Online Learning — Course Introduction & Syllabus

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Spring 2023

Joseph C. C. Lin (CSIE, TKU, TW)

Online Learning

Spring 2023

< ロ > < 同 > < 回 > < 回 > < 回 > <

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal: https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/ the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

- On this course, we will "study together".
- We rely on the discussions and interactions in the class.
- Sometimes we will use the white board because it's clearer for illustrating the formulae and ideas step by step.
- We probably follow Prof. Orabona's textbook.

▲ 四 ▶

Topics we plan to cover...

- Introduction & Prerequisites for online learning
- Online (Sub-)Gradient Descent (OGD)
- Online-to-Batch Conversion
- Multiplicative Weight Update (MWU)
- Follow the Regularized Leader (FTRL)
- Online Mirror Descent (OMD)
- Multi-Armed Bandit
- *Extra-Gradient & Optimistic Gradient Descent
- Other selected topics.

4/36

< ロ > < 同 > < 回 > < 回 > < 回 > <

Grading Policy

- Attendance (20%)
- Course Interactions (10%)
 - Asking questions (1% for each)
- One Coding Project (10%)
- Midterm Paper/Book Chapter Presentation (30%)
- Final Paper Presentation (30%)

Grading Policy for the Presentations

- Order: According to the seat number in iClass.
- Complete the presentation: 70 point.
 - Duration for each presentation: 30-50 minutes.
- Raising questions: +2 point for each one (maximum +10 point).
- Clearly answering the teacher's 2–4 questions: +5 point for each one.

6/36

イロト 不得 ト イヨト イヨト

Grading Policy for the Coding Project

- Work as a team is allowed (3–5 people).
- We will give two options for the project.
 - The easy one: UCB Implementation (5%)
 - The complicated one: Online Portfolio Management Using MWU (or any online algorithms): 10%
- Submit your codes and documentation to iClass.
- One person in each group must present your codes and results in the class.

Outline

Joseph C. C. Lin (CSIE, TKU, TW)

æ

8/36

• What's online learning?

3

イロト イヨト イヨト イヨト

- What's online learning?
- What about Offline optimization?

э

9/36

イロト イボト イヨト イヨト

Online Convex Optimization

Goal: Design an algorithm such that

- At discrete time steps t = 1, 2, ..., output $\mathbf{x}_t \in \mathcal{K}$, for each t.
 - $\mathcal{K}:$ a convex set of feasible solutions.
- After \mathbf{x}_t is generated, a convex cost function $f_t : \mathcal{K} \mapsto \mathbb{R}$ is revealed.
- Then the algorithm suffers the loss $f_t(\mathbf{x}_t)$.

And we want to minimize the cost.

3

Online Convex Optimization

Goal: Design an algorithm such that

- At discrete time steps t = 1, 2, ..., output $\mathbf{x}_t \in \mathcal{K}$, for each t.
 - $\mathcal{K}:$ a convex set of feasible solutions.
- After \mathbf{x}_t is generated, a convex cost function $f_t : \mathcal{K} \mapsto \mathbb{R}$ is revealed.
- Then the algorithm suffers the loss $f_t(\mathbf{x}_t)$.

And we want to minimize the cost.

• For example, an adversary chooses \mathbf{y}_t for each t and we suffer the squared difference as the loss $f_t(\mathbf{x}_t) = (\mathbf{x}_t - \mathbf{y}_t)^\top (\mathbf{x}_t - \mathbf{y}_t)$.

イロト イポト イヨト イヨト 二日

The difficulty

- The cost functions f_t could be unknown before t.
- $f_1, f_2, \ldots, f_t, \ldots$ are not necessarily fixed.
 - Can be generated dynamically by an adversary.

э

イロト イポト イヨト イヨト

What's the regret?

• The offline optimum: After T steps,

$$\min_{\mathbf{x}\in\mathcal{K}}\sum_{t=1}^{T}f_t(\mathbf{x}).$$

• The regret after T steps:

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\mathbf{x}).$$

Joseph C. C. Lin (CSIE, TKU, TW)

э

12/36

イロト イヨト イヨト イヨト

What's the regret?

• The offline optimum: After T steps,

$$\min_{\mathbf{x}\in\mathcal{K}}\sum_{t=1}^{T}f_t(\mathbf{x}).$$

• The regret after *T* steps:

$$\operatorname{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}).$$

• The rescue: regret $_T \leq o(T)$.

Joseph C. C. Lin (CSIE, TKU, TW)

э

イロト イポト イヨト イヨト

What's the regret?

• The offline optimum: After T steps,

$$\min_{\mathbf{x}\in\mathcal{K}}\sum_{t=1}^{T}f_t(\mathbf{x})$$

• The regret after T steps:

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$$

- The rescue: regret $_{T} \leq o(T)$. \Rightarrow **No-Regret** in average when $T \rightarrow \infty$.
 - For example, regret $_T/T = \frac{\sqrt{T}}{T} \to 0$ when $T \to \infty$.

イロト 不得下 イヨト イヨト 二日

Remark

- If an online learning algorithm can guarantee a sublinear regret, it means that its performance, on average, will approach the performance of ANY fixed strategy.
- The regret after T steps with respect to some **u**:

$$\mathsf{regret}_{\mathcal{T}}(\mathbf{u}) = \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}_t) - \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{u}).$$

イロト 不得 ト イヨト イヨト

What about comparing dynamic optimum?

• The regret after *T* steps:

dynamic_regret
$$_{T} = \sum_{t=1}^{T} f_t(\mathbf{x}_t) - \min_{\mathbf{z}_1, \mathbf{z}_2, \dots \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{z}_t).$$

Joseph C. C. Lin (CSIE, TKU, TW)

э

(日)

What about comparing dynamic optimum?

• The regret after *T* steps:

$$\mathsf{dynamic_regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}_t) - \min_{\mathbf{z}_1, \mathbf{z}_2, \dots \in \mathcal{K}} \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{z}_t).$$

• What's the difficulty & the issue?

Joseph C. C. Lin (CSIE, TKU, TW)

э

• Let
$$\mathbf{x}^*_{\mathcal{T}} := \arg\min \sum_{\mathbf{x} \in \mathcal{K}} f_t(\mathbf{x})$$

3

(日)

Let x^{*}_T := arg min ∑_{x∈K} f_t(x) = arg min ∑_{x∈K}(x - y_t)^T(x - y_t).
 The hindsight optimum.

3

イロト 不得 トイヨト イヨト

• Let's say that we guess on each round t by

$$\mathbf{x}_t = \mathbf{x}_{t-1}^* = \frac{1}{t-1} \sum_{t=1}^{t-1} \mathbf{y}_t.$$

Joseph C. C. Lin (CSIE, TKU, TW)

э

15/36

(日)

Lemma

Let $V \subseteq \mathbb{R}^d$ and let $\ell_t : V \mapsto \mathbb{R}$ be an arbitrary sequence of loss functions. Denote by \mathbf{x}_t^* a minimizer of the cumulative losses over the previous t rounds in V. Then, we have

$$\sum_{t=1}^T \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^T \ell_t(\mathbf{x}_T^*).$$

Joseph C. C. Lin (CSIE, TKU, TW)

16/36

< □ > < □ > < □ > < □ > < □ > < □ >

Lemma

Let $V \subseteq \mathbb{R}^d$ and let $\ell_t : V \mapsto \mathbb{R}$ be an arbitrary sequence of loss functions. Denote by \mathbf{x}_t^* a minimizer of the cumulative losses over the previous t rounds in V. Then, we have

$$\sum_{t=1}^{T} \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^{T} \ell_t(\mathbf{x}_T^*).$$

• We prove the theorem by induction on T.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Lemma

Let $V \subseteq \mathbb{R}^d$ and let $\ell_t : V \mapsto \mathbb{R}$ be an arbitrary sequence of loss functions. Denote by \mathbf{x}_t^* a minimizer of the cumulative losses over the previous t rounds in V. Then, we have

$$\sum_{t=1}^{T} \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^{T} \ell_t(\mathbf{x}_T^*).$$

- We prove the theorem by induction on T.
- The base case (T = 1) is true. (WHY?)

Lemma

Let $V \subseteq \mathbb{R}^d$ and let $\ell_t : V \mapsto \mathbb{R}$ be an arbitrary sequence of loss functions. Denote by \mathbf{x}_t^* a minimizer of the cumulative losses over the previous t rounds in V. Then, we have

$$\sum_{t=1}^{T} \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^{T} \ell_t(\mathbf{x}_T^*).$$

- We prove the theorem by induction on T.
- The base case (T = 1) is true. (WHY?)

$$\ell_1(\mathbf{x}_1^*) \leq \ell_1(\mathbf{x}_1)$$

Joseph C. C. Lin (CSIE, TKU, TW)

- For $T \ge 2$, we assume that $\sum_{t=1}^{T-1} \ell_t(\mathbf{x}_t^*) \le \sum_{t=1}^{T-1} \ell_t(\mathbf{x}_{T-1}^*)$. • Induction hypothesis.
- Note that

$$\sum_{t=1}^{T} \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^{T} \ell_t(\mathbf{x}_T^*)$$

is equivalent to

$$\sum_{t=1}^{T-1} \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^{T-1} \ell_t(\mathbf{x}_T^*).$$

(WHY?)

• So to prove

$$\sum_{t=1}^{T-1} \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^{T-1} \ell_t(\mathbf{x}_T^*).$$

3

(日)

So to prove

$$\sum_{t=1}^{T-1} \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^{T-1} \ell_t(\mathbf{x}_T^*).$$

by induction hypothesis we have

$$\sum_{t=1}^{T-1} \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^{T-1} \ell_t(\mathbf{x}_{T-1}^*)$$
$$\leq$$

Joseph C. C. Lin (CSIE, TKU, TW)

イロト イポト イヨト イヨト

So to prove

$$\sum_{t=1}^{T-1} \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^{T-1} \ell_t(\mathbf{x}_T^*).$$

by induction hypothesis we have

$$\sum_{t=1}^{T-1} \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^{T-1} \ell_t(\mathbf{x}_{T-1}^*)$$
$$\leq \sum_{t=1}^{T-1} \ell_t(\mathbf{x}_T^*).$$

Joseph C. C. Lin (CSIE, TKU, TW)

イロト イポト イヨト イヨト

So to prove

$$\sum_{t=1}^{T-1} \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^{T-1} \ell_t(\mathbf{x}_T^*).$$

by induction hypothesis we have

$$\sum_{t=1}^{T-1} \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^{T-1} \ell_t(\mathbf{x}_{T-1}^*)$$
$$\leq \sum_{t=1}^{T-1} \ell_t(\mathbf{x}_T^*).$$

• The lemma is proved.

Joseph C. C. Lin (CSIE, TKU, TW)

Spring 2023

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

18/36

Consider one-dimensional $x_t, y_t \in \mathbb{R}$ to simplify our discussion.

Theorem

Let $y_t \in [0, 1]$ for t = 1, 2, ..., T be an arbitrary sequence of numbers. Suppose that the algorithm outputs $x_t = x_{t-1}^* = \frac{1}{t-1} \sum_{i=1}^{t-1} y_i$. Then, we have

$$\sum_{t=1}^{\prime} (x_t - y_t)^2 - \min_{x \in [0,1]} \sum_{t=1}^{\prime} (x - y_t)^2 \le 4 + 4 \ln T.$$

• Use previous lemma to "upper bound the regret".

19/36

イロト 不得 トイヨト イヨト 二日

$$\begin{split} \sum_{t=1}^{T} (x_t - y_t)^2 &- \min_{x \in [0,1]} \sum_{t=1}^{T} (x - y_t)^2 &= \sum_{t=1}^{T} (x_{t-1}^* - y_t)^2 - \sum_{t=1}^{T} (x_T^* - y_t)^2 \\ &\leq \sum_{t=1}^{T} (x_{t-1}^* - y_t)^2 - \sum_{t=1}^{T} (x_t^* - y_t)^2. \end{split}$$

Joseph C. C. Lin (CSIE, TKU, TW)

Online Learning

Spring 2023

イロト イヨト イヨト イヨト

3

Note that

$$(x_{t-1}^* - y_t)^2 - (x_t^* - y_t)^2 = (x_{t-1}^*)^2 - 2y_t x_{t-1}^* - (x_t^*)^2 + 2y_t x_t^* = (x_{t-1}^* + x_t^* - 2y_t) \cdot (x_{t-1}^* - x_t^*)$$

3

イロン 不聞 とくほとう ほとう

Note that

$$\begin{aligned} (x_{t-1}^* - y_t)^2 - (x_t^* - y_t)^2 &= (x_{t-1}^*)^2 - 2y_t x_{t-1}^* - (x_t^*)^2 + 2y_t x_t^* \\ &= (x_{t-1}^* + x_t^* - 2y_t) \cdot (x_{t-1}^* - x_t^*) \\ &\leq |x_{t-1}^* + x_t^* - 2y_t| \cdot |x_{t-1}^* - x_t^*| \end{aligned}$$

3

イロン 不聞 とくほとう ほとう

Note that

$$\begin{aligned} (x_{t-1}^* - y_t)^2 - (x_t^* - y_t)^2 &= (x_{t-1}^*)^2 - 2y_t x_{t-1}^* - (x_t^*)^2 + 2y_t x_t^* \\ &= (x_{t-1}^* + x_t^* - 2y_t) \cdot (x_{t-1}^* - x_t^*) \\ &\leq |x_{t-1}^* + x_t^* - 2y_t| \cdot |x_{t-1}^* - x_t^*| \\ &\leq 2|x_{t-1}^* - x_t^*| \\ &= 2\left|\frac{1}{t-1}\sum_{i=1}^{t-1} y_i - \frac{1}{t}\sum_{i=1}^t y_i\right| \end{aligned}$$

Joseph C. C. Lin (CSIE, TKU, TW)

3

21/36

イロン イヨン イヨン

Note that

$$\begin{aligned} (x_{t-1}^* - y_t)^2 &= (x_{t-1}^*)^2 - 2y_t x_{t-1}^* - (x_t^*)^2 + 2y_t x_t^* \\ &= (x_{t-1}^* + x_t^* - 2y_t) \cdot (x_{t-1}^* - x_t^*) \\ &\leq |x_{t-1}^* + x_t^* - 2y_t| \cdot |x_{t-1}^* - x_t^*| \\ &\leq 2|x_{t-1}^* - x_t^*| \\ &= 2\left|\frac{1}{t-1}\sum_{i=1}^{t-1} y_i - \frac{1}{t}\sum_{i=1}^t y_i\right| \\ &= 2\left|\left(\frac{1}{t-1} - \frac{1}{t}\right)\sum_{i=1}^{t-1} y_i - \frac{y_t}{t}\right| \\ &\leq 2\left|\frac{1}{t(t-1)}\sum_{i=1}^{t-1} y_i\right| + \frac{2|y_t|}{t} \leq \frac{2}{t} + \frac{2|y_t|}{t} \leq \frac{4}{t}\end{aligned}$$

.

3

Online Learning Introduction

Overall, we have

$$\sum_{t=1}^{T} (x_t - y_t)^2 - \min_{x \in [0,1]} \sum_{t=1}^{T} (x - y_t)^2 \le 4 \sum_{t=1}^{T} \frac{1}{t}$$
$$\le 1 + \int_2^{T+1} \frac{1}{t-1} dt$$
$$= 1 + \ln T.$$
(or simply $O(\ln T)$).

3

22 / 36

イロン イヨン イヨン

Overall, we have

$$\sum_{t=1}^{T} (x_t - y_t)^2 - \min_{x \in [0,1]} \sum_{t=1}^{T} (x - y_t)^2 \leq 4 \sum_{t=1}^{T} \frac{1}{t}$$

$$\leq 1 + \int_2^{T+1} \frac{1}{t - 1} dt$$

$$= 1 + \ln T.$$
(or simply $O(\ln T)$).

- No parameters are required to tune (e.g., learning rates, regularization terms, etc.).
- It doesn't make sense either to have such parameters because we cannot run the algorithm over the data multiple times!

イロト 不得 トイヨト イヨト

Exercise 01

• Show that
$$\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \leq 2\sqrt{T} - 1$$
.

Ξ.

イロト イヨト イヨト イヨト

Exercise 02

- Extend the algorithm and the analysis to the case when adversary selects a vector $\mathbf{y}_t \in \mathbb{R}^d$ such that
 - $\|\mathbf{y}_t\|_2 \leq 1$,
 - the algorithm selects $\mathbf{x}_t \in \mathbb{R}^d$, and
 - the loss function is $\|\mathbf{x}_t \mathbf{y}_t\|_2^2$.

 Prove an upper bound to the regret O(log T) which does not depend on d.

Hint: Using Cauchy-Schwarz inequality: $\langle \mathbf{x}, \mathbf{y} \rangle \leq \|\mathbf{x}\|_2 \|\mathbf{y}\|_2$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Online learning applications

- Click prediction.
- Portfolio weight adjustment.
- Routing on a network.
- Convergence to an equilibrium for iterative/repeated games.

イロト 不得下 イヨト イヨト

Online Learning Introduction

Regret & profitability

• We try to optimize the regret.

3

(日)

Regret & profitability

- We try to optimize the regret.
- Yet, like the scenario of online portfolio adjustment, does the regret corresponds to definite PnL?

Diameter

Let $\mathcal{K} \subseteq \mathbb{R}^d$ be a bounded convex and closed set in Euclidean space. We denote by D an upper bound on the diameter of \mathcal{K} :

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{K}, \|\mathbf{x} - \mathbf{y}\| \le D.$$

Convex set

A set \mathcal{K} is convex if for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$, we have

$$\forall \alpha \in [0,1], \alpha \mathbf{x} + (1-\alpha)\mathbf{y} \in \mathcal{K}.$$

Joseph C. C. Lin (CSIE, TKU, TW)

27 / 36

イロト 不得下 イヨト イヨト 二日

Convex function

A function $f : \mathcal{K} \mapsto \mathbb{R}$ is convex if for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$,

$$orall lpha \in [0,1], f((1-lpha)\mathbf{x}+lpha\mathbf{y}) \leq (1-lpha)f(\mathbf{x})+lpha f(\mathbf{y}).$$

Equivalently, if f is differentiable (i.e., $\nabla f(\mathbf{x})$ exists for all $\mathbf{x} \in \mathcal{K}$), then f is convex if and only if for all $\mathbf{x}, \mathbf{y} \in \mathcal{K}$,

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}).$$

Joseph C. C. Lin (CSIE, TKU, TW)

3

28 / 36

(日)

Theorem [Rockafellar 1970]

Suppose that $f : \mathcal{K} \mapsto \mathbb{R}$ is a convex function and let $\mathbf{x} \in \text{int dom}(f)$. If f is differentiable at \mathbf{x} , then for all $\mathbf{y} \in \mathbb{R}^d$,

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle.$$

Subgradient

For a function $f : \mathbb{R}^d \mapsto \mathbb{R}$, $\mathbf{g} \in \mathbb{R}^d$ is a subgradient of f at $x \in \mathbb{R}^d$ if for all $\mathbf{y} \in \mathbb{R}^d$,

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle.$$

29/36

イロト 不得 トイヨト イヨト 二日

Projection

The closest point of \boldsymbol{y} in a convex set $\mathcal K$ in terms of norm $\|\cdot\|$:

$$\Pi_{\mathcal{K}}(\mathbf{y}) := \arg\min_{\mathbf{x}\in\mathcal{K}} \|\mathbf{x}-\mathbf{y}\|.$$

Pythagoras Theorem

Let $\mathcal{K} \subseteq \mathbb{R}^d$ be a convex set, $\mathbf{y} \in \mathbb{R}^d$ and $\mathbf{x} = \Pi_{\mathcal{K}}(\mathbf{y})$. Then for any $\mathbf{z} \in \mathcal{K}$, we have

$$\|\mathbf{y} - \mathbf{z}\| \ge \|\mathbf{x} - \mathbf{z}\|.$$

イロト 不得下 イヨト イヨト 二日

Minimum vs. zero gradient

$$abla f(\mathbf{x}) = 0 \text{ iff } \mathbf{x} \in \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{f(\mathbf{x})\}.$$

First-Order Optimality Condition for Convex Functions

Let

- $\mathcal{K} \subseteq \mathbb{R}^d$ be a convex set,
- f be a convex function which is differentiable over an open set that contains \mathcal{K} , and
- $\mathbf{x}^* \in \operatorname{arg\,min}_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x})$,

then for any $\boldsymbol{y} \in \mathcal{K}$ we have

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{y}-\mathbf{x}^*) \geq 0.$$

Joseph C. C. Lin (CSIE, TKU, TW)

31 / 36

Online Learning Prerequisites

Prerequisites (6/7)

Jensen's Inequality

Let $f : \mathbb{R}^d \mapsto (-\infty, +\infty]$ be a measurable convex function and **x** be an \mathbb{R}^d -valued random variable such that $\mathbf{E}[\mathbf{x}]$ exists and $\mathbf{x} \in \text{dom}(f)$ with probability 1. Then,

 $\mathbf{E}[f(\mathbf{x})] \geq f(\mathbf{E}[\mathbf{x}]).$

Joseph C. C. Lin (CSIE, TKU, TW)

イロト 不得 トイラト イラト 一日

Cauchy-Schwarz inequality

For all vectors \mathbf{u} and \mathbf{v} of an inner product space,

$$|\langle \textbf{u},\textbf{v}\rangle|^2 \leq \langle \textbf{u},\textbf{u}\rangle \cdot \langle \textbf{v},\textbf{v}\rangle.$$

or equivalently,

 $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \cdot \|\mathbf{v}\|.$

Joseph C. C. Lin (CSIE, TKU, TW)

3

(日)

Cauchy-Schwarz inequality

For all vectors \boldsymbol{u} and \boldsymbol{v} of an inner product space,

$$|\langle \textbf{u},\textbf{v}\rangle|^2 \leq \langle \textbf{u},\textbf{u}\rangle \cdot \langle \textbf{v},\textbf{v}\rangle.$$

or equivalently,

 $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \cdot \|\mathbf{v}\|.$

• Let's have a look at an research example.

э

Cauchy-Schwarz inequality

For all vectors \mathbf{u} and \mathbf{v} of an inner product space,

$$|\langle \textbf{u},\textbf{v}\rangle|^2 \leq \langle \textbf{u},\textbf{u}\rangle \cdot \langle \textbf{v},\textbf{v}\rangle.$$

or equivalently,

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \cdot \|\mathbf{v}\|.$$

• Let's have a look at an research example.

$$SW(\mathbf{s}) = \sum_{i \in [m]} \frac{u(s_i)}{\sum_{j \in [m]} u(s_j)} \cdot u(s_i) = \frac{\sum_{i \in [m]} u(s_i)^2}{\sum_{j \in [m]} u(s_j)}$$

Joseph C. C. Lin (CSIE, TKU, TW)

Spring 2023

イロト 不得 トイヨト イヨト

~

33 / 36

3

Cauchy-Schwarz inequality

For all vectors \boldsymbol{u} and \boldsymbol{v} of an inner product space,

$$|\langle \textbf{u},\textbf{v}\rangle|^2 \leq \langle \textbf{u},\textbf{u}\rangle \cdot \langle \textbf{v},\textbf{v}\rangle.$$

or equivalently,

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \cdot \|\mathbf{v}\|.$$

• Let's have a look at an research example.

$$SW(\mathbf{s}) = \sum_{i \in [m]} \frac{u(s_i)}{\sum_{j \in [m]} u(s_j)} \cdot u(s_i) = \frac{\sum_{i \in [m]} u(s_i)^2}{\sum_{j \in [m]} u(s_j)}$$
$$\geq \frac{1}{m} \cdot \sum_{i \in [m]} u(s_i).$$

Joseph C. C. Lin (CSIE, TKU, TW)

Spring 2023

イロト 不得 トイヨト イヨト

~

33 / 36

3

- We have the convex loss function $f_t(\mathbf{x}_t)$ at time t.
- Say we have subgradients \mathbf{g}_t for each \mathbf{x}_t .
- $f(\mathbf{x}_t) f(\mathbf{u}) \le \langle \mathbf{g}, \mathbf{x}_t \mathbf{u} \rangle$ for each $\mathbf{u} \in \mathbb{R}^d$.

3

イロト 不得 トイヨト イヨト

- We have the convex loss function $f_t(\mathbf{x}_t)$ at time t.
- Say we have subgradients \mathbf{g}_t for each \mathbf{x}_t .

•
$$f(\mathbf{x}_t) - f(\mathbf{u}) \le \langle \mathbf{g}, \mathbf{x}_t - \mathbf{u} \rangle$$
 for each $\mathbf{u} \in \mathbb{R}^d$.

• Hence, if we define $\widetilde{f}_t(\mathbf{x}) := \langle \mathbf{g}_t, \mathbf{x}
angle$, then for any $\mathbf{u} \in \mathbb{R}^d$,

$$\sum_{t=1}^{T} \left(f_t(\mathbf{x}_t) - f(\mathbf{u}) \right) \leq \sum_{t=1}^{T} \langle \mathbf{g}, \mathbf{x}_t - \mathbf{u} \rangle = \sum_{t=1}^{T} \tilde{f}_t(\mathbf{x}_t) - \tilde{f}(\mathbf{u}).$$

3

(日)

- We have the convex loss function $f_t(\mathbf{x}_t)$ at time t.
- Say we have subgradients \mathbf{g}_t for each \mathbf{x}_t .

•
$$f(\mathbf{x}_t) - f(\mathbf{u}) \le \langle \mathbf{g}, \mathbf{x}_t - \mathbf{u} \rangle$$
 for each $\mathbf{u} \in \mathbb{R}^d$.

• Hence, if we define $\widetilde{f}_t(\mathbf{x}) := \langle \mathbf{g}_t, \mathbf{x}
angle$, then for any $\mathbf{u} \in \mathbb{R}^d$,

$$\sum_{t=1}^{T} \left(f_t(\mathbf{x}_t) - f(\mathbf{u}) \right) \leq \sum_{t=1}^{T} \langle \mathbf{g}, \mathbf{x}_t - \mathbf{u} \rangle = \sum_{t=1}^{T} \tilde{f}_t(\mathbf{x}_t) - \tilde{f}(\mathbf{u}).$$

• Note that
$$\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle.$$

3

(日)

- We have the convex loss function $f_t(\mathbf{x}_t)$ at time t.
- Say we have subgradients \mathbf{g}_t for each \mathbf{x}_t .

•
$$f(\mathbf{x}_t) - f(\mathbf{u}) \le \langle \mathbf{g}, \mathbf{x}_t - \mathbf{u} \rangle$$
 for each $\mathbf{u} \in \mathbb{R}^d$.

• Hence, if we define $\widetilde{f}_t(\mathbf{x}) := \langle \mathbf{g}_t, \mathbf{x} \rangle$, then for any $\mathbf{u} \in \mathbb{R}^d$,

$$\sum_{t=1}^{T} \left(f_t(\mathbf{x}_t) - f(\mathbf{u}) \right) \leq \sum_{t=1}^{T} \langle \mathbf{g}, \mathbf{x}_t - \mathbf{u} \rangle = \sum_{t=1}^{T} \tilde{f}_t(\mathbf{x}_t) - \tilde{f}(\mathbf{u}).$$

• Note that $\langle {\bf u}, {\bf v} + {\bf w} \rangle = \langle {\bf u}, {\bf v} \rangle + \langle {\bf u}, {\bf w} \rangle.$

 $\star~\text{OCO} \rightarrow \text{OLO}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remark

- The reduction implies that we can build online (convex optimization) algorithms that deal only with linear losses.
- Note that this reduction isn't always optimal.
- Yet, it allows us to easily construct OCO algorithms in many cases.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Discussions

Joseph C. C. Lin (CSIE, TKU, TW)

Online Learning

Spring 2023

・ロト ・四ト ・ヨト ・ヨト

36 / 36