Midterm Exam of MML

10:10-12:00, 7 November 2023; Room E416
Note: Cell phones and any calculator are forbidden.

Part I: True (T) or False (F) (65\%; each for 5\%)

1. Every invertible matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable.
2. $0 \in \mathbb{R}$ can be an eigenvalue of a square matrix.
3. Both $\mathbf{A} \mathbf{A}^{\top}$ and $\mathbf{A}^{\top} \mathbf{A}$ are symmetric. $\left(\mathbf{A} \in \mathbb{R}^{m \times n}, m, n \in \mathbb{N}\right.$.)
4. Any symmetric matrix is symmetric to a diagonal matrix.
5. For any $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$, we have $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}=\operatorname{tr}\left(\mathbf{A} \mathbf{x} \mathbf{x}^{\top}\right)$.
6. Every symmetric matrix is positive semidefinite.
7. For any $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{A} \mathbf{A}^{\top}$ and $\mathbf{A}^{\top} \mathbf{A}$ have the same eigenvalues.
8. If $\mathbf{A} \in \mathbb{R}^{n \times n}$ consists of n orthonormal nonzero column vectors, then $\mathbf{A}^{-1}=\mathbf{A}^{\top}$.
9. $S=\left\{\left(\lambda^{2},-\lambda^{2}, 0\right) \mid \lambda \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{3}.
10. For $A \in \mathbb{R}^{2 \times 2}, T(A)=A-A^{\top}$ is a linear transformation.
11. If \mathbf{b} is a nonzero vector in \mathbb{R}^{n}, then $T(\mathbf{x})=\mathbf{x}+\mathbf{b}$ is a linear transformation on \mathbb{R}^{n}.
12. $\mathbf{A} \mathbf{A}^{\top}$ always has nonnegative eigenvalues. ($\mathbf{A} \in \mathbb{R}^{m \times n}, m, n \in \mathbb{N}$.)
13. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}, f(\mathbf{x}, \mathbf{y}):=x_{1} y_{1}-\left(x_{1} y_{2}+x_{2} y_{1}\right)-2 x_{2} y_{2}$ is an inner product.

Part II: Calculations. (65\%; each for 5\%; ONLY THE ANSWERS ARE REQUIRED)

1. (5\%) Consider a transformation matrix $\mathbf{A}_{\Phi}=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$ of a linear mapping $\Phi: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ with respect to the standard basis. Let $B=\left([-1,1]^{\top},[1,1]^{\top}\right)$ be another basis of \mathbb{R}^{2}. Please compute the transformation matrix $\tilde{\mathbf{A}}_{\Phi}$ with respect to B.
2. (5\%) Find the transformation matrix \mathbf{A}_{T} for the linear transformation $T: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ for which $T\left(\left[\begin{array}{c}-2 \\ 3 \\ -4\end{array}\right]\right)=\left[\begin{array}{c}5 \\ 3 \\ 14\end{array}\right], T\left(\left[\begin{array}{c}3 \\ -2 \\ 3\end{array}\right]\right)=\left[\begin{array}{c}-4 \\ 6 \\ -14\end{array}\right]$ and $T\left(\left[\begin{array}{c}-4 \\ -5 \\ 5\end{array}\right]\right)=\left[\begin{array}{c}-6 \\ -40 \\ -2\end{array}\right]$
3. (5\%) Find a Cholesky Factorization of $\left[\begin{array}{cc}4 & 8 \\ 8 & 20\end{array}\right]$.
4. (5\%) Diagonalize $\left[\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right]=\mathbf{P D} \mathbf{P}^{\top}$ such that \mathbf{P} consists of orthonormal column vectors.
5. (10\%) Given $\mathbf{A}=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0\end{array}\right]$.
a. Find a singular value decomposition for \mathbf{A}.
b. Let $\|\mathbf{A}\|_{2}=\max _{\mathbf{x}} \frac{\|\mathbf{A x}\|_{2}}{\|\mathbf{x}\|_{2}}$ and $\hat{\mathbf{A}}_{1}$ be the rank-1 approximation of \mathbf{A}, compute $\left\|\mathbf{A}-\hat{\mathbf{A}}_{1}\right\|_{2}=$ \qquad .
6. (10%) Given $f(\mathbf{x})=\mathbf{x x}^{\top}$ where $\mathbf{x} \in \mathbb{R}^{n}$.
a. What is the shape (i.e., dimensions) of $\frac{d}{d \mathbf{x}} f(\mathbf{x})$?
b. What is $\frac{d}{d x_{1}} f(\mathbf{x})$?
7. (5\%) Compute $\frac{d}{d \mathbf{x}} f(\mathbf{x}, \mathbf{y})$, where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $f(\mathbf{x}, \mathbf{y})=\mathbf{x}^{\top} \mathbf{y}$.
8. (5\%) Given the formula $\frac{\partial \mathbf{x}^{\top} \mathbf{B x}}{\partial \mathbf{x}}=\mathbf{x}^{\top}\left(\mathbf{B}+\mathbf{B}^{\top}\right)$ for a square matrix \mathbf{B}, compute the gradient $\frac{\partial}{\partial \mathbf{s}}\left((\mathbf{x}-\mathbf{A} \mathbf{s})^{\top} \mathbf{A} \mathbf{A}^{\top}(\mathbf{x}-\mathbf{A} \mathbf{s})+\|\mathbf{s}\|^{2}\right)$.
9. (5\%) Compute the derivatives $d f / d \mathbf{x}$, where $f(z)=\ln (1+z)$, and $z=\mathbf{x}^{\top} \mathbf{x}$, for $\mathbf{x} \in \mathbb{R}^{D}$.
10. (5\%) Compute the determinant of the matrix $\left[\begin{array}{cccccc}2 & 0 & 1 & 2 & 0 & 1 \\ 2 & -1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 & 2 & 1 \\ -2 & 0 & 2 & -1 & 2 & 0 \\ 2 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1\end{array}\right]$.
11. (5\%) Given $T_{\mathbf{A}}: \mathbb{R}^{5} \mapsto \mathbb{R}^{3}$, where $\mathbf{A}=\left[\begin{array}{ccccc}1 & 2 & -1 & -1 & -1 \\ 2 & -1 & 1 & 2 & -2 \\ 3 & -4 & 3 & 5 & 3\end{array}\right]$, $\operatorname{rank}(\mathbf{A})+\operatorname{ker}\left(T_{\mathbf{A}}\right)=$ \qquad -
