Midterm Exam of MML

10:10 – 12:00, 7 November 2023; Room E416 Note: Cell phones and any calculator are forbidden.

Part I: True (T) or False (F) (65%; each for 5%)

- 1. Every invertible matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable.
- 2. $0 \in \mathbb{R}$ can be an eigenvalue of a square matrix.
- 3. Both $\mathbf{A}\mathbf{A}^{\top}$ and $\mathbf{A}^{\top}\mathbf{A}$ are symmetric. ($\mathbf{A} \in \mathbb{R}^{m \times n}$, $m, n \in \mathbb{N}$.)
- 4. Any symmetric matrix is symmetric to a diagonal matrix.
- 5. For any $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$, we have $\mathbf{x}^\top \mathbf{A} \mathbf{x} = \operatorname{tr}(\mathbf{A} \mathbf{x} \mathbf{x}^\top)$.
- 6. Every symmetric matrix is positive semidefinite.
- 7. For any $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{A}\mathbf{A}^{\top}$ and $\mathbf{A}^{\top}\mathbf{A}$ have the same eigenvalues.
- 8. If $\mathbf{A} \in \mathbb{R}^{n \times n}$ consists of *n* orthonormal nonzero column vectors, then $\mathbf{A}^{-1} = \mathbf{A}^{\top}$.
- 9. $S = \{(\lambda^2, -\lambda^2, 0) \mid \lambda \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 .
- 10. For $A \in \mathbb{R}^{2 \times 2}$, $T(A) = A A^{\top}$ is a linear transformation.
- 11. If **b** is a nonzero vector in \mathbb{R}^n , then $T(\mathbf{x}) = \mathbf{x} + \mathbf{b}$ is a linear transformation on \mathbb{R}^n .
- 12. $\mathbf{A}\mathbf{A}^{\top}$ always has nonnegative eigenvalues. ($\mathbf{A} \in \mathbb{R}^{m \times n}$, $m, n \in \mathbb{N}$.)
- 13. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$, $f(\mathbf{x}, \mathbf{y}) := x_1y_1 (x_1y_2 + x_2y_1) 2x_2y_2$ is an inner product.

Part II: Calculations. (65%; each for 5%; ONLY THE ANSWERS ARE REQUIRED)

- 1. (5%) Consider a transformation matrix $\mathbf{A}_{\Phi} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ of a linear mapping $\Phi : \mathbb{R}^2 \mapsto \mathbb{R}^2$ with respect to the standard basis. Let $B = ([-1, 1]^{\top}, [1, 1]^{\top})$ be another basis of \mathbb{R}^2 . Please compute the transformation matrix $\tilde{\mathbf{A}}_{\Phi}$ with respect to B.
- 2. (5%) Find the transformation matrix \mathbf{A}_T for the linear transformation $T : \mathbb{R}^3 \mapsto \mathbb{R}^3$ for which

$$T\left(\left[\begin{array}{c}-2\\3\\-4\end{array}\right]\right) = \left[\begin{array}{c}5\\3\\14\end{array}\right], T\left(\left[\begin{array}{c}3\\-2\\3\end{array}\right]\right) = \left[\begin{array}{c}-4\\6\\-14\end{array}\right] \text{and } T\left(\left[\begin{array}{c}-4\\-5\\5\end{array}\right]\right) = \left[\begin{array}{c}-6\\-40\\-2\end{array}\right]$$

3. (5%) Find a Cholesky Factorization of $\begin{bmatrix} 4 & 8 \\ 8 & 20 \end{bmatrix}$.

4. (5%) Diagonalize $\begin{vmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{vmatrix} = \mathbf{P} \mathbf{D} \mathbf{P}^{\top}$ such that \mathbf{P} consists of orthonormal column vectors.

- 5. (10%) Given $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$.
 - a. Find a singular value decomposition for A.

- b. Let $\|\mathbf{A}\|_2 = \max_{\mathbf{x}} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$ and $\hat{\mathbf{A}}_1$ be the rank-1 approximation of \mathbf{A} , compute $\|\mathbf{A} \hat{\mathbf{A}}_1\|_2 = \underline{\qquad}$.
- 6. (10%) Given $f(\mathbf{x}) = \mathbf{x}\mathbf{x}^{\top}$ where $\mathbf{x} \in \mathbb{R}^{n}$.
 - a. What is the shape (i.e., dimensions) of $\frac{d}{d\mathbf{x}}f(\mathbf{x})$?
 - b. What is $\frac{d}{dx_1}f(\mathbf{x})$?
- 7. (5%) Compute $\frac{d}{d\mathbf{x}}f(\mathbf{x},\mathbf{y})$, where $\mathbf{x},\mathbf{y} \in \mathbb{R}^n$ and $f(\mathbf{x},\mathbf{y}) = \mathbf{x}^\top \mathbf{y}$.
- 8. (5%) Given the formula $\frac{\partial \mathbf{x}^{\top} \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{x}^{\top} (\mathbf{B} + \mathbf{B}^{\top})$ for a square matrix **B**, compute the gradient $\frac{\partial}{\partial \mathbf{s}} ((\mathbf{x} \mathbf{A}\mathbf{s})^{\top} \mathbf{A} \mathbf{A}^{\top} (\mathbf{x} \mathbf{A}\mathbf{s}) + \|\mathbf{s}\|^2).$
- 9. (5%) Compute the derivatives $d f/d \mathbf{x}$, where $f(z) = \ln(1+z)$, and $z = \mathbf{x}^{\top} \mathbf{x}$, for $\mathbf{x} \in \mathbb{R}^{D}$.

10. (5%) Compute the determinant of the matrix
$$\begin{bmatrix} 2 & 0 & 1 & 2 & 0 & 1 \\ 2 & -1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 & 2 & 1 \\ -2 & 0 & 2 & -1 & 2 & 0 \\ 2 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

11. (5%) Given $T_{\mathbf{A}} : \mathbb{R}^5 \mapsto \mathbb{R}^3$, where $\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 & -1 & -1 \\ 2 & -1 & 1 & 2 & -2 \\ 3 & -4 & 3 & 5 & 3 \end{bmatrix}$, rank(\mathbf{A}) + ker($T_{\mathbf{A}}$) = ____.