdots \otimes \delta}^{k \text{ times}}.$$

