Online Learning

- Course Introduction \& Syllabus

Joseph Chuang-Chieh Lin

Department of Computer Science \& Information Engineering, Tamkang University

Spring 2023

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html
the lectures of Prof. Shipra Agrawal: https://ieor8100.github.io/mab/
the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/ the monograph: https://arxiv.org/abs/1912.13213
and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

- On this course, we will "study together".
- We rely on the discussions and interactions in the class.
- Sometimes we will use the white board because it's clearer for illustrating the formulae and ideas step by step.
- We probably follow Prof. Orabona's textbook.

Topics we plan to cover...

- Introduction \& Prerequisites for online learning
- Online (Sub-)Gradient Descent (OGD)
- Online-to-Batch Conversion
- Multiplicative Weight Update (MWU)
- Follow the Regularized Leader (FTRL)
- Online Mirror Descent (OMD)
- Multi-Armed Bandit
- *Extra-Gradient \& Optimistic Gradient Descent
- Other selected topics.

Grading Policy

- Attendance (20\%)
- Course Interactions (10\%)
- Asking questions (1% for each)
- One Coding Project (10\%)
- Midterm Paper/Book Chapter Presentation (30\%)
- Final Paper Presentation (30\%)

Grading Policy for the Presentations

- Order: According to the seat number in iClass.
- Complete the presentation: 70 point.
- Duration for each presentation: 30-50 minutes.
- Raising questions: +2 point for each one (maximum +10 point).
- Clearly answering the teacher's 2-4 questions: +5 point for each one.

Grading Policy for the Coding Project

- Work as a team is allowed (3-5 people).
- We will give two options for the project.
- The easy one: UCB Implementation (5\%)
- The complicated one: Online Portfolio Management Using MWU (or any online algorithms): 10%
- Submit your codes and documentation to iClass.
- One person in each group must present your codes and results in the class.

Outline

(1) Course Syllabus \& Policies

(2) Introduction

(3) Prerequisites

- What's online learning?
- What's online learning?
- What about Offline optimization?

Online Convex Optimization

Goal: Design an algorithm such that

- At discrete time steps $t=1,2, \ldots$, output $\mathbf{x}_{t} \in \mathcal{K}$, for each t.
- \mathcal{K} : a convex set of feasible solutions.
- After \mathbf{x}_{t} is generated, a convex cost function $f_{t}: \mathcal{K} \mapsto \mathbb{R}$ is revealed.
- Then the algorithm suffers the loss $f_{t}\left(\mathbf{x}_{t}\right)$.

And we want to minimize the cost.

Online Convex Optimization

Goal: Design an algorithm such that

- At discrete time steps $t=1,2, \ldots$, output $\mathbf{x}_{t} \in \mathcal{K}$, for each t.
- \mathcal{K} : a convex set of feasible solutions.
- After \mathbf{x}_{t} is generated, a convex cost function $f_{t}: \mathcal{K} \mapsto \mathbb{R}$ is revealed.
- Then the algorithm suffers the loss $f_{t}\left(\mathbf{x}_{t}\right)$.

And we want to minimize the cost.

- For example, an adversary chooses \mathbf{y}_{t} for each t and we suffer the squared difference as the loss $f_{t}\left(\mathbf{x}_{t}\right)=\left(\mathbf{x}_{t}-\mathbf{y}_{t}\right)^{\top}\left(\mathbf{x}_{t}-\mathbf{y}_{t}\right)$.

The difficulty

- The cost functions f_{t} could be unknown before t.
- $f_{1}, f_{2}, \ldots, f_{t}, \ldots$ are not necessarily fixed.
- Can be generated dynamically by an adversary.

What's the regret?

- The offline optimum: After T steps,

$$
\min _{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\mathbf{x})
$$

- The regret after T steps:

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\min _{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\mathbf{x})
$$

What's the regret?

- The offline optimum: After T steps,

$$
\min _{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\mathbf{x})
$$

- The regret after T steps:

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\min _{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\mathbf{x})
$$

- The rescue: regret $_{T} \leq o(T)$.

What's the regret?

- The offline optimum: After T steps,

$$
\min _{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\mathbf{x}) .
$$

- The regret after T steps:

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\min _{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\mathbf{x})
$$

- The rescue: regret $_{T} \leq o(T) . \Rightarrow$ No-Regret in average when $T \rightarrow \infty$.
- For example, $\operatorname{regret}_{T} / T=\frac{\sqrt{T}}{T} \rightarrow 0$ when $T \rightarrow \infty$.

Remark

- If an online learning algorithm can guarantee a sublinear regret, it means that its performance, on average, will approach the performance of ANY fixed strategy.
- The regret after T steps with respect to some \mathbf{u} :

$$
\operatorname{regret}_{T}(\mathbf{u})=\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=1}^{T} f_{t}(\mathbf{u})
$$

What about comparing dynamic optimum?

- The regret after T steps:

$$
\text { dynamic_regret }_{T}=\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\min _{\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots \in \mathcal{K}} \sum_{t=1}^{T} f_{t}\left(\mathbf{z}_{t}\right) .
$$

What about comparing dynamic optimum?

- The regret after T steps:

$$
\text { dynamic_regret }_{T}=\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\min _{\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots \in \mathcal{K}} \sum_{t=1}^{T} f_{t}\left(\mathbf{z}_{t}\right) .
$$

- What's the difficulty \& the issue?

The best in the hindsight vs. follow the leader (1/4)

- Let $\mathbf{x}_{T}^{*}:=\arg \min \sum_{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x})$

The best in the hindsight vs. follow the leader (1/4)

- Let $\mathbf{x}_{T}^{*}:=\arg \min \sum_{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x})=\arg \min \sum_{\mathbf{x} \in \mathcal{K}}\left(\mathbf{x}-\mathbf{y}_{t}\right)^{\top}\left(\mathbf{x}-\mathbf{y}_{t}\right)$.
- The hindsight optimum.

The best in the hindsight vs. follow the leader (1/4)

- Let $\mathbf{x}_{T}^{*}:=\arg \min \sum_{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x})=\arg \min \sum_{\mathbf{x} \in \mathcal{K}}\left(\mathbf{x}-\mathbf{y}_{t}\right)^{\top}\left(\mathbf{x}-\mathbf{y}_{t}\right)$.
- The hindsight optimum.
- Let's say that we guess on each round t by

$$
\mathbf{x}_{t}=\mathbf{x}_{t-1}^{*}=\frac{1}{t-1} \sum_{t=1}^{t-1} \mathbf{y}_{t} .
$$

The best in the hindsight vs. follow the leader $(2 / 4)$

Lemma

Let $V \subseteq \mathbb{R}^{d}$ and let $\ell_{t}: V \mapsto \mathbb{R}$ be an arbitrary sequence of loss functions. Denote by \mathbf{x}_{t}^{*} a minimizer of the cumulative losses over the previous t rounds in V. Then, we have

$$
\sum_{t=1}^{T} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) \leq \sum_{t=1}^{T} \ell_{t}\left(\mathbf{x}_{T}^{*}\right)
$$

The best in the hindsight vs. follow the leader $(2 / 4)$

Lemma

Let $V \subseteq \mathbb{R}^{d}$ and let $\ell_{t}: V \mapsto \mathbb{R}$ be an arbitrary sequence of loss functions. Denote by \mathbf{x}_{t}^{*} a minimizer of the cumulative losses over the previous t rounds in V. Then, we have

$$
\sum_{t=1}^{T} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) \leq \sum_{t=1}^{T} \ell_{t}\left(\mathbf{x}_{T}^{*}\right)
$$

- We prove the theorem by induction on T.

The best in the hindsight vs. follow the leader $(2 / 4)$

Lemma

Let $V \subseteq \mathbb{R}^{d}$ and let $\ell_{t}: V \mapsto \mathbb{R}$ be an arbitrary sequence of loss functions. Denote by \mathbf{x}_{t}^{*} a minimizer of the cumulative losses over the previous t rounds in V. Then, we have

$$
\sum_{t=1}^{T} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) \leq \sum_{t=1}^{T} \ell_{t}\left(\mathbf{x}_{T}^{*}\right)
$$

- We prove the theorem by induction on T.
- The base case $(T=1)$ is true. (WHY?)

The best in the hindsight vs. follow the leader $(2 / 4)$

Lemma

Let $V \subseteq \mathbb{R}^{d}$ and let $\ell_{t}: V \mapsto \mathbb{R}$ be an arbitrary sequence of loss functions. Denote by \mathbf{x}_{t}^{*} a minimizer of the cumulative losses over the previous t rounds in V. Then, we have

$$
\sum_{t=1}^{T} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) \leq \sum_{t=1}^{T} \ell_{t}\left(\mathbf{x}_{T}^{*}\right)
$$

- We prove the theorem by induction on T.
- The base case ($T=1$) is true. (WHY?)

$$
\ell_{1}\left(\mathbf{x}_{1}^{*}\right) \leq \ell_{1}\left(\mathbf{x}_{1}\right)
$$

The best in the hindsight vs. follow the leader (3/4)

- For $T \geq 2$, we assume that $\sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) \leq \sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{T-1}^{*}\right)$.
- Induction hypothesis.
- Note that

$$
\sum_{t=1}^{T} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) \leq \sum_{t=1}^{T} \ell_{t}\left(\mathbf{x}_{T}^{*}\right)
$$

is equivalent to

$$
\sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) \leq \sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{T}^{*}\right)
$$

(WHY?)

The best in the hindsight vs. follow the leader (4/4)

- So to prove

$$
\sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) \leq \sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{T}^{*}\right)
$$

The best in the hindsight vs. follow the leader (4/4)

- So to prove

$$
\sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) \leq \sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{T}^{*}\right)
$$

by induction hypothesis we have

$$
\sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) \leq \sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{T-1}^{*}\right)
$$

$$
\leq
$$

The best in the hindsight vs. follow the leader (4/4)

- So to prove

$$
\sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) \leq \sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{T}^{*}\right)
$$

by induction hypothesis we have

$$
\begin{aligned}
\sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) & \leq \sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{T-1}^{*}\right) \\
& \leq \sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{T}^{*}\right)
\end{aligned}
$$

The best in the hindsight vs. follow the leader (4/4)

- So to prove

$$
\sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) \leq \sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{T}^{*}\right)
$$

by induction hypothesis we have

$$
\begin{aligned}
\sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{t}^{*}\right) & \leq \sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{T-1}^{*}\right) \\
& \leq \sum_{t=1}^{T-1} \ell_{t}\left(\mathbf{x}_{T}^{*}\right)
\end{aligned}
$$

- The lemma is proved.

An Example of Sublinear-Regret (1/4)

Consider one-dimensional $x_{t}, y_{t} \in \mathbb{R}$ to simplify our discussion.

Theorem

Let $y_{t} \in[0,1]$ for $t=1,2, \ldots, T$ be an arbitrary sequence of numbers. Suppose that the algorithm outputs $x_{t}=x_{t-1}^{*}=\frac{1}{t-1} \sum_{i=1}^{t-1} y_{i}$. Then, we have

$$
\sum_{t=1}^{T}\left(x_{t}-y_{t}\right)^{2}-\min _{x \in[0,1]} \sum_{t=1}^{T}\left(x-y_{t}\right)^{2} \leq 4+4 \ln T
$$

- Use previous lemma to "upper bound the regret".

An Example of Sublinear-Regret (2/4)

$$
\begin{aligned}
& \leq \sum_{t=1}^{T}\left(x_{i-1}^{x}-y_{t}\right)^{2}-\sum_{t=1}^{T}\left(x_{i}-x_{x}\right)^{2}
\end{aligned}
$$

An Example of Sublinear-Regret (3/4)

Note that

$$
\begin{aligned}
\left(x_{t-1}^{*}-y_{t}\right)^{2}-\left(x_{t}^{*}-y_{t}\right)^{2} & =\left(x_{t-1}^{*}\right)^{2}-2 y_{t} x_{t-1}^{*}-\left(x_{t}^{*}\right)^{2}+2 y_{t} x_{t}^{*} \\
& =\left(x_{t-1}^{*}+x_{t}^{*}-2 y_{t}\right) \cdot\left(x_{t-1}^{*}-x_{t}^{*}\right)
\end{aligned}
$$

An Example of Sublinear-Regret (3/4)

Note that

$$
\begin{aligned}
\left(x_{t-1}^{*}-y_{t}\right)^{2}-\left(x_{t}^{*}-y_{t}\right)^{2} & =\left(x_{t-1}^{*}\right)^{2}-2 y_{t} x_{t-1}^{*}-\left(x_{t}^{*}\right)^{2}+2 y_{t} x_{t}^{*} \\
& =\left(x_{t-1}^{*}+x_{t}^{*}-2 y_{t}\right) \cdot\left(x_{t-1}^{*}-x_{t}^{*}\right) \\
& \leq\left|x_{t-1}^{*}+x_{t}^{*}-2 y_{t}\right| \cdot\left|x_{t-1}^{*}-x_{t}^{*}\right|
\end{aligned}
$$

An Example of Sublinear-Regret (3/4)

Note that

$$
\begin{aligned}
\left(x_{t-1}^{*}-y_{t}\right)^{2}-\left(x_{t}^{*}-y_{t}\right)^{2} & =\left(x_{t-1}^{*}\right)^{2}-2 y_{t} x_{t-1}^{*}-\left(x_{t}^{*}\right)^{2}+2 y_{t} x_{t}^{*} \\
& =\left(x_{t-1}^{*}+x_{t}^{*}-2 y_{t}\right) \cdot\left(x_{t-1}^{*}-x_{t}^{*}\right) \\
& \leq\left|x_{t-1}^{*}+x_{t}^{*}-2 y_{t}\right| \cdot\left|x_{t-1}^{*}-x_{t}^{*}\right| \\
& \leq 2\left|x_{t-1}^{*}-x_{t}^{*}\right| \\
& =2\left|\frac{1}{t-1} \sum_{i=1}^{t-1} y_{i}-\frac{1}{t} \sum_{i=1}^{t} y_{i}\right|
\end{aligned}
$$

An Example of Sublinear-Regret (3/4)

Note that

$$
\begin{aligned}
\left(x_{t-1}^{*}-y_{t}\right)^{2}-\left(x_{t}^{*}-y_{t}\right)^{2} & =\left(x_{t-1}^{*}\right)^{2}-2 y_{t} x_{t-1}^{*}-\left(x_{t}^{*}\right)^{2}+2 y_{t} x_{t}^{*} \\
& =\left(x_{t-1}^{*}+x_{t}^{*}-2 y_{t}\right) \cdot\left(x_{t-1}^{*}-x_{t}^{*}\right) \\
& \leq\left|x_{t-1}^{*}+x_{t}^{*}-2 y_{t}\right| \cdot\left|x_{t-1}^{*}-x_{t}^{*}\right| \\
& \leq 2\left|x_{t-1}^{*}-x_{t}^{*}\right| \\
& =2\left|\frac{1}{t-1} \sum_{i=1}^{t-1} y_{i}-\frac{1}{t} \sum_{i=1}^{t} y_{i}\right| \\
& =2\left|\left(\frac{1}{t-1}-\frac{1}{t}\right) \sum_{i=1}^{t-1} y_{i}-\frac{y_{t}}{t}\right| \\
& \leq 2\left|\frac{1}{t(t-1)} \sum_{i=1}^{t-1} y_{i}\right|+\frac{2\left|y_{t}\right|}{t} \leq \frac{2}{t}+\frac{2\left|y_{t}\right|}{t} \leq \frac{4}{t} .
\end{aligned}
$$

An Example of Sublinear-Regret (4/4)

Overall, we have

$$
\begin{aligned}
\sum_{t=1}^{T}\left(x_{t}-y_{t}\right)^{2}-\min _{x \in[0,1]} \sum_{t=1}^{T}\left(x-y_{t}\right)^{2} \leq & 4 \sum_{t=1}^{T} \frac{1}{t} \\
\leq & 1+\int_{2}^{T+1} \frac{1}{t-1} d t \\
= & 1+\ln T . \\
& (\text { or simply } O(\ln T)) .
\end{aligned}
$$

An Example of Sublinear-Regret (4/4)

Overall, we have

$$
\begin{aligned}
\sum_{t=1}^{T}\left(x_{t}-y_{t}\right)^{2}-\min _{x \in[0,1]} \sum_{t=1}^{T}\left(x-y_{t}\right)^{2} \leq & 4 \sum_{t=1}^{T} \frac{1}{t} \\
\leq & 1+\int_{2}^{T+1} \frac{1}{t-1} d t \\
= & 1+\ln T . \\
& (\text { or simply } O(\ln T)) .
\end{aligned}
$$

- No parameters are required to tune (e.g., learning rates, regularization terms, etc.).
- It doesn't make sense either to have such parameters because we cannot run the algorithm over the data multiple times!

Exercise 01

- Show that $\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \leq 2 \sqrt{T}-1$.

Exercise 02

- Extend the algorithm and the analysis to the case when adversary selects a vector $\mathbf{y}_{t} \in \mathbb{R}^{d}$ such that
- $\left\|\mathbf{y}_{t}\right\|_{2} \leq 1$,
- the algorithm selects $\mathbf{x}_{t} \in \mathbb{R}^{d}$, and
- the loss function is $\left\|\mathbf{x}_{t}-\mathbf{y}_{t}\right\|_{2}^{2}$.
- Prove an upper bound to the regret $O(\log T)$ which does not depend on d.

Hint: Using Cauchy-Schwarz inequality: $\langle\mathbf{x}, \mathbf{y}\rangle \leq\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}$.

Online learning applications

- Click prediction.
- Portfolio weight adjustment.
- Routing on a network.
- Convergence to an equilibrium for iterative/repeated games.

Regret \& profitability

- We try to optimize the regret.

Regret \& profitability

- We try to optimize the regret.
- Yet, like the scenario of online portfolio adjustment, does the regret corresponds to definite PnL?

Prerequisites (1/7)

Diameter

Let $\mathcal{K} \subseteq \mathbb{R}^{d}$ be a bounded convex and closed set in Euclidean space. We denote by D an upper bound on the diameter of \mathcal{K} :

$$
\forall \mathbf{x}, \mathbf{y} \in \mathcal{K},\|\mathbf{x}-\mathbf{y}\| \leq D
$$

Convex set

A set \mathcal{K} is convex if for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$, we have

$$
\forall \alpha \in[0,1], \alpha \mathbf{x}+(1-\alpha) \mathbf{y} \in \mathcal{K}
$$

Prerequisites (2/7)

Convex function

A function $f: \mathcal{K} \mapsto \mathbb{R}$ is convex if for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$,

$$
\forall \alpha \in[0,1], f((1-\alpha) \mathbf{x}+\alpha \mathbf{y}) \leq(1-\alpha) f(\mathbf{x})+\alpha f(\mathbf{y})
$$

Equivalently, if f is differentiable (i.e., $\nabla f(\mathbf{x})$ exists for all $\mathbf{x} \in \mathcal{K}$), then f is convex if and only if for all $\mathbf{x}, \mathbf{y} \in \mathcal{K}$,

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{\top}(\mathbf{y}-\mathbf{x})
$$

Prerequisites (3/7)

Theorem [Rockafellar 1970]

Suppose that $f: \mathcal{K} \mapsto \mathbb{R}$ is a convex function and let $\mathbf{x} \in \operatorname{int} \operatorname{dom}(f)$. If f is differentiable at \mathbf{x}, then for all $\mathbf{y} \in \mathbb{R}^{d}$,

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle .
$$

Subgradient

For a function $f: \mathbb{R}^{d} \mapsto \mathbb{R}, \mathbf{g} \in \mathbb{R}^{d}$ is a subgradient of f at $x \in \mathbb{R}^{d}$ if for all $\mathbf{y} \in \mathbb{R}^{d}$,

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle .
$$

Prerequisites (4/7)

Projection

The closest point of \mathbf{y} in a convex set \mathcal{K} in terms of norm $\|\cdot\|$:

$$
\Pi_{\mathcal{K}}(\mathbf{y}):=\arg \min _{\mathbf{x} \in \mathcal{K}}\|\mathbf{x}-\mathbf{y}\| .
$$

Pythagoras Theorem

Let $\mathcal{K} \subseteq \mathbb{R}^{d}$ be a convex set, $\mathbf{y} \in \mathbb{R}^{d}$ and $\mathbf{x}=\Pi_{\mathcal{K}}(\mathbf{y})$. Then for any $\mathbf{z} \in \mathcal{K}$, we have

$$
\|\mathbf{y}-\mathbf{z}\| \geq\|\mathbf{x}-\mathbf{z}\| .
$$

Prerequisites (5/7)

Minimum vs. zero gradient

$$
\nabla f(\mathbf{x})=0 \text { iff } \mathbf{x} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{x})\} .
$$

First-Order Optimality Condition for Convex Functions

Let

- $\mathcal{K} \subseteq \mathbb{R}^{d}$ be a convex set,
- f be a convex function which is differentiable over an open set that contains \mathcal{K}, and
- $\mathbf{x}^{*} \in \arg \min _{\mathrm{x} \in \mathcal{K}} f(\mathbf{x})$,
then for any $\mathbf{y} \in \mathcal{K}$ we have

$$
\nabla f\left(\mathbf{x}^{*}\right)^{\top}\left(\mathbf{y}-\mathbf{x}^{*}\right) \geq 0
$$

Prerequisites (6/7)

Jensen's Inequality

Let $f: \mathbb{R}^{d} \mapsto(-\infty,+\infty]$ be a measurable convex function and \mathbf{x} be an \mathbb{R}^{d}-valued random variable such that $\mathbf{E}[\mathbf{x}]$ exists and $\mathbf{x} \in \operatorname{dom}(f)$ with probability 1. Then,

$$
\mathbf{E}[f(\mathbf{x})] \geq f(\mathbf{E}[\mathbf{x}]) .
$$

Prerequisites (7/7)

Cauchy-Schwarz inequality

For all vectors \mathbf{u} and \mathbf{v} of an inner product space,

$$
|\langle\mathbf{u}, \mathbf{v}\rangle|^{2} \leq\langle\mathbf{u}, \mathbf{u}\rangle \cdot\langle\mathbf{v}, \mathbf{v}\rangle .
$$

or equivalently,

$$
|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\| \cdot\|\mathbf{v}\| .
$$

Prerequisites (7/7)

Cauchy-Schwarz inequality

For all vectors \mathbf{u} and \mathbf{v} of an inner product space,

$$
|\langle\mathbf{u}, \mathbf{v}\rangle|^{2} \leq\langle\mathbf{u}, \mathbf{u}\rangle \cdot\langle\mathbf{v}, \mathbf{v}\rangle .
$$

or equivalently,

$$
|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\| \cdot\|\mathbf{v}\| .
$$

- Let's have a look at an research example.

Prerequisites (7/7)

Cauchy-Schwarz inequality

For all vectors \mathbf{u} and \mathbf{v} of an inner product space,

$$
|\langle\mathbf{u}, \mathbf{v}\rangle|^{2} \leq\langle\mathbf{u}, \mathbf{u}\rangle \cdot\langle\mathbf{v}, \mathbf{v}\rangle
$$

or equivalently,

$$
|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\| \cdot\|\mathbf{v}\| .
$$

- Let's have a look at an research example.

$$
S W(\mathbf{s})=\sum_{i \in[m]} \frac{u\left(s_{i}\right)}{\sum_{j \in[m]} u\left(s_{j}\right)} \cdot u\left(s_{i}\right)=\frac{\sum_{i \in[m]} u\left(s_{i}\right)^{2}}{\sum_{j \in[m]} u\left(s_{j}\right)}
$$

Prerequisites (7/7)

Cauchy-Schwarz inequality

For all vectors \mathbf{u} and \mathbf{v} of an inner product space,

$$
|\langle\mathbf{u}, \mathbf{v}\rangle|^{2} \leq\langle\mathbf{u}, \mathbf{u}\rangle \cdot\langle\mathbf{v}, \mathbf{v}\rangle
$$

or equivalently,

$$
|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\| \cdot\|\mathbf{v}\| .
$$

- Let's have a look at an research example.

$$
\begin{aligned}
S W(\mathbf{s}) & =\sum_{i \in[m]} \frac{u\left(s_{i}\right)}{\sum_{j \in[m]} u\left(s_{j}\right)} \cdot u\left(s_{i}\right)=\frac{\sum_{i \in[m]} u\left(s_{i}\right)^{2}}{\sum_{j \in[m]} u\left(s_{j}\right)} \\
& \geq \frac{1}{m} \cdot \sum_{i \in[m]} u\left(s_{i}\right) .
\end{aligned}
$$

Convex losses to linear losses

- We have the convex loss function $f_{t}\left(\mathbf{x}_{t}\right)$ at time t.
- Say we have subgradients \mathbf{g}_{t} for each \mathbf{x}_{t}.
- $f\left(\mathbf{x}_{t}\right)-f(\mathbf{u}) \leq\left\langle\mathbf{g}, \mathbf{x}_{\mathbf{t}}-\mathbf{u}\right\rangle$ for each $\mathbf{u} \in \mathbb{R}^{d}$.

Convex losses to linear losses

- We have the convex loss function $f_{t}\left(\mathbf{x}_{t}\right)$ at time t.
- Say we have subgradients \mathbf{g}_{t} for each \mathbf{x}_{t}.
- $f\left(\mathbf{x}_{t}\right)-f(\mathbf{u}) \leq\left\langle\mathbf{g}, \mathbf{x}_{\mathbf{t}}-\mathbf{u}\right\rangle$ for each $\mathbf{u} \in \mathbb{R}^{d}$.
- Hence, if we define $\tilde{f}_{t}(\mathbf{x}):=\left\langle\mathbf{g}_{t}, \mathbf{x}\right\rangle$, then for any $\mathbf{u} \in \mathbb{R}^{d}$,

$$
\sum_{t=1}^{T}\left(f_{t}\left(\mathbf{x}_{t}\right)-f(\mathbf{u})\right) \leq \sum_{t=1}^{T}\left\langle\mathbf{g}, \mathbf{x}_{\mathbf{t}}-\mathbf{u}\right\rangle=\sum_{t=1}^{T} \tilde{f}_{t}\left(\mathbf{x}_{t}\right)-\tilde{f}(\mathbf{u})
$$

Convex losses to linear losses

- We have the convex loss function $f_{t}\left(\mathbf{x}_{t}\right)$ at time t.
- Say we have subgradients \mathbf{g}_{t} for each \mathbf{x}_{t}.
- $f\left(\mathbf{x}_{t}\right)-f(\mathbf{u}) \leq\left\langle\mathbf{g}, \mathbf{x}_{\mathbf{t}}-\mathbf{u}\right\rangle$ for each $\mathbf{u} \in \mathbb{R}^{d}$.
- Hence, if we define $\tilde{f}_{t}(\mathbf{x}):=\left\langle\mathbf{g}_{t}, \mathbf{x}\right\rangle$, then for any $\mathbf{u} \in \mathbb{R}^{d}$,

$$
\sum_{t=1}^{T}\left(f_{t}\left(\mathbf{x}_{t}\right)-f(\mathbf{u})\right) \leq \sum_{t=1}^{T}\left\langle\mathbf{g}, \mathbf{x}_{\mathbf{t}}-\mathbf{u}\right\rangle=\sum_{t=1}^{T} \tilde{f}_{t}\left(\mathbf{x}_{t}\right)-\tilde{f}(\mathbf{u})
$$

- Note that $\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle$.

Convex losses to linear losses

- We have the convex loss function $f_{t}\left(\mathbf{x}_{t}\right)$ at time t.
- Say we have subgradients \mathbf{g}_{t} for each \mathbf{x}_{t}.
- $f\left(\mathbf{x}_{t}\right)-f(\mathbf{u}) \leq\left\langle\mathbf{g}, \mathbf{x}_{\mathbf{t}}-\mathbf{u}\right\rangle$ for each $\mathbf{u} \in \mathbb{R}^{d}$.
- Hence, if we define $\tilde{f}_{t}(\mathbf{x}):=\left\langle\mathbf{g}_{t}, \mathbf{x}\right\rangle$, then for any $\mathbf{u} \in \mathbb{R}^{d}$,

$$
\sum_{t=1}^{T}\left(f_{t}\left(\mathbf{x}_{t}\right)-f(\mathbf{u})\right) \leq \sum_{t=1}^{T}\left\langle\mathbf{g}, \mathbf{x}_{\mathbf{t}}-\mathbf{u}\right\rangle=\sum_{t=1}^{T} \tilde{f}_{t}\left(\mathbf{x}_{t}\right)-\tilde{f}(\mathbf{u})
$$

- Note that $\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle$.
$\star \mathrm{OCO} \rightarrow \mathrm{OLO}$

Remark

- The reduction implies that we can build online (convex optimization) algorithms that deal only with linear losses.
- Note that this reduction isn't always optimal.
- Yet, it allows us to easily construct OCO algorithms in many cases.

Discussions

