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Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan:
https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal:
https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona:
https://parameterfree.com/lecture-notes-on-online-learning/
the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan’s textbook:
Introduction to Online Convex Optimization, 2nd Edition.
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Strong Convexity

Strongly Convex Function

Strongly Convex Function

Let µ ≥ 0. A function f : Rd 7→ (−∞,+∞] is µ-strongly convex over a
convex set V ⊆ dom(∂f ) w.r.t. ∥ · ∥ if

∀x, y ∈ V , g ∈ ∂f (x), f (y) ≥ f (x) + ⟨g, y − x⟩+ u

2
∥x− y∥2.

Taylor series up to the quadratic term.

For twice differentiable functions, we have the following theorem,
which is useful.
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Strong Convexity

Strongly Convex Function

Theorem [Shalev-Shwartz, 2007]

Let V ⊆ Rd be a convex set and f : V 7→ R be a twice differentiable
function. Then f is µ-strongly convex in V w.r.t. ∥∥ if for all x, y ∈ V , we
have

⟨∇2f (x)y, y⟩ ≥ µ∥y∥2,

where ∇2f (x) is the Hessian matrix of f at x.

That is, ∇2f (x) ⪰ µI .

Further readings: [link].
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Strong Convexity

Strong Convexity is Additive

Theorem

Given two functions f , g which are strongly convex in a non-empty convex
set V ⊆ int dom(f ) ∩ int dom(g) w.r.t. ∥ · ∥, and

f : Rd 7→ R is µ1-strongly convex

g : Rd 7→ R is µ2-strongly convex

Then, f + g is (µ1 + µ2)-strongly convex in V w.r.t. ∥ · ∥.
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Strong Convexity

An Exericse

Exercise

Show that f (x) = 1
2∥x∥

2
2 is 1-strongly convex w.r.t. ∥ · ∥2 in Rd .

Hint: Apply the theorem by Shalev & Shwartz.
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Online (Sub-)Gradient Descent for Strongly Convex Losses

Recall: Online (Sub-)Gradient Descent (GD)

1 Input: convex set V , T , x1 ∈ V , step size {ηt}.
2 for t ← 1 to T do:

1 Play xt and observe cost ft(xt).
2 Update and Project:

yt+1 = xt − ηtgt , for gt ∈ ∂ft(xt)

xt+1 = ΠK(yt+1)

3 end for
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Online (Sub-)Gradient Descent for Strongly Convex Losses

Steps for the regret bound (1/5)

Consider ∥ · ∥ = ∥ · ∥2.

For a fixed u ∈ V , we have

∥xt+1 − u∥2 − ∥xt − u∥2 ≤ ∥xt − ηtgt − u∥2 − ∥xt − u∥2

= −2ηt⟨gt , xt − u⟩+ η2t ∥gt∥2

≤ −2ηt(ft(xt)− ft(u)) + η2t ∥gt∥2.

Hence we derive that

ft(xt)− ft(u) ≤ ⟨gt , xt − u⟩

≤ 1

2ηt
∥xt − u∥2 − 1

2ηt
∥xt+1 − u∥2 + ηt

2
∥gt∥2.
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Online (Sub-)Gradient Descent for Strongly Convex Losses

Steps for the regret bound (2/5)

Suppose ft : Rd 7→ R is µt-strongly convex w.r.t. ∥ · ∥2 over
V ⊆ int dom(ft) for µt > 0, ∀t.

The strong convexity leads to

ft(xt)− ft(u) ≤ ⟨gt , xt − u⟩ − µt

2
∥xt − u∥2.
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Online (Sub-)Gradient Descent for Strongly Convex Losses

Steps for the regret bound (3/5)

We can set the learning rate adaptively by ηt = 1/(
∑t

i=1 µi ).

So we have

1

2η1
− µ1

2
= 0

1

2ηt
− µt

2
=

1

2ηt−1
, for t ≥ 2.

⋆ The learning rate is getting smaller with time.
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Online (Sub-)Gradient Descent for Strongly Convex Losses

Steps for the regret bound (4/5)

Summing up the previous regret bound:

T∑
t=1

(ft(xt)− ft(u)) ≤
T∑
t=1

(
⟨gt , xt − u⟩ − µt

2
∥xt − u∥2

)

≤
T∑
t=1

(
1

2ηt
∥xt − u∥2 − 1

2ηt
∥xt+1 − u∥2 + ηt

2
∥gt∥2 −

µt

2
∥xt − u∥2

)

= − 1

2η1
∥x2 − u∥2 +

T∑
t=2

(
1

2ηt−1
∥xt − u∥2 − 1

2ηt
∥xt+1 − u∥2

)

+
T∑
t=1

ηt
2
∥gt∥2

≤
T∑
t=1

ηt
2
∥gt∥2.
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Online (Sub-)Gradient Descent for Strongly Convex Losses

Steps for the regret bound (4/5)

Further assumptions:

µt = µ > 0 for all t.

ft is L-Lipschitz w.r.t. ∥ · ∥ = ∥ · ∥2 for all t.

Set the learning rate adaptively by ηt = 1/(
∑t

i=1 µi ).

Then we have

T∑
t=1

(ft(xt)− ft(u)) ≤
T∑
t=1

ηt
2
∥gt∥2

=
T∑
t=1

1

2
∑t

i=1 µi

∥gt∥2

≤ L2

2µ
(1 + lnT ).
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Discussions
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