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Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan:
https://lucatrevisan.github.io/40391 /index.html

the lectures of Prof. Shipra Agrawal:
https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona:
https://parameterfree.com/lecture-notes-on-online-learning/
the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan's textbook:
Introduction to Online Convex Optimization, 2nd Edition.
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Online Learning

@ On this course, we will “study together”.
@ We rely on the discussions and interactions in the class.

@ Sometimes we will use the white board because it’s clearer for
illustrating the formulae and ideas step by step.

@ We probably follow Prof. Orabona’s textbook.
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Course Syllabus & Policies

Topics we plan to cover...

Introduction & Prerequisites for online learning
Online (Sub-)Gradient Descent (OGD)
Online-to-Batch Conversion

Multiplicative Weight Update (MWU)

Follow the Regularized Leader (FTRL)

Online Mirror Descent (OMD)

Multi-Armed Bandit

*Extra-Gradient & Optimistic Gradient Descent

Other selected topics.
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Course Syllabus & Policies

Grading Policy

Attendance (20%)
Course Interactions (10%)
o Asking questions (1% for each)

One Coding Project (10%)
Midterm Paper/Book Chapter Presentation (30%)
Final Paper Presentation (30%)
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Grading Policy for the Presentations

Order: According to the seat number in iClass.

Complete the presentation: 70 point.
e Duration for each presentation: 30-50 minutes.

Raising questions: 42 point for each one (maximum +10 point).

Clearly answering the teacher's 2—4 questions: +5 point for each one.
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Grading Policy for the Coding Project

e Work as a team is allowed (3-5 people).

o We will give two options for the project.
o The easy one: UCB Implementation (5%)

e The complicated one: Online Portfolio Management Using MWU (or
any online algorithms): 10%

@ Submit your codes and documentation to iClass.

@ One person in each group must present your codes and results in the
class.
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Outline

© Introduction
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Introduction

@ What's online learning?
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Introduction

@ What's online learning?

@ What about Offline optimization?
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Introduction

Online Convex Optimization

Goal: Design an algorithm such that

@ At discrete time steps t = 1,2, ..., output x; € I, for each t.
e K: a convex set of feasible solutions.

o After x; is generated, a convex cost function f; : IC +— R is revealed.

@ Then the algorithm suffers the loss f;(x;).

And we want to minimize the cost.
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Introduction

Online Convex Optimization

Goal: Design an algorithm such that
@ At discrete time steps t = 1,2, ..., output x; € I, for each t.
o KC: a convex set of feasible solutions.
o After x; is generated, a convex cost function f; : IC +— R is revealed.

@ Then the algorithm suffers the loss f;(x;).

And we want to minimize the cost.

@ For example, an adversary chooses y; for each t and we suffer the
squared difference as the loss f;(x¢) = (x; — yt)T(xt —Y:).
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The difficulty

@ The cost functions f; could be unknown before t.

@ fi,fr, ..., fr,... are not necessarily fixed.
o Can be generated dynamically by an adversary.
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What's the regret?

@ The offline optimum: After T steps,

,
[ fi(x).
i 2 9

@ The regret after T steps:

T T
regret = Z fr(xe) — Qrél’g Z ft(x).
t=1 t=1
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What's the regret?

@ The offline optimum: After T steps,

,
[ fi(x).
i 2 9

@ The regret after T steps:
T T
regret = Z fr(xe) — Qr;l’g Z ft(x).
t=1 t=1

@ The rescue: regretr < o(T).
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What's the regret?

@ The offline optimum: After T steps,

,
[ fi(x).
i 2 9

@ The regret after T steps:
T T
regret = Z fr(xe) — )rg’g Z ft(x).
t=1 t=1

@ The rescue: regret < o(T). = No-Regret in average when
T — oc.
o For example, regret/T = g — 0 when T — 0.
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Introduction

Remark

@ If an online learning algorithm can guarantee a sublinear regret, it
means that its performance, on average, will approach the
performance of ANY fixed strategy.

@ The regret after T steps with respect to some u:

T

T
regrety(u) = Z fr(x¢) — Z fr(u).

t=1
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Introduction

What about comparing dynamic optimum?

@ The regret after T steps:
T T
d ic_ tr = fy — i fe(z:).
ynamic_regret Z t(X¢) mmelc; t+(zt)

=1 21,27,...
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Introduction

What about comparing dynamic optimum?

@ The regret after T steps:

T T
dynamic_regret = Z fr(x¢) — minelcz fr(z¢).
t=1

=1 21,27,...

@ What's the difficulty & the issue?
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The best in the hindsight vs. follow the leader (1/4)

o Let x¥% :=argmin)_ - fi(x)
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The best in the hindsight vs. follow the leader (1/4)

o Let x¥% :=argmin}_ i fi(x) = argmin Y e (x — y¢) " (X — y¢).
e The hindsight optimum.
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The best in the hindsight vs. follow the leader (1/4)

o Let x¥% :=argmin}_ i fi(x) = argmin Y e (x — y¢) " (X — y¢).
e The hindsight optimum.

@ Let’s say that we guess on each round t by
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The best in the hindsight vs. follow the leader (2/4)

Let V C RY and let ¢; : V — R be an arbitrary sequence of loss functions.
Denote by x; a minimizer of the cumulative losses over the previous t
rounds in V. Then, we have

T T
el < 3 telxy)
t=1 t=1
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The best in the hindsight vs. follow the leader (2/4)

Let V C RY and let ¢; : V — R be an arbitrary sequence of loss functions.
Denote by x; a minimizer of the cumulative losses over the previous t
rounds in V. Then, we have

T T
el < 3 telxy)
t=1 t=1

@ We prove the theorem by induction on T.
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The best in the hindsight vs. follow the leader (2/4)

Let V C RY and let ¢; : V — R be an arbitrary sequence of loss functions.
Denote by x; a minimizer of the cumulative losses over the previous t
rounds in V. Then, we have

T T
el < 3 telxy)
t=1 t=1

@ We prove the theorem by induction on T.
@ The base case (T =1) is true. (WHY?)
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The best in the hindsight vs. follow the leader (2/4)

Let V C RY and let ¢; : V — R be an arbitrary sequence of loss functions.
Denote by x; a minimizer of the cumulative losses over the previous t
rounds in V. Then, we have

T T
el < 3 telxy)
t=1 t=1

@ We prove the theorem by induction on T.
@ The base case (T =1) is true. (WHY?)

l1(x7) < li(xa)

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 16 / 36



Online Learning

The best in the hindsight vs. follow the leader (3/4)

@ For T > 2, we assume that ZtT:_ll le(x}) < Z;r:_ll Ce(x%_1).
e Induction hypothesis.

o Note that
T T
PRACHESPAe
t=1 t=1
is equivalent to
T-1 T-1
Ce(xt) < ) Le(xT)
t=1 t=1

(WHY?)
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The best in the hindsight vs. follow the leader (4/4)

@ So to prove
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The best in the hindsight vs. follow the leader (4/4)

@ So to prove

T-1 T-1
Le(xp) <) le(xTy)
t=1 t=1
<
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The best in the hindsight vs. follow the leader (4/4)

@ So to prove

T-1 T-1
Le(xp) <) le(xTy)
t=1 t=1
T-1
< S uxh).
=1
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The best in the hindsight vs. follow the leader (4/4)

@ So to prove

T-1 T-1
Le(xp) <) le(xTy)
t=1 t=1
T-1
< S uxh).
=1

@ The lemma is proved.
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An Example of Sublinear-Regret (1/4)

Consider one-dimensional x;, y; € R to simplify our discussion.

Let y; € [0,1] for t =1,2,..., T be an arbitrary sequence of numbers.
Suppose that the algorithm outputs x; = x{ | = = 1 Z, 1 vi- Then, we

have
T T

Z(xt —y:)?> — min (x—y)><4+4InT.
x€[0,1] =1

@ Use previous lemma to “upper bound the regret”.
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An Example of Sublinear-Regret (2/4)

T T T T

Z(Xt —Yt)"— min (x — Yt)2 = Z(Xt 1 Yt)2 - Z(XT - )/t)2
— x€[0,1] — —
t=1 t=1 t=1 t=1
T T

IN
(]
X
T
—_
|
=
e
|
(]
l‘f><*
<
S
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An Example of Sublinear-Regret (3/4)

Note that

=y =06 —ye)? = (1) =2y — () 4 2yex]
(Xi_1 x5 = 2y) - (1 — x¢)
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An Example of Sublinear-Regret (3/4)

Note that

=y =06 —ye)? = (1) =2y — () 4 2yex]
(Xi_1 x5 = 2y) - (1 — x¢)

< X = 20 Il =
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An Example of Sublinear-Regret (3/4)

Note that

=y =06 —ye)? = (1) =2y — () 4 2yex]
(Xi_1 x5 = 2y) - (1 — x¢)

X1 X = 2ye| - I = X

IAIA

2|x;_1 — x{|

1 t—1 1 t
2 ﬁ’z:;}/i - ?;}’i
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An Example of Sublinear-Regret (3/4)

Note that

(xi—1 — )/t)2 —(x - Yt)2

Joseph C. C. Lin (CSIE, TKU, TW)

IAIA

IA

(1) = 2vext g — () 4 2yex]
(Xi_1 x5 = 2y) - (1 — x¢)
i1+ X = 2ye| - Ix_g — X

2|x;_1 — x{|

1 t—1 1 t
2| g o
t—1+4 t 4
i=1 i=1
1 1\, %
21 —— — = A
(t—l t) ’Z:y, t
1 o | 2l _2 2yl _4
2 ; g<= g< 2
t(t—l);y * t —t+ t Tt
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An Example of Sublinear-Regret (4/4)

Overall, we have

T

T T
1
e e <
T+1 1
S
,  t-1

= 14+InT.
(‘or simply O(In T)).
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An Example of Sublinear-Regret (4/4)

Overall, we have

T

T T
1
e e <
T+1 1
S
,  t-1

= 1+InT.
(‘or simply O(In T)).
@ No parameters are required to tune (e.g., learning rates, regularization

terms, etc.).

o It doesn't make sense either to have such parameters because we
cannot run the algorithm over the data multiple times!

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 22/36



Online Learning

Introduction

@ Show that Zthl \/if <2VT —1.
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Introduction

o Extend the algorithm and the analysis to the case when adversary
selects a vector y; € R? such that

o [lyella <1,
o the algorithm selects x; € R9, and
o the loss function is ||x; — y¢||3.
@ Prove an upper bound to the regret O(log T) which does not depend
on d.

Hint: Using Cauchy-Schwarz inequality: (x,y) < ||x||2]|y]|2-
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Introduction

Online learning applications

Click prediction.
Portfolio weight adjustment.

Routing on a network.

Convergence to an equilibrium for iterative/repeated games.
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Regret & profitability

o We try to optimize the regret.

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 26 /36



Online Learning

Regret & profitability

o We try to optimize the regret.

@ Yet, like the scenario of online portfolio adjustment, does the regret
corresponds to definite PnL?
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Prerequisites (1/7)

Let K C R? be a bounded convex and closed set in Euclidean space. We
denote by D an upper bound on the diameter of K:

Vx,y € K, ||x —y|| < D.

A set IC is convex if for any x,y € I, we have

Va € [0,1],ax+ (1 — o)y € K.

A\
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Prerequisites (2/7)

Convex function

A function f : K — R is convex if for any x,y € K,

Va € [0,1], F((1 — a)x + ay) < (1 — a)f(x) + af(y).

Equivalently, if f is differentiable (i.e., Vf(x) exists for all x € ), then f
is convex if and only if for all x,y € K,

Fy) = f(x) + VF(x) (y — x).

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 28 /36



Online Learning

Prerequisites (3/7)

Theorem [Rockafellar 1970]

Suppose that f : L +— R is a convex function and let x € int dom(f). If f
is differentiable at x, then for all y € R9,

fy) = f(x) + (VFf(x),y — x).

A\

Subgradient

For a function f : R? — R, g € RY is a subgradient of f at x € R? if for
ally e R,

fly) = f(x) + (gy —x).

A\
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Prerequisites (4/7)

Projection
The closest point of y in a convex set K in terms of norm || - ||:

M = [ -yl
x(y) = arg min||x —y|

v

Pythagoras Theorem

Let K C R? be a convex set, y € R? and x = Mi(y). Then for any z € K,
we have

ly —zl[ =[x — z]|.
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Prerequisites (5/7)

Minimum vs. zero gradient

Vif(x) =0 iff x € arg min {f(x)}.
x€R9

First-Order Optimality Condition for Convex Functions
Let
e K C R be a convex set,

@ f be a convex function which is differentiable over an open set that
contains /C, and

e x* € argminyex f(x),
then for any y € K we have

Vix) T (y—x*)>0

= = = = -
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Prerequisites (6/7)

Jensen’s Inequality

Let f : RY 5 (—o0, +00] be a measurable convex function and x be an
R9-valued random variable such that E[x] exists and x € dom(f) with
probability 1. Then,

E[f(x)] > f(E[x]).
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Prerequisites (7/7)

Cauchy-Schwarz inequality
For all vectors u and v of an inner product space,

|<U,V>|2 < <u7u> ’ <V,V>.

or equivalently,

[{u, v)| < lul] - [[v]-
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Prerequisites (7/7)

Cauchy-Schwarz inequality
For all vectors u and v of an inner product space,

|<U,V>|2 < <u7u> ’ <V,V>.

or equivalently,

[{u, v)| < lul] - [[v]-

@ Let’s have a look at an research example.
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Prerequisites (7/7)

Cauchy-Schwarz inequality
For all vectors u and v of an inner product space,

|<U,V>|2 < <u7u> ’ <V7V>'

or equivalently,

[{u, v)| < lul] - [[v]-

@ Let’s have a look at an research example.

Zie[m] U(S,')2

N u(s,-) Culs) =
W) = D s ) =T )

Zje[m] U(SJ)

i€[m]
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Prerequisites (7/7)

Cauchy-Schwarz inequality
For all vectors u and v of an inner product space,

|<U,V>|2 < <u7u> ’ <V7V>'

or equivalently,

[{u, v)| < lul] - [[v]-

@ Let’s have a look at an research example.

Zie[m] U(S,')2

N u(s,-) Culs) =
W) = D s ) =T )

ie[m] Zje[m] U(SJ)

1

E . Z U(S,').
ie[m]
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Convex losses to linear losses

@ We have the convex loss function f;(x;) at time t.
@ Say we have subgradients g; for each x;.
o f(x;) — f(u) < (g,x; — u) for each u € R¥.
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Convex losses to linear losses

@ We have the convex loss function f;(x;) at time t.

@ Say we have subgradients g; for each x;.

o f(x¢) — f(u) < (g,x¢ — u) for each u € R¥.

o Hence, if we define (x) := (g¢,x), then for any u € R,

T

}
S (filxe) — F(u) <Zg,xt—u =2l

t=1
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Convex losses to linear losses

@ We have the convex loss function f;(x;) at time t.

@ Say we have subgradients g; for each x;.

o f(x¢) — f(u) < (g,x¢ — u) for each u € R¥.

o Hence, if we define (x) := (g¢,x), then for any u € R,

T

}
S (filxe) — F(u) <Zg,xt—u =2l

t=1

o Note that (u,v+w) = (u,v) + (u,w).
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Convex losses to linear losses

@ We have the convex loss function f;(x;) at time t.
@ Say we have subgradients g; for each x;.
o f(x¢) — f(u) < (g,x¢ — u) for each u € R¥.
o Hence, if we define (x) := (g¢,x), then for any u € R,
T T
Z(ﬂ(xt)—f <Zg,xt—u :fot
t=1 t=1

o Note that (u,v+w) = (u,v) + (u,w).

OCO — OLO

*
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Remark

@ The reduction implies that we can build online (convex optimization)
algorithms that deal only with

@ Note that this reduction isn’t always optimal.

@ Yet, it allows us to easily construct OCO algorithms in many cases.
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Discussions
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