Online Learning
 - Follow The Regularized Leader (FTRL)

Joseph Chuang-Chieh Lin

Department of Computer Science \& Information Engineering, Tamkang University

Spring 2023

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html
the lectures of Prof. Shipra Agrawal: https://ieor8100.github.io/mab/
the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/ the monograph: https://arxiv.org/abs/1912.13213
and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

Outline

(1) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer

Outline

(1) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer

Introducing REGULARIZATION

- You might have already been using regularization for quite a long time.

Introducing REGULARIZATION

```
from keras import regularizers
model.add(Dense(64, input_dim=64,
    kernel_regularizer=regularizers.12(0.01)
```


Introducing REGULARIZATION

```
# L1 data (only }5\mathrm{ informative features)
X_1, y_1 = datasets.make classification(n_samples=n_samples,
n_features=n_features, n_informative=5,
random_state=1)
# l2 data: non sparse, but less features
y_2 = np.sign(.5 - rnd.rand(n_samples))
X_2 = rnd.randn(n_samples, n_features // 5) + y_2[:, np.newaxis]
X_2 += 5 * rnd.randn(n_samples, n_features // 5)
clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False,
    tol=1e-3),
    np.logspace(-2.3, -1.3, 10), X_1, y_1),
    (LinearSVC(penalty='12', loss='squared_hinge', dual=True),
    np.logspace(-4.5, -2, 10), X_2, y_2)]
```


The regularizer

At each step, we compute the solution

$$
\boldsymbol{x}_{t}:=\arg \min _{\boldsymbol{x} \in \mathcal{K}}\left(R(\boldsymbol{x})+\sum_{k=1}^{t-1} f_{k}(\boldsymbol{x})\right) .
$$

This is called Follow the Regularized Leader (FTRL).
In short,

FTRL $=$ FTL + Regularizer.

Analysis of FTRL

Theorem 3 (Analysis of FTRL)

For

- every sequence of cost function $\left\{f_{t}(\cdot)\right\}_{t \geq 1}$ and
- every regularizer function $R(\cdot)$, for every \boldsymbol{x}, the regret with respect to \boldsymbol{x} after T steps of the FTRL algorithm is bounded as

$$
\operatorname{regret}_{T}(\boldsymbol{x}) \leq\left(\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)+R(\boldsymbol{x})-R\left(\boldsymbol{x}_{1}\right)
$$

where $^{\operatorname{regret}_{T}}(\boldsymbol{x}):=\sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}(\boldsymbol{x})\right)$.

Proof of Theorem 3

- Consider a mental experiment:

Proof of Theorem 3

- Consider a mental experiment:
- We run the FTL algorithm for $T+1$ steps.
- The sequence of cost functions: $R, f_{1}, f_{2}, \ldots, f_{T}$.
- Use x_{1} as the first solution.
- The solutions: $\boldsymbol{x}_{1}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{T}$.

Proof of Theorem 3

- Consider a mental experiment:
- We run the FTL algorithm for $T+1$ steps.
- The sequence of cost functions: $R, f_{1}, f_{2}, \ldots, f_{T}$.
- Use x_{1} as the first solution.
- The solutions: $\boldsymbol{x}_{1}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{T}$.
- The regret:

$$
R\left(\boldsymbol{x}_{1}\right)-R(\boldsymbol{x})+\sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}(\boldsymbol{x})\right)
$$

Proof of Theorem 3

- Consider a mental experiment:
- We run the FTL algorithm for $T+1$ steps.
- The sequence of cost functions: $R, f_{1}, f_{2}, \ldots, f_{T}$.
- Use x_{1} as the first solution.
- The solutions: $\boldsymbol{x}_{1}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{T}$.
- The regret:

$$
R\left(\boldsymbol{x}_{1}\right)-R(\boldsymbol{x})+\sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}(\boldsymbol{x})\right) \leq R\left(\boldsymbol{x}_{1}\right)-R\left(\boldsymbol{x}_{1}\right)+\sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)
$$

minimizer of $R(\cdot)$

Proof of Theorem 3

- Consider a mental experiment:
- We run the FTL algorithm for $T+1$ steps.
- The sequence of cost functions: $R, f_{1}, f_{2}, \ldots, f_{T}$.
- Use x_{1} as the first solution.
- The solutions: $\boldsymbol{x}_{1}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{T}$.
- The regret:

$$
\begin{aligned}
R\left(\boldsymbol{x}_{1}\right)-R(\boldsymbol{x})+\sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}(\boldsymbol{x})\right) \leq & R\left(\boldsymbol{x}_{1}\right)-R\left(\boldsymbol{x}_{1}\right)+\sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right) \\
& \text { output of FTRL at } t+1
\end{aligned}
$$

Outline

(1) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- Idea: penalize over "concentralized" distributions.
- negative-entropy: a good measure of how centralized a distribution is.

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- Idea: penalize over "concentralized" distributions.
- negative-entropy: a good measure of how centralized a distribution is.

$$
R(x):=c \cdot \sum_{i=1}^{n} x(i) \ln x(i)
$$

Using negative-entropy regularization

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- Idea: penalize over "concentralized" distributions.
- negative-entropy: a good measure of how centralized a distribution is.

$$
R(x):=c \cdot \sum_{i=1}^{n} x(i) \ln x(i)
$$

- So our FTRL gives

$$
\boldsymbol{x}_{t}=\arg \min _{\boldsymbol{x} \in \Delta}\left(\sum_{k=1}^{t-1}\left\langle\ell_{k}, \boldsymbol{x}\right\rangle+c \cdot \sum_{i=1}^{n} \boldsymbol{x}(i) \ln \boldsymbol{x}(i)\right) .
$$

Using negative entropy regularization

$$
\boldsymbol{x}_{t}=\arg \min _{x \in \Delta}\left(\sum_{k=1}^{t-1}\left\langle\boldsymbol{\ell}_{k}, \boldsymbol{x}\right\rangle+c \cdot \sum_{i=1}^{n} \boldsymbol{x}(i) \ln \boldsymbol{x}(i)\right) .
$$

- The constraint $x \in \Delta \Rightarrow \sum_{i} x_{i}=1$.
- So we use Lagrange multiplier to solve

$$
\mathcal{L}=\left(\sum_{k=1}^{t-1}\left\langle\ell_{k}, \boldsymbol{x}\right\rangle\right)+c \cdot\left(\sum_{i=1}^{n} \boldsymbol{x}(i) \ln \boldsymbol{x}(i)\right)+\lambda \cdot(\langle\boldsymbol{x}, \mathbf{1}\rangle-1) .
$$

Using negative entropy regularization

$$
\boldsymbol{x}_{t}=\arg \min _{x \in \Delta}\left(\sum_{k=1}^{t-1}\left\langle\ell_{k}, \boldsymbol{x}\right\rangle+c \cdot \sum_{i=1}^{n} \boldsymbol{x}(i) \ln \boldsymbol{x}(i)\right) .
$$

- The constraint $x \in \Delta \Rightarrow \sum_{i} x_{i}=1$.
- So we use Lagrange multiplier to solve

$$
\mathcal{L}=\left(\sum_{k=1}^{t-1}\left\langle\ell_{k}, \boldsymbol{x}\right\rangle\right)+c \cdot\left(\sum_{i=1}^{n} \boldsymbol{x}(i) \ln \boldsymbol{x}(i)\right)+\lambda \cdot(\langle\boldsymbol{x}, \mathbf{1}\rangle-1)
$$

- The partial derivative $\frac{\partial \mathcal{L}}{\partial x(i)}$:

$$
\left(\sum_{k=1}^{t-1} \ell_{k}(i)\right)+c \cdot\left(1+\ln x_{i}\right)+\lambda
$$

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)}=0 \quad \Rightarrow \quad \boldsymbol{x}(i)=\exp \left(-1-\frac{\lambda}{c}-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)
$$

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)}=0 \Rightarrow \boldsymbol{x}(i)=\exp \left(-1-\frac{\lambda}{c}-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)
$$

Take the value of λ to make the solution a probability distribution. Thus,

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)}=0 \quad \Rightarrow \quad \boldsymbol{x}(i)=\exp \left(-1-\frac{\lambda}{c}-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)
$$

Take the value of λ to make the solution a probability distribution.
Thus,

$$
\boldsymbol{x}(i)=\frac{\exp \left(-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)}{\sum_{j} \exp \left(-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(j)\right)}
$$

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)}=0 \Rightarrow \boldsymbol{x}(i)=\exp \left(-1-\frac{\lambda}{c}-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)
$$

Take the value of λ to make the solution a probability distribution.
Thus,

$$
\boldsymbol{x}(i)=\frac{\exp \left(-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)}{\sum_{j} \exp \left(-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(j)\right)}
$$

Exactly the solution of MWU if we take $c=1 / \beta$!

Rediscover MWU?

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(i)}=0 \Rightarrow \boldsymbol{x}(i)=\exp \left(-1-\frac{\lambda}{c}-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)
$$

Take the value of λ to make the solution a probability distribution.
Thus,

$$
\boldsymbol{x}(i)=\frac{\exp \left(-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(i)\right)}{\sum_{j} \exp \left(-\frac{1}{c} \sum_{k=1}^{t-1} \ell_{k}(j)\right)}
$$

Exactly the solution of MWU if we take $c=1 / \beta$!

- Now it remains to bound the deviation of each step.

Regret of FTRL + Negative-Entropy Regularization

- At each step,

$$
f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)=\left\langle\ell_{t}, \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle
$$

- Let's go back to use the notation of MWU.
- $\boldsymbol{w}_{1}(i)=1$ (initialization).
- $\boldsymbol{w}_{t+1}(i)=\boldsymbol{w}_{t}(i) \cdot e^{-\ell_{t}(i) / c}$.

Regret of FTRL + Negative-Entropy Regularization

- At each step,

$$
f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)=\left\langle\ell_{t}, \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle
$$

- Let's go back to use the notation of MWU.
- $\boldsymbol{w}_{1}(i)=1$ (initialization).
- $\boldsymbol{w}_{t+1}(i)=\boldsymbol{w}_{t}(i) \cdot e^{-\ell_{t}(i) / c}$.
- So, $\boldsymbol{x}_{t}=\frac{\boldsymbol{w}_{t}(i)}{\sum_{j} \boldsymbol{w}_{t}(j)}$.
- Then,

$$
\begin{aligned}
\boldsymbol{x}_{t+1}(i) & =\frac{\boldsymbol{w}_{t+1}(i)}{\sum_{j} \boldsymbol{w}_{t+1}(j)}=\frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t+1}(j)} \geq \frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t}(j)} \\
& \geq \boldsymbol{x}_{t}(i) \cdot e^{-1 / c} \geq(1-1 / c) \boldsymbol{x}_{t}(i)
\end{aligned}
$$

Regret of FTRL + Negative-Entropy Regularization

- At each step,

$$
f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)=\left\langle\ell_{t}, \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle
$$

- Let's go back to use the notation of MWU.
- $\boldsymbol{w}_{1}(i)=1$ (initialization).
- $\boldsymbol{w}_{t+1}(i)=\boldsymbol{w}_{t}(i) \cdot e^{-\ell_{t}(i) / c}$.
- So, $\boldsymbol{x}_{t}=\frac{\boldsymbol{w}_{t}(i)}{\sum_{j} \boldsymbol{w}_{t}(j)}$.
- Then,

$$
\begin{aligned}
\boldsymbol{x}_{t+1}(i) & =\frac{\boldsymbol{w}_{t+1}(i)}{\sum_{j} \boldsymbol{w}_{t+1}(j)}=\frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t+1}(j)} \geq \frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t}(j)} \\
& \geq \boldsymbol{x}_{t}(i) \cdot e^{-1 / c} \geq(1-1 / c) \boldsymbol{x}_{t}(i)
\end{aligned}
$$

\because weights are non-increasing

Regret of FTRL + Negative-Entropy Regularization

- At each step,

$$
f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)=\left\langle\ell_{t}, \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle
$$

- Let's go back to use the notation of MWU.
- $\boldsymbol{w}_{1}(i)=1$ (initialization).
- $\boldsymbol{w}_{t+1}(i)=\boldsymbol{w}_{t}(i) \cdot e^{-\ell_{t}(i) / c}$.
- So, $\boldsymbol{x}_{t}=\frac{\boldsymbol{w}_{t}(i)}{\sum_{j} \boldsymbol{w}_{t}(j)}$.
- Then,

$$
\begin{aligned}
& \boldsymbol{x}_{t+1}(i)= \frac{\boldsymbol{w}_{t+1}(i)}{\sum_{j} \boldsymbol{w}_{t+1}(j)}=\frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t+1}(j)} \geq \frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t}(j)} \\
& \geq \boldsymbol{x}_{t}(i) \cdot e^{-1 / c} \geq(1-1 / c) \boldsymbol{x}_{t}(i) \\
& \quad \text { assume } 0 \leq \boldsymbol{\ell}_{t}(i) \leq 1
\end{aligned}
$$

Regret of FTRL + Negative-Entropy Regularization

- At each step,

$$
f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)=\left\langle\boldsymbol{\ell}_{t}, \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle \leq \sum_{i} \boldsymbol{\ell}_{t}(i) \cdot \frac{1}{c} \boldsymbol{x}_{t}(i) \leq \frac{1}{c} .
$$

- Let's go back to use the notation of MWU.
- $\boldsymbol{w}_{1}(i)=1$ (initialization).
- $\boldsymbol{w}_{t+1}(i)=\boldsymbol{w}_{t}(i) \cdot e^{-\ell_{t}(i) / c}$.
- So, $\boldsymbol{x}_{t}=\frac{\boldsymbol{w}_{t}(i)}{\sum_{j} \boldsymbol{w}_{t}(j)}$.
- Then,

$$
\begin{aligned}
\boldsymbol{x}_{t+1}(i) & =\frac{\boldsymbol{w}_{t+1}(i)}{\sum_{j} \boldsymbol{w}_{t+1}(j)}=\frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t+1}(j)} \geq \frac{\boldsymbol{w}_{t}(i) e^{-\ell_{t}(i) / c}}{\sum_{j} \boldsymbol{w}_{t}(j)} \\
& \geq \boldsymbol{x}_{t}(i) \cdot e^{-1 / c} \geq(1-1 / c) \boldsymbol{x}_{t}(i)
\end{aligned}
$$

Regret of FTRL + Negative-Entropy Regularization

- By Theorem 3, for any \boldsymbol{x},

$$
\operatorname{regret}_{T}(\boldsymbol{x}) \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)+R(\boldsymbol{x})-R\left(\boldsymbol{x}_{1}\right) \leq \frac{T}{c}+c \ln n
$$

Regret of FTRL + Negative-Entropy Regularization

- By Theorem 3, for any \boldsymbol{x},

$$
\operatorname{regret}_{T}(\boldsymbol{x}) \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)+R(\boldsymbol{x})-R\left(\boldsymbol{x}_{1}\right) \leq \frac{T}{c}+c \ln n
$$

\because max entropy for uniform distribution

Regret of FTRL + Negative-Entropy Regularization

- By Theorem 3, for any \boldsymbol{x},

$$
\operatorname{regret}_{T}(\boldsymbol{x}) \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)+R(\boldsymbol{x})-R\left(\boldsymbol{x}_{1}\right) \leq \frac{T}{c}+c \ln n
$$

Again, we have regret ${ }_{T} \leq 2 \sqrt{T \ln n}$ by choosing $c=\sqrt{\frac{T}{\ln n}}$.

Regret of FTRL + Negative-Entropy Regularization

- By Theorem 3, for any \boldsymbol{x},

$$
\operatorname{regret}_{T}(\boldsymbol{x}) \leq \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)\right)+R(\boldsymbol{x})-R\left(\boldsymbol{x}_{1}\right) \leq \frac{T}{c}+c \ln n
$$

Again, we have regret ${ }_{T} \leq 2 \sqrt{T \ln n}$ by choosing $c=\sqrt{\frac{T}{\ln n}}$.

- Note the slight difference b/w regret and regret*.

Outline

(1) Follow The Regularized Leader (FTRL)

- MWU Revisited
- FTRL with 2-norm regularizer

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $\mathcal{K}=\mathbb{R}^{n}$ first.
- What kind of problem we might encounter?

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $\mathcal{K}=\mathbb{R}^{n}$ first.
- What kind of problem we might encounter?
- The offline optimum could be $-\infty$.
- FTL will also tend to find a solution of "big" size, too.

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $\mathcal{K}=\mathbb{R}^{n}$ first.
- What kind of problem we might encounter?
- The offline optimum could be $-\infty$.
- FTL will also tend to find a solution of "big" size, too.
- To fight this tendency, it makes sense to use a regularizer which penalizes the size of a solution.

$$
R(\boldsymbol{x}):=c\|\boldsymbol{x}\|^{2} .
$$

The regularizer of 2-norm tells us...

- $x_{1}=0$.
- $\boldsymbol{x}_{t+1}=\arg \min _{x \in \mathbb{R}^{n}} c\|\boldsymbol{x}\|^{2}+\sum_{k=1}^{t}\left\langle\boldsymbol{\ell}_{k}, \boldsymbol{x}\right\rangle$.
- Compute the gradient:

$$
\begin{aligned}
& 2 c x+\sum_{k=1}^{t} \ell_{k}=0 \\
\Rightarrow & x=-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{k}
\end{aligned}
$$

Hence, $\boldsymbol{x}_{1}=\mathbf{0}, \boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\frac{1}{2 c} \ell_{t}$.

The regularizer of 2-norm tells us...

- $x_{1}=0$.
- $\boldsymbol{x}_{t+1}=\arg \min _{\boldsymbol{x} \in \mathbb{R}^{n}} c\|\boldsymbol{x}\|^{2}+\sum_{k=1}^{t}\left\langle\ell_{k}, \boldsymbol{x}\right\rangle$. convex
- Compute the gradient:

$$
\begin{aligned}
& 2 c x+\sum_{k=1}^{t} \ell_{k}=0 \\
\Rightarrow & x=-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{k}
\end{aligned}
$$

Hence, $\boldsymbol{x}_{1}=\mathbf{0}, \boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\frac{1}{2 c} \ell_{t}$.

The regularizer of 2-norm tells us...

- $x_{1}=0$.
- $\boldsymbol{x}_{t+1}=\arg \min _{x \in \mathbb{R}^{n}} \boldsymbol{c}\|\boldsymbol{x}\|^{2}+\sum_{k=1}^{t}\left\langle\boldsymbol{\ell}_{k}, \boldsymbol{x}\right\rangle$.
- Compute the gradient:

$$
\begin{aligned}
& 2 c x+\sum_{k=1}^{t} \ell_{k}=0 \\
\Rightarrow & x=-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{k}
\end{aligned}
$$

Hence, $\boldsymbol{x}_{1}=\mathbf{0}, \boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\frac{1}{2 c} \ell_{t}$.

The regularizer of 2-norm tells us...

- $x_{1}=0$.
- $\boldsymbol{x}_{t+1}=\arg \min _{\boldsymbol{x} \in \mathbb{R}^{n}} c\|\boldsymbol{x}\|^{2}+\sum_{k=1}^{t}\left\langle\boldsymbol{\ell}_{k}, \boldsymbol{x}\right\rangle$.
- Compute the gradient:

$$
\begin{aligned}
& 2 c x+\sum_{k=1}^{t} \ell_{k}=0 \\
\Rightarrow & x=-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{k}
\end{aligned}
$$

Hence, $\boldsymbol{x}_{1}=\mathbf{0}, \boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\frac{1}{2 c} \ell_{t}$.
\rightarrow penalize the experts that performed badly in the past!

The regret of FTRL with 2-norm regularization

- First, we have

$$
f_{t}\left(x_{t}\right)-f_{t}\left(x_{t+1}\right)=\left\langle\ell_{t}, x_{t}-x_{t+1}\right\rangle=\left\langle\ell_{t}, \frac{1}{2 c} \ell_{t}\right\rangle=\frac{1}{2 c}\left\|\ell_{t}\right\|^{2} .
$$

- So, with respect to a solution \boldsymbol{x},

$$
\begin{aligned}
\operatorname{regret}_{T}(\boldsymbol{x}) & \leq R(\boldsymbol{x})-R\left(\boldsymbol{x}_{1}\right)+\sum_{t=1}^{T} f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right) \\
& =c\|\boldsymbol{x}\|^{2}+\frac{1}{2 c} \sum_{t=1}^{T}\left\|\ell_{t}\right\|^{2} .
\end{aligned}
$$

- Suppose that $\left\|\ell_{t}\right\| \leq L$ for each t and $\|x\| \leq D$. Then by optimizing $c=\sqrt{\frac{T}{2 D^{2} L^{2}}}$, we have

$$
\operatorname{regret}_{T}(x) \leq D L \sqrt{2 T}
$$

Dealing with constraints

- Let's deal with the constraint that \mathcal{K} is an arbitrary convex set instead of \mathbb{R}^{n}.
- Using the same regularizer, we have our FTRL which gives

$$
\begin{aligned}
& \boldsymbol{x}_{1}=\arg \min _{x \in \mathcal{K}} c\|\boldsymbol{x}\|^{2}, \\
& \boldsymbol{x}_{t+1}=\arg \min _{x \in \mathcal{K}} c\|\boldsymbol{x}\|^{2}+\sum_{k=1}^{t}\left\langle\ell_{t}, \boldsymbol{x}\right\rangle .
\end{aligned}
$$

Dealing with constraints

- Let's deal with the constraint that \mathcal{K} is an arbitrary convex set instead of \mathbb{R}^{n}.
- Using the same regularizer, we have our FTRL which gives

$$
\begin{aligned}
& \boldsymbol{x}_{1}=\arg \min _{x \in \mathcal{K}} c\|\boldsymbol{x}\|^{2} \\
& \boldsymbol{x}_{t+1}=\arg \min _{\boldsymbol{x} \in \mathcal{K}} c\|\boldsymbol{x}\|^{2}+\sum_{k=1}^{t}\left\langle\ell_{t}, \boldsymbol{x}\right\rangle
\end{aligned}
$$

- The idea: First solve the unconstrained optimization and then project the solution on K.

Unconstrained optimization + projection

$$
\begin{aligned}
& \boldsymbol{y}_{t+1}=\arg \min _{\boldsymbol{y} \in \mathbb{R}^{n}} c\|\boldsymbol{y}\|^{2}+\sum_{k=1}^{t}\left\langle\boldsymbol{\ell}_{t}, \boldsymbol{y}\right\rangle . \\
& \boldsymbol{x}_{t+1}^{\prime}=\Pi_{\mathcal{K}}\left(\boldsymbol{y}_{t+1}\right)=\arg \min _{x \in \mathcal{K}}\left\|\boldsymbol{x}-\boldsymbol{y}_{t+1}\right\| .
\end{aligned}
$$

Unconstrained optimization + projection

$$
\begin{aligned}
& \boldsymbol{y}_{t+1}=\arg \min _{\boldsymbol{y} \in \mathbb{R}^{n}} c\|\boldsymbol{y}\|^{2}+\sum_{k=1}^{t}\left\langle\ell_{t}, \boldsymbol{y}\right\rangle . \\
& \boldsymbol{x}_{t+1}^{\prime}=\Pi_{\mathcal{K}}\left(\boldsymbol{y}_{t+1}\right)=\arg \min _{\boldsymbol{x} \in \mathcal{K}}\left\|\boldsymbol{x}-\boldsymbol{y}_{t+1}\right\| .
\end{aligned}
$$

- Claim: $x_{t+1}^{\prime}=x_{t+1}$.

Proof of the claim: $x_{t+1}^{\prime}=x_{t+1}$

- First, we already have that $\boldsymbol{y}_{t+1}=-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{t}$.
- Then,

$$
\begin{aligned}
\boldsymbol{x}_{t+1}^{\prime} & =\arg \min _{\boldsymbol{x} \in \mathcal{K}}\left\|\boldsymbol{x}-\boldsymbol{y}_{t+1}\right\|=\arg \min _{\boldsymbol{x} \in \mathcal{K}}\left\|\boldsymbol{x}-\boldsymbol{y}_{t+1}\right\|^{2} \\
& =\arg \min _{\boldsymbol{x} \in \mathcal{K}}\|\boldsymbol{x}\|^{2}-2\left\langle\boldsymbol{x}, \boldsymbol{y}_{t+1}\right\rangle+\left\|\boldsymbol{y}_{t+1}\right\|^{2}
\end{aligned}
$$

Proof of the claim: $x_{t+1}^{\prime}=x_{t+1}$

- First, we already have that $\boldsymbol{y}_{t+1}=-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{t}$.
- Then,

$$
\begin{aligned}
\boldsymbol{x}_{t+1}^{\prime} & =\arg \min _{x \in \mathcal{K}}\left\|\boldsymbol{x}-\boldsymbol{y}_{t+1}\right\|=\arg \min _{\boldsymbol{x} \in \mathcal{K}}\left\|\boldsymbol{x}-\boldsymbol{y}_{t+1}\right\|^{2} \\
& =\arg \min _{\boldsymbol{x} \in \mathcal{K}}\|\boldsymbol{x}\|^{2}-2\left\langle\boldsymbol{x}, \boldsymbol{y}_{t+1}\right\rangle+\left\|\boldsymbol{y}_{t+1}\right\|^{2} \\
& =\arg \min _{\boldsymbol{x} \in \mathcal{K}}\|\boldsymbol{x}\|^{2}-2\left\langle\boldsymbol{x}, \boldsymbol{y}_{t+1}\right\rangle \\
& =\arg \min _{\boldsymbol{x} \in \mathcal{K}}\|\boldsymbol{x}\|^{2}-2\left\langle\boldsymbol{x},-\frac{1}{2 c} \sum_{k=1}^{t} \ell_{t}\right\rangle \\
& =\arg \min _{x \in \mathcal{K}} c\|\boldsymbol{x}\|^{2}+\left\langle\boldsymbol{x}, \sum_{k=1}^{t} \ell_{t}\right\rangle \\
& =\boldsymbol{x}_{t+1} .
\end{aligned}
$$

To bound the regret

$$
f_{t}\left(x_{t}\right)-f_{t}\left(x_{t+1}\right)=\left\langle\ell_{t}, x_{t}-x_{t+1}\right\rangle \leq\left\|\ell_{t}\right\| \cdot\left\|x_{t}-x_{t+1}\right\|
$$

To bound the regret

$$
\begin{aligned}
f_{t}\left(\boldsymbol{x}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t+1}\right)=\left\langle\ell_{t}, \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle & \leq\left\|\ell_{t}\right\| \cdot\left\|\boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\| \\
& \leq\left\|\ell_{t}\right\| \cdot\left\|\boldsymbol{y}_{t}-\boldsymbol{y}_{t+1}\right\| .
\end{aligned}
$$

To bound the regret

$$
\begin{aligned}
f_{t}\left(x_{t}\right)-f_{t}\left(x_{t+1}\right)=\left\langle\ell_{t}, x_{t}-x_{t+1}\right\rangle & \leq\left\|\ell_{t}\right\| \cdot\left\|x_{t}-x_{t+1}\right\| \\
& \leq\left\|\ell_{t}\right\| \cdot\left\|y_{t}-y_{t+1}\right\| \\
& \leq \frac{1}{2 c}\left\|\ell_{t}\right\|^{2} .
\end{aligned}
$$

So, assume $\max _{\boldsymbol{x} \in \mathcal{K}}\|\boldsymbol{x}\| \leq D$ and $\left\|\ell_{t}\right\| \leq L$ for all t, we have

$$
\begin{aligned}
\operatorname{regret}_{T} & \leq c\left\|\boldsymbol{x}^{*}\right\|^{2}-c\left\|\boldsymbol{x}_{1}\right\|^{2}+\frac{1}{2 c} \sum_{t=1}^{T}\left\|\ell_{t}\right\|^{2} \\
& \leq c D^{2}+\frac{1}{2 c} T L^{2}
\end{aligned}
$$

To bound the regret

$$
\begin{aligned}
f_{t}\left(x_{t}\right)-f_{t}\left(x_{t+1}\right)=\left\langle\ell_{t}, x_{t}-x_{t+1}\right\rangle & \leq\left\|\ell_{t}\right\| \cdot\left\|x_{t}-x_{t+1}\right\| \\
& \leq\left\|\ell_{t}\right\| \cdot\left\|y_{t}-y_{t+1}\right\| \\
& \leq \frac{1}{2 c}\left\|\ell_{t}\right\|^{2} .
\end{aligned}
$$

So, assume $\max _{\boldsymbol{x} \in \mathcal{K}}\|\boldsymbol{x}\| \leq D$ and $\left\|\ell_{t}\right\| \leq L$ for all t, we have

$$
\begin{aligned}
\operatorname{regret}_{T} & \leq c\left\|\boldsymbol{x}^{*}\right\|^{2}-c\left\|\boldsymbol{x}_{1}\right\|^{2}+\frac{1}{2 c} \sum_{t=1}^{T}\left\|\ell_{t}\right\|^{2} \\
& \leq c D^{2}+\frac{1}{2 c} T L^{2} \leq D L \sqrt{2 T} .
\end{aligned}
$$

Discussions

