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Online Learning

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan:
https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal:
https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona:
https://parameterfree.com/lecture-notes-on-online-learning/
the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan’s textbook:
Introduction to Online Convex Optimization, 2nd Edition.
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Online Learning

On this course, we will “study together”.

We rely on the discussions and interactions in the class.

Sometimes we will use the white board because it’s clearer for
illustrating the formulae and ideas step by step.

We probably follow Prof. Orabona’s textbook.
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Course Syllabus & Policies

Topics we plan to cover...

Introduction & Prerequisites for online learning

Online (Sub-)Gradient Descent (OGD)

Online-to-Batch Conversion

Multiplicative Weight Update (MWU)

Follow the Regularized Leader (FTRL)

Online Mirror Descent (OMD)

Multi-Armed Bandit

*Extra-Gradient & Optimistic Gradient Descent

Other selected topics.
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Course Syllabus & Policies

Grading Policy

Attendance (20%)

Course Interactions (10%)

Asking questions (1% for each)

One Coding Project (10%)

Midterm Paper/Book Chapter Presentation (30%)

Final Paper Presentation (30%)
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Course Syllabus & Policies

Grading Policy for the Presentations

Order: According to the seat number in iClass.

Complete the presentation: 70 point.

Duration for each presentation: 30–50 minutes.

Raising questions: +2 point for each one (maximum +10 point).

Clearly answering the teacher’s 2–4 questions: +5 point for each one.
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Course Syllabus & Policies

Grading Policy for the Coding Project

Work as a team is allowed (3–5 people).

We will give two options for the project.

The easy one: UCB Implementation (5%)
The complicated one: Online Portfolio Management Using MWU (or
any online algorithms): 10%

Submit your codes and documentation to iClass.

One person in each group must present your codes and results in the
class.
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Introduction

Outline

1 Course Syllabus & Policies

2 Introduction

3 Prerequisites
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Online Learning

Introduction

What’s online learning?

What about Offline optimization?
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Online Learning

Introduction

Online Convex Optimization

Goal: Design an algorithm such that

At discrete time steps t = 1, 2, . . ., output xt ∈ K, for each t.

K: a convex set of feasible solutions.

After xt is generated, a convex cost function ft : K 7→ R is revealed.

Then the algorithm suffers the loss ft(xt).

And we want to minimize the cost.

For example, an adversary chooses yt for each t and we suffer the
squared difference as the loss ft(xt) = (xt − yt)⊤(xt − yt).
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Introduction

The difficulty

The cost functions ft could be unknown before t.

f1, f2, . . . , ft , . . . are not necessarily fixed.

Can be generated dynamically by an adversary.
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Introduction

What’s the regret?

The offline optimum: After T steps,

min
x∈K

T∑
t=1

ft(x).

The regret after T steps:

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

The rescue: regretT ≤ o(T ). ⇒ No-Regret in average when
T → ∞.

For example, regretT/T =
√
T
T → 0 when T → ∞.
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Online Learning

Introduction

Remark

If an online learning algorithm can guarantee a sublinear regret, it
means that its performance, on average, will approach the
performance of ANY fixed strategy.

The regret after T steps with respect to some u:

regretT (u) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(u).

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 13 / 36



Online Learning

Introduction

What about comparing dynamic optimum?

The regret after T steps:

dynamic regretT =
T∑
t=1

ft(xt)− min
z1,z2,...∈K

T∑
t=1

ft(zt).

What’s the difficulty & the issue?
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Online Learning

Introduction

The best in the hindsight vs. follow the leader (1/4)

Let x∗T := argmin
∑

x∈K ft(x)

= argmin
∑

x∈K(x− yt)⊤(x− yt).
The hindsight optimum.

Let’s say that we guess on each round t by

xt = x∗t−1 =
1

t − 1

t−1∑
t=1

yt .
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Introduction

The best in the hindsight vs. follow the leader (2/4)

Lemma

Let V ⊆ Rd and let ℓt : V 7→ R be an arbitrary sequence of loss functions.
Denote by x∗t a minimizer of the cumulative losses over the previous t
rounds in V . Then, we have

T∑
t=1

ℓt(x
∗
t ) ≤

T∑
t=1

ℓt(x
∗
T ).

We prove the theorem by induction on T .

The base case (T = 1) is true. (WHY?)

ℓ1(x
∗
1) ≤ ℓ1(x1)
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Introduction

The best in the hindsight vs. follow the leader (3/4)

For T ≥ 2, we assume that
∑T−1

t=1 ℓt(x∗t ) ≤
∑T−1

t=1 ℓt(x∗T−1).

Induction hypothesis.

Note that
T∑
t=1

ℓt(x
∗
t ) ≤

T∑
t=1

ℓt(x
∗
T )

is equivalent to
T−1∑
t=1

ℓt(x
∗
t ) ≤

T−1∑
t=1

ℓt(x
∗
T ).

(WHY?)
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Introduction

The best in the hindsight vs. follow the leader (4/4)

So to prove
T−1∑
t=1

ℓt(x
∗
t ) ≤

T−1∑
t=1

ℓt(x
∗
T ).

by induction hypothesis we have

T−1∑
t=1

ℓt(x
∗
t ) ≤

T−1∑
t=1

ℓt(x
∗
T−1)

≤
T−1∑
t=1

ℓt(x
∗
T ).

The lemma is proved.
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Introduction

An Example of Sublinear-Regret (1/4)

Consider one-dimensional xt , yt ∈ R to simplify our discussion.

Theorem

Let yt ∈ [0, 1] for t = 1, 2, . . . ,T be an arbitrary sequence of numbers.
Suppose that the algorithm outputs xt = x∗t−1 =

1
t−1

∑t−1
i=1 yi . Then, we

have
T∑
t=1

(xt − yt)
2 − min

x∈[0,1]

T∑
t=1

(x − yt)
2 ≤ 4 + 4 lnT .

Use previous lemma to “upper bound the regret”.
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Introduction

An Example of Sublinear-Regret (2/4)

T∑
t=1

(xt − yt)
2 − min

x∈[0,1]

T∑
t=1

(x − yt)
2 =

T∑
t=1

(x∗t−1 − yt)
2 −

T∑
t=1

(x∗T − yt)
2

≤
T∑
t=1

(x∗t−1 − yt)
2 −

T∑
t=1

(x∗t − yt)
2.
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Introduction

An Example of Sublinear-Regret (3/4)

Note that

(x∗t−1 − yt)
2 − (x∗t − yt)

2 = (x∗t−1)
2 − 2ytx

∗
t−1 − (x∗t )

2 + 2ytx
∗
t

= (x∗t−1 + x∗t − 2yt) · (x∗t−1 − x∗t )

≤ |x∗t−1 + x∗t − 2yt | · |x∗t−1 − x∗t |
≤ 2|x∗t−1 − x∗t |

= 2

∣∣∣∣∣ 1

t − 1

t−1∑
i=1

yi −
1

t

t∑
i=1

yi

∣∣∣∣∣
= 2

∣∣∣∣∣
(

1

t − 1
− 1

t

) t−1∑
i=1

yi −
yt
t

∣∣∣∣∣
≤ 2

∣∣∣∣∣ 1

t(t − 1)

t−1∑
i=1

yi

∣∣∣∣∣+ 2|yt |
t

≤ 2

t
+

2|yt |
t

≤ 4

t
.
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Introduction

An Example of Sublinear-Regret (4/4)

Overall, we have

T∑
t=1

(xt − yt)
2 − min

x∈[0,1]

T∑
t=1

(x − yt)
2 ≤ 4

T∑
t=1

1

t

≤ 1 +

∫ T+1

2

1

t − 1
dt

= 1 + lnT .

( or simply O(lnT )).

No parameters are required to tune (e.g., learning rates, regularization
terms, etc.).

It doesn’t make sense either to have such parameters because we
cannot run the algorithm over the data multiple times!
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Introduction

Exercise 01

Show that
∑T

t=1
1√
t
≤ 2

√
T − 1.
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Introduction

Exercise 02

Extend the algorithm and the analysis to the case when adversary
selects a vector yt ∈ Rd such that

∥yt∥2 ≤ 1,
the algorithm selects xt ∈ Rd , and
the loss function is ∥xt − yt∥22.

Prove an upper bound to the regret O(logT ) which does not depend
on d .

Hint: Using Cauchy-Schwarz inequality: ⟨x, y⟩ ≤ ∥x∥2∥y∥2.
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Introduction

Online learning applications

Click prediction.

Portfolio weight adjustment.

Routing on a network.

Convergence to an equilibrium for iterative/repeated games.
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Introduction

Regret & profitability

We try to optimize the regret.

Yet, like the scenario of online portfolio adjustment, does the regret
corresponds to definite PnL?
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Prerequisites

Prerequisites (1/7)

Diameter

Let K ⊆ Rd be a bounded convex and closed set in Euclidean space. We
denote by D an upper bound on the diameter of K:

∀x, y ∈ K, ∥x− y∥ ≤ D.

Convex set

A set K is convex if for any x, y ∈ K, we have

∀α ∈ [0, 1], αx+ (1− α)y ∈ K.
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Prerequisites

Prerequisites (2/7)

Convex function

A function f : K 7→ R is convex if for any x, y ∈ K,

∀α ∈ [0, 1], f ((1− α)x+ αy) ≤ (1− α)f (x) + αf (y).

Equivalently, if f is differentiable (i.e., ∇f (x) exists for all x ∈ K), then f
is convex if and only if for all x, y ∈ K,

f (y) ≥ f (x) +∇f (x)⊤(y − x).
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Prerequisites

Prerequisites (3/7)

Theorem [Rockafellar 1970]

Suppose that f : K 7→ R is a convex function and let x ∈ int dom(f ). If f
is differentiable at x, then for all y ∈ Rd ,

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩.

Subgradient

For a function f : Rd 7→ R, g ∈ Rd is a subgradient of f at x ∈ Rd if for
all y ∈ Rd ,

f (y) ≥ f (x) + ⟨g, y − x⟩.
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Prerequisites

Prerequisites (4/7)

Projection

The closest point of y in a convex set K in terms of norm ∥ · ∥:

ΠK(y) := argmin
x∈K

∥x− y∥.

Pythagoras Theorem

Let K ⊆ Rd be a convex set, y ∈ Rd and x = ΠK(y). Then for any z ∈ K,
we have

∥y − z∥ ≥ ∥x− z∥.
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Prerequisites (5/7)

Minimum vs. zero gradient

∇f (x) = 0 iff x ∈ arg min
x∈Rd

{f (x)}.

First-Order Optimality Condition for Convex Functions

Let

K ⊆ Rd be a convex set,

f be a convex function which is differentiable over an open set that
contains K, and

x∗ ∈ argminx∈K f (x),

then for any y ∈ K we have

∇f (x∗)⊤(y − x∗) ≥ 0.
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Prerequisites (6/7)

Jensen’s Inequality

Let f : Rd 7→ (−∞,+∞] be a measurable convex function and x be an
Rd -valued random variable such that E[x] exists and x ∈ dom(f ) with
probability 1. Then,

E[f (x)] ≥ f (E[x]).
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Cauchy-Schwarz inequality

For all vectors u and v of an inner product space,

|⟨u, v⟩|2 ≤ ⟨u,u⟩ · ⟨v, v⟩.

or equivalently,
|⟨u, v⟩| ≤ ∥u∥ · ∥v∥.

Let’s have a look at an research example.

SW (s) =
∑
i∈[m]

u(si )∑
j∈[m] u(sj)

· u(si ) =
∑

i∈[m] u(si )
2∑

j∈[m] u(sj)

≥ 1

m
·
∑
i∈[m]

u(si ).
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Convex losses to linear losses

We have the convex loss function ft(xt) at time t.

Say we have subgradients gt for each xt .

f (xt)− f (u) ≤ ⟨g, xt − u⟩ for each u ∈ Rd .

Hence, if we define f̃t(x) := ⟨gt , x⟩, then for any u ∈ Rd ,

T∑
t=1

(ft(xt)− f (u)) ≤
T∑
t=1

⟨g, xt − u⟩ =
T∑
t=1

f̃t(xt)− f̃ (u).

Note that ⟨u, v +w⟩ = ⟨u, v⟩+ ⟨u,w⟩.

⋆ OCO → OLO
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Remark

The reduction implies that we can build online (convex optimization)
algorithms that deal only with linear losses.

Note that this reduction isn’t always optimal.

Yet, it allows us to easily construct OCO algorithms in many cases.
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