Online Learning

— Fenchel Conjugate (Prerequisites for Mirror Descent Algorithms)

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Spring 2023

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal: https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

Outline

Fenchel Conjugate

Properties & Examples

Outline

Fenchel Conjugate

2 Properties & Examples

Closed Function

Closed Function

A function $f: V \subseteq \mathbb{R}^d \mapsto [-\infty, +\infty]$ is closed if and only if $\{\mathbf{x}: f(\mathbf{x}) \leq \alpha\}$ is closed for every $\alpha \in \mathbb{R}$.

Closed Function

Closed Function

A function $f: V \subseteq \mathbb{R}^d \mapsto [-\infty, +\infty]$ is closed if and only if $\{\mathbf{x}: f(\mathbf{x}) \leq \alpha\}$ is closed for every $\alpha \in \mathbb{R}$.

• $I_V : \mathbb{R}^d \mapsto \{0,1\}$ is closed if and only if V is closed.

$$I_V(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \in V \\ \infty & \text{if } \mathbf{x} \notin V \end{cases}$$

Fenchel Conjugate

 A generalization of Lagrangian duality which applies to non-convex functions.

Fenchel conjugate

Given a function $f: \mathbb{R}^d \mapsto [-\infty, +\infty]$, the Fenchel conjugate (or convex conjugate) $f^*: \mathbb{R}^d \mapsto [-\infty, +\infty]$ is defined as

$$f^*(\theta) = \sup_{\mathbf{x} \in \mathbb{R}^d} \langle \theta, \mathbf{x} \rangle - f(\mathbf{x}).$$

Fenchel Conjugate

 A generalization of Lagrangian duality which applies to non-convex functions.

Fenchel conjugate

Given a function $f: \mathbb{R}^d \mapsto [-\infty, +\infty]$, the Fenchel conjugate (or convex conjugate) $f^*: \mathbb{R}^d \mapsto [-\infty, +\infty]$ is defined as

$$f^*(\boldsymbol{\theta}) = \sup_{\mathbf{x} \in \mathbb{R}^d} \langle \boldsymbol{\theta}, \mathbf{x} \rangle - f(\mathbf{x}).$$

Fenchel-Young's Inequality

$$\langle \boldsymbol{\theta}, \mathbf{x} \rangle \leq f(\mathbf{x}) + f^*(\boldsymbol{\theta}), \text{ for any } \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^d.$$

Theorem [Rockafellar 1970]

Let f be a convex function. Then f^* is a closed convex function. Moreover, if f is closed, then $f^{**} = f$.

A very detailed video of lecture as a reference: [link1], [link2].

Outline

Fenchel Conjugate

Properties & Examples

Important Properties

Theorem

Let $f : \mathbb{R}^d \mapsto (-\infty, +\infty]$ be a convex function. Then the following conditions are equivalent:

- $\langle \boldsymbol{\theta}, \mathbf{y} \rangle f(\mathbf{y})$ achieves its supremum in \mathbf{y} at $\mathbf{y} = \mathbf{x}$.
- **4** (If f is closed) $\mathbf{x} \in \partial f^*(\theta)$.

- $(1) \Leftrightarrow (2)$:
 - From the definition of subgradient:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \boldsymbol{\theta}, \mathbf{y} - \mathbf{x} \rangle, \ \forall \mathbf{y}.$$

- $(1) \Leftrightarrow (2)$:
 - From the definition of subgradient:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \boldsymbol{\theta}, \mathbf{y} - \mathbf{x} \rangle, \ \forall \mathbf{y}.$$

$$\Rightarrow \langle \boldsymbol{\theta}, \mathbf{x} \rangle - f(\mathbf{x}) \geq \langle \boldsymbol{\theta}, \mathbf{y} \rangle - f(\mathbf{y}), \ \forall \mathbf{y}.$$

- $(1) \Leftrightarrow (2)$:
 - From the definition of subgradient:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \boldsymbol{\theta}, \mathbf{y} - \mathbf{x} \rangle, \ \forall \mathbf{y}.$$

$$\Rightarrow \langle \boldsymbol{\theta}, \mathbf{x} \rangle - f(\mathbf{x}) \geq \langle \boldsymbol{\theta}, \mathbf{y} \rangle - f(\mathbf{y}), \ \forall \mathbf{y}.$$

• (2) \Leftrightarrow (3): by definition of $f^*(\theta)$.

- $(1) \Leftrightarrow (2)$:
 - From the definition of subgradient:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \boldsymbol{\theta}, \mathbf{y} - \mathbf{x} \rangle, \ \forall \mathbf{y}.$$

$$\Rightarrow \langle \boldsymbol{\theta}, \mathbf{x} \rangle - f(\mathbf{x}) \ge \langle \boldsymbol{\theta}, \mathbf{y} \rangle - f(\mathbf{y}), \ \forall \mathbf{y}.$$

- (2) \Leftrightarrow (3): by definition of $f^*(\theta)$.
- If f is closed, then $f^{**} = f$ so (3) is equivalent to $f^{**}(\mathbf{x}) + f^*(\theta) = \langle \theta, \mathbf{x} \rangle$.

Example 1

•
$$f(x) = \exp(x)$$
.

Example 1

- $f(x) = \exp(x)$.
- Hence, $f^* = \max_x (x\theta \exp(x))$.
- Solving the optimization, we have

Example 1

- $f(x) = \exp(x)$.
- Hence, $f^* = \max_x (x\theta \exp(x))$.
- Solving the optimization, we have
 - $x^* = \ln \theta$, if $\theta > 0$.
 - $x^* = -\infty$ if $\theta = 0$.
 - $x^* = -\infty$, if $\theta < 0$

Thus,

$$f^*(\theta) = \left\{ egin{array}{ll} heta \ln heta - heta & ext{if } heta > 0 \ 0 & ext{if } heta = 0 \ + \infty & ext{if } heta < 0 \end{array}
ight. .$$

Example 2: Conjugate of Inner Product

• Let $f(\mathbf{x}) = \langle \mathbf{z}, \mathbf{x} \rangle$, where $\mathbf{z} \in \mathbb{R}^d$, $\mathbf{z} \neq \mathbf{0}$.

Example 2: Conjugate of Inner Product

- Let $f(\mathbf{x}) = \langle \mathbf{z}, \mathbf{x} \rangle$, where $\mathbf{z} \in \mathbb{R}^d$, $\mathbf{z} \neq \mathbf{0}$.
- Then,

$$f^*(oldsymbol{ heta}) = \sup_{\mathbf{x} \in \mathbb{R}^d} \langle oldsymbol{ heta} - \mathbf{z}, \mathbf{x}
angle = \left\{egin{array}{ll} 0 & ext{if } oldsymbol{ heta} = \mathbf{z} \ +\infty & ext{otherwise} \end{array}
ight..$$

• Let $f(\mathbf{x}) = \max(1 - \langle \mathbf{z}, \mathbf{x} \rangle, 0)$, where $\mathbf{z} \in \mathbb{R}^d$.

- Let $f(\mathbf{x}) = \max(1 \langle \mathbf{z}, \mathbf{x} \rangle, 0)$, where $\mathbf{z} \in \mathbb{R}^d$.
- If $\theta = \mathbf{h} + \mathbf{v}$ where $\mathbf{v} \neq \mathbf{0}$, $\mathbf{v} \perp \mathbf{z}$,

- Let $f(\mathbf{x}) = \max(1 \langle \mathbf{z}, \mathbf{x} \rangle, 0)$, where $\mathbf{z} \in \mathbb{R}^d$.
- If $heta=\mathbf{h}+\mathbf{v}$ where $\mathbf{v}\neq\mathbf{0}$, $\mathbf{v}\perp\mathbf{z}$, then we can choose \mathbf{x} along with \mathbf{v} .
 - $\langle \mathbf{z}, \mathbf{x} \rangle \to -\infty \Rightarrow f^*(\boldsymbol{\theta}) \to \infty$.
- Then, assume that $\theta = \alpha \mathbf{z}$, we have

$$f^*(oldsymbol{ heta}) = \sup_{\mathbf{x} \in \mathbb{R}^d} lpha \langle \mathbf{z}, \mathbf{x}
angle - \max(1 - \langle \mathbf{z}, \mathbf{x}
angle, 0)$$

- Let $f(\mathbf{x}) = \max(1 \langle \mathbf{z}, \mathbf{x} \rangle, 0)$, where $\mathbf{z} \in \mathbb{R}^d$.
- ullet If $oldsymbol{ heta}=\mathbf{h}+\mathbf{v}$ where $\mathbf{v}
 eq\mathbf{0}$, $\mathbf{v}\perp\mathbf{z}$, then we can choose \mathbf{x} along with \mathbf{v} .
 - $\langle \mathbf{z}, \mathbf{x} \rangle \to -\infty \Rightarrow f^*(\boldsymbol{\theta}) \to \infty.$
- Then, assume that $\theta = \alpha z$, we have

$$f^*(\boldsymbol{\theta}) = \sup_{\mathbf{x} \in \mathbb{R}^d} \alpha \langle \mathbf{z}, \mathbf{x} \rangle - \max(1 - \langle \mathbf{z}, \mathbf{x} \rangle, 0) = \sup_{\boldsymbol{u}} \alpha \boldsymbol{u} - \max(1 - \boldsymbol{u}, 0),$$

so

$$f^*(\theta) = \begin{cases} \alpha, & \text{if } \theta = \alpha \mathbf{z}, \ \alpha \in [-1, 0], \\ +\infty, & \text{otherwise.} \end{cases}$$

• Let $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$, where $||\cdot||$ is a norm in \mathbb{R}^d , with dual norm $||\cdot||_*$.

- Let $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$, where $||\cdot||$ is a norm in \mathbb{R}^d , with dual norm $||\cdot||_*$.
- First, note that for all x,

- Let $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$, where $||\cdot||$ is a norm in \mathbb{R}^d , with dual norm $||\cdot||_*$.
- First, note that for all x,

$$\langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2} \|\mathbf{x}\|^2 \le \|\boldsymbol{\theta}\|_* \|\mathbf{x}\| - \frac{1}{2} \|\mathbf{x}\|^2$$

- Let $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$, where $||\cdot||$ is a norm in \mathbb{R}^d , with dual norm $||\cdot||_*$.
- First, note that for all x,

$$\langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2} \|\mathbf{x}\|^2 \le \|\boldsymbol{\theta}\|_* \|\mathbf{x}\| - \frac{1}{2} \|\mathbf{x}\|^2$$

• The max value of the right-hand side above (w.r.t. $\|\mathbf{x}\|$):

- Let $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$, where $||\cdot||$ is a norm in \mathbb{R}^d , with dual norm $||\cdot||_*$.
- First, note that for all x,

$$\langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2} \|\mathbf{x}\|^2 \le \|\boldsymbol{\theta}\|_* \|\mathbf{x}\| - \frac{1}{2} \|\mathbf{x}\|^2$$

• The max value of the right-hand side above (w.r.t. $\|\mathbf{x}\|$): $\frac{1}{2}\|\boldsymbol{\theta}\|_*^2$. So for all \mathbf{x} , we have

- Let $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$, where $||\cdot||$ is a norm in \mathbb{R}^d , with dual norm $||\cdot||_*$.
- First, note that for all x,

$$\langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2} \|\mathbf{x}\|^2 \le \|\boldsymbol{\theta}\|_* \|\mathbf{x}\| - \frac{1}{2} \|\mathbf{x}\|^2$$

• The max value of the right-hand side above (w.r.t. $\|\mathbf{x}\|$): $\frac{1}{2}\|\boldsymbol{\theta}\|_{*}^{2}$. So for all \mathbf{x} , we have

$$\langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2} \|\mathbf{x}\|^2 \leq \frac{1}{2} \|\boldsymbol{\theta}\|_*^2.$$

Hence, $f^*(\boldsymbol{\theta}) \leq \frac{1}{2} \|\boldsymbol{\theta}\|_*^2$.

- Let $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$, where $||\cdot||$ is a norm in \mathbb{R}^d , with dual norm $||\cdot||_*$.
- First, note that for all x,

$$\langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2} \|\mathbf{x}\|^2 \le \|\boldsymbol{\theta}\|_* \|\mathbf{x}\| - \frac{1}{2} \|\mathbf{x}\|^2$$

• The max value of the right-hand side above (w.r.t. $\|\mathbf{x}\|$): $\frac{1}{2}\|\boldsymbol{\theta}\|_*^2$. So for all \mathbf{x} , we have $\langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2}\|\mathbf{x}\|^2 \leq \frac{1}{2}\|\boldsymbol{\theta}\|_*^2$.

Hence,
$$f^*(\boldsymbol{\theta}) \leq \frac{1}{2} \|\boldsymbol{\theta}\|_*^2$$
.

• The other side: let \mathbf{x} be any vector with $\langle \boldsymbol{\theta}, \mathbf{x} \rangle = \|\boldsymbol{\theta}\|_* \|\mathbf{x}\|$, scaled with $\|\mathbf{x}\| = \|\boldsymbol{\theta}\|_*$

- Let $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$, where $||\cdot||$ is a norm in \mathbb{R}^d , with dual norm $||\cdot||_*$.
- First, note that for all x,

$$\langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2} \|\mathbf{x}\|^2 \le \|\boldsymbol{\theta}\|_* \|\mathbf{x}\| - \frac{1}{2} \|\mathbf{x}\|^2$$

• The max value of the right-hand side above (w.r.t. $\|\mathbf{x}\|$): $\frac{1}{2}\|\boldsymbol{\theta}\|_*^2$. So for all \mathbf{x} , we have

$$\langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2} \|\mathbf{x}\|^2 \leq \frac{1}{2} \|\boldsymbol{\theta}\|_*^2.$$

Hence, $f^*(\boldsymbol{\theta}) \leq \frac{1}{2} \|\boldsymbol{\theta}\|_*^2$.

• The other side: let **x** be any vector with $\langle \theta, \mathbf{x} \rangle = \|\theta\|_* \|\mathbf{x}\|$, scaled with $\|\mathbf{x}\| = \|\theta\|_* \Rightarrow$ we have $f^*(\theta) \geq \frac{1}{2} \|\theta\|_*^2$.

Example 5: Conjugate of Affine Functions

Lemma

Let f be a function and f^* be its Fenchel conjugate. For a > 0 and $b \in \mathbb{R}$, the Fenchel conjugate of $g(\mathbf{x}) = af(\mathbf{x}) + b$ is

$$g^*(\theta) = af^*(\theta/a) - b.$$

• By definition,

$$g^{*}(\theta) = \sup_{\mathbf{x} \in \mathbb{R}^{d}} (\langle \theta, \mathbf{x} \rangle - af(\mathbf{x}) - b)$$

$$= -b + a \left(\sup_{\mathbf{x} \in \mathbb{R}^{d}} \left(\left\langle \frac{\theta}{a}, \mathbf{x} \right\rangle - f(\mathbf{x}) \right) \right)$$

$$= -b + af^{*}(\theta/a).$$

Example 6: Order Reverse

Lemma

Let f_1, f_2 be two functions such that $f_1(\mathbf{x}) \leq f_2(\mathbf{x})$ for all \mathbf{x} . Then, $f_1^*(\theta) \geq f_2^*(\theta)$ for all θ .

Example 6: Order Reverse

Lemma

Let f_1, f_2 be two functions such that $f_1(\mathbf{x}) \leq f_2(\mathbf{x})$ for all \mathbf{x} . Then, $f_1^*(\theta) \geq f_2^*(\theta)$ for all θ .

By definition,

$$f_1^*(\boldsymbol{ heta}) = \sup_{\mathbf{x}} \left(\langle \boldsymbol{ heta}, \mathbf{x}
angle - f_1(\mathbf{x})
ight)$$

Example 6: Order Reverse

Lemma

Let f_1, f_2 be two functions such that $f_1(\mathbf{x}) \leq f_2(\mathbf{x})$ for all \mathbf{x} . Then, $f_1^*(\theta) \geq f_2^*(\theta)$ for all θ .

By definition,

$$f_1^*(\theta) = \sup_{\mathbf{x}} \left(\langle \theta, \mathbf{x} \rangle - f_1(\mathbf{x}) \right) \ge \sup_{\mathbf{x}} \left(\langle \theta, \mathbf{x} \rangle - f_2(\mathbf{x}) \right) = f_2^*(\theta).$$

Discussions