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Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan:
https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal:
https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona:
https://parameterfree.com/lecture-notes-on-online-learning/
the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan’s textbook:
Introduction to Online Convex Optimization, 2nd Edition.
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Follow The Regularized Leader (FTRL)

Introducing REGULARIZATION

You might have already been using regularization for quite a long
time.
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The regularizer

At each step, we compute the solution

xt := argmin
x∈K

(
R(x) +

t−1∑
k=1

fk(x)

)
.

This is called Follow the Regularized Leader (FTRL).

In short,

FTRL = FTL + Regularizer.
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Analysis of FTRL

Theorem 3 (Analysis of FTRL)

For

every sequence of cost function {ft(·)}t≥1 and

every regularizer function R(·),
for every x , the regret with respect to x after T steps of the FTRL
algorithm is bounded as

regretT (x) ≤

(
T∑
t=1

ft(xt)− ft(xt+1)

)
+ R(x)− R(x1),

where regretT (x) :=
∑T

t=1(ft(xt)− ft(x)).
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Proof of Theorem 3

Consider a mental experiment:

We run the FTL algorithm for T + 1 steps.
The sequence of cost functions: R, f1, f2, . . . , fT .

Use x1 as the first solution.

The solutions: x1, x1, x2, . . . , xT .
The regret:

R(x1)− R(x) +
T∑
t=1

(ft(xt)− ft(x)) ≤ R(x1)−R(x1) +
T∑
t=1

(ft(xt)− ft(xt+1))

minimizer of R(·)output of FTRL at t + 1
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MWU Revisited

Using negative-entropy regularization

We have seen an example that FTL tends to put all probability mass
on one expert (it’s bad!)

Idea: penalize over “concentralized” distributions.

negative-entropy: a good measure of how centralized a distribution is.

R(x) := c ·
n∑

i=1

x(i) ln x(i).

So our FTRL gives

xt = arg min
x∈∆

(
t−1∑
k=1

⟨ℓk , x⟩+ c ·
n∑

i=1

x(i) ln x(i)

)
.
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Using negative entropy regularization

xt = arg min
x∈∆

(
t−1∑
k=1

⟨ℓk , x⟩+ c ·
n∑

i=1

x(i) ln x(i)

)
.

The constraint x ∈ ∆ ⇒
∑

i xi = 1.

So we use Lagrange multiplier to solve

L =

(
t−1∑
k=1

⟨ℓk , x⟩

)
+ c ·

(
n∑

i=1

x(i) ln x(i)

)
+ λ · (⟨x , 1⟩ − 1).

The partial derivative ∂L
∂x(i) :(

t−1∑
k=1

ℓk(i)

)
+ c · (1 + ln xi ) + λ

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 12 / 25
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MWU Revisited

Rediscover MWU?

∂L
∂x(i)

= 0 ⇒ x(i) = exp

(
−1− λ

c
− 1

c

t−1∑
k=1

ℓk(i)

)

Take the value of λ to make the solution a probability distribution.
Thus,

x(i) =
exp

(
− 1

c

∑t−1
k=1 ℓk(i)

)
∑

j exp
(
− 1

c

∑t−1
k=1 ℓk(j)

) .
Exactly the solution of MWU if we take c = 1/β!

Now it remains to bound the deviation of each step.
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Follow The Regularized Leader (FTRL)

MWU Revisited

Regret of FTRL + Negative-Entropy Regularization

At each step,
ft(xt)− ft(xt+1) = ⟨ℓt , xt − xt+1⟩

≤
∑

i ℓt(i) ·
1
c xt(i) ≤

1
c

.

Let’s go back to use the notation of MWU.

w1(i) = 1 (initialization).
wt+1(i) = wt(i) · e−ℓt(i)/c .

So, xt =
wt(i)∑
j wt(j)

.

Then,

xt+1(i) =
wt+1(i)∑
j wt+1(j)

=
wt(i)e

−ℓt(i)/c∑
j wt+1(j)

≥ wt(i)e
−ℓt(i)/c∑

j wt(j)

≥ xt(i) · e−1/c ≥ (1− 1/c)xt(i).

∵ weights are non-increasing assume 0 ≤ ℓt(i) ≤ 1
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MWU Revisited

Regret of FTRL + Negative-Entropy Regularization

By Theorem 3, for any x ,

regretT (x) ≤
T∑
t=1

(ft(xt)− ft(xt+1)) + R(x)− R(x1) ≤
T

c
+ c ln n.

∵ max entropy for uniform distribution

Again, we have regretT ≤ 2
√
T ln n by choosing c =

√
T
ln n .

Note the slight difference b/w regret and regret∗.
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FTRL with 2-norm regularizer

L2 Regularization

Let’s try to apply the FTRL to the case that the regularizer is of L2
norm!

Consider also linear cost functions but K = Rn first.

What kind of problem we might encounter?

The offline optimum could be −∞.

FTL will also tend to find a solution of “big” size, too.

To fight this tendency, it makes sense to use a regularizer which
penalizes the size of a solution.

R(x) := c ||x ||2.
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regularizer of 2-norm tells us...

x1 = 0.

xt+1 = argminx∈Rn c ||x ||2 +
∑t

k=1⟨ℓk , x⟩.

convex

Compute the gradient:

2cx +
t∑

k=1

ℓk = 0

⇒ x = − 1

2c

t∑
k=1

ℓk .

Hence, x1 = 0, xt+1 = xt − 1
2c ℓt .

→ penalize the experts that performed badly in the past!
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⇒ x = − 1

2c

t∑
k=1

ℓk .

Hence, x1 = 0, xt+1 = xt − 1
2c ℓt .

→ penalize the experts that performed badly in the past!
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

The regret of FTRL with 2-norm regularization

First, we have

ft(xt)− ft(xt+1) = ⟨ℓt , xt − xt+1⟩ =
〈
ℓt ,

1

2c
ℓt

〉
=

1

2c
||ℓt ||2.

So, with respect to a solution x ,

regretT (x) ≤ R(x)− R(x1) +
T∑
t=1

ft(xt)− ft(xt+1)

= c ||x ||2 + 1

2c

T∑
t=1

||ℓt ||2.

Suppose that ||ℓt || ≤ L for each t and ||x || ≤ D. Then by optimizing

c =
√

T
2D2L2

, we have

regretT (x) ≤ DL
√
2T .
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Dealing with constraints

Let’s deal with the constraint that K is an arbitrary convex set
instead of Rn.

Using the same regularizer, we have our FTRL which gives

x1 = argmin
x∈K

c ||x ||2,

xt+1 = argmin
x∈K

c||x ||2 +
t∑

k=1

⟨ℓt , x⟩.

The idea: First solve the unconstrained optimization and then
project the solution on K .
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Unconstrained optimization + projection

yt+1 = arg min
y∈Rn

c ||y ||2 +
t∑

k=1

⟨ℓt , y⟩.

x ′
t+1 = ΠK(yt+1) = argmin

x∈K
||x − yt+1||.

Claim: x ′
t+1 = xt+1.
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

Proof of the claim: x ′
t+1 = xt+1

First, we already have that yt+1 = − 1
2c

∑t
k=1 ℓt .

Then,

x ′
t+1 = argmin

x∈K
||x − yt+1|| = argmin

x∈K
||x − yt+1||2

= argmin
x∈K

||x ||2 − 2⟨x , yt+1⟩+ ||yt+1||2

= argmin
x∈K

||x ||2 − 2⟨x , yt+1⟩

= argmin
x∈K

||x ||2 − 2

〈
x ,− 1

2c

t∑
k=1

ℓt

〉

= argmin
x∈K

c ||x ||2 +

〈
x ,

t∑
k=1

ℓt

〉
= xt+1.
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Follow The Regularized Leader (FTRL)

FTRL with 2-norm regularizer

To bound the regret

ft(xt)− ft(xt+1) = ⟨ℓt , xt − xt+1⟩ ≤ ||ℓt || · ||xt − xt+1||

≤ ||ℓt || · ||yt − yt+1||.
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To bound the regret

ft(xt)− ft(xt+1) = ⟨ℓt , xt − xt+1⟩ ≤ ||ℓt || · ||xt − xt+1||
≤ ||ℓt || · ||yt − yt+1||

≤ 1

2c
||ℓt ||2.

So, assume maxx∈K ||x || ≤ D and ||ℓt || ≤ L for all t, we have

regretT ≤ c ||x∗||2 − c ||x1||2 +
1

2c

T∑
t=1

||ℓt ||2

≤ cD2 +
1

2c
TL2

≤ DL
√
2T .
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