Online Learning

- The Multiplicative-Weight Update Algorithm

Joseph Chuang-Chieh Lin

Department of Computer Science \& Information Engineering, Tamkang University

Spring 2023

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html
the lectures of Prof. Shipra Agrawal: https://ieor8100.github.io/mab/
the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/ the monograph: https://arxiv.org/abs/1912.13213
and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

Outline

(1) Expert Setting

(2) Multiplicative-Weight Update

Listen to the experts?

- Let's say we have n experts.
- We want to make best use of the advices coming from the experts.

Listen to the experts?

- Let's say we have n experts.
- We want to make best use of the advices coming from the experts.
- The idea: at each time step, decide the probability distribution (i.e., weights) of the experts to follow their advice.
- $\mathbf{x}_{t}=\left(\mathbf{x}_{t}(1), \mathbf{x}_{t}(2), \ldots, \mathbf{x}_{t}(n)\right)$, where $\mathbf{x}_{t}(i) \in[0,1]$ and $\sum_{i} \mathbf{x}_{t}(i)=1$.

Listen to the experts?

- Let's say we have n experts.
- We want to make best use of the advices coming from the experts.
- The idea: at each time step, decide the probability distribution (i.e., weights) of the experts to follow their advice.
- $\mathbf{x}_{t}=\left(\mathbf{x}_{t}(1), \mathbf{x}_{t}(2), \ldots, \mathbf{x}_{t}(n)\right)$, where $\mathbf{x}_{t}(i) \in[0,1]$ and $\sum_{i} \mathbf{x}_{t}(i)=1$.
- The loss of following expert i at time $t: \ell_{t}(i)$.
- The expected loss of the algorithm at time t :

$$
\left\langle\mathbf{x}_{t}, \ell_{t}\right\rangle=\sum_{i=1}^{n} \mathbf{x}_{t}(i) \ell_{t}(i)
$$

The regret of listening to the experts...

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T}\left\langle\mathbf{x}_{t}, \ell_{t}\right\rangle-\min _{i} \sum_{t=1}^{T} \ell_{t}(i)
$$

- The set of feasible solutions $K=\Delta \subseteq \mathbb{R}^{n}$, probability distributions over $\{1, \ldots, n\}$.
- $f_{t}(\mathbf{x})=\sum_{i} \mathbf{x}(i) \ell_{t}(i)$: linear function.
* Assume that $\left|\ell_{t}(i)\right| \leq 1$ for all t and i.
- Normalized.

The regret of listening to the experts...

$$
\operatorname{regret}_{T}=\sum_{t=1}^{T}\left\langle\mathbf{x}_{t}, \ell_{t}\right\rangle-\min _{i} \sum_{t=1}^{T} \ell_{t}(i)
$$

- The set of feasible solutions $K=\Delta \subseteq \mathbb{R}^{n}$, probability distributions over $\{1, \ldots, n\}$.
- $f_{t}(\mathbf{x})=\sum_{i} \mathbf{x}(i) \ell_{t}(i)$: linear function.
* Assume that $\left|\ell_{t}(i)\right| \leq 1$ for all t and i.
- Normalized.
- In fact, we claim that (exercise!)

$$
\min _{i} \sum_{t=1}^{T} \ell_{t}(i)=\min _{\mathbf{x}} \sum_{t=1}^{T}\left\langle\mathbf{x}, \ell_{t}\right\rangle
$$

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

- Maintain a vector of weights $\mathbf{w}_{t}=\left(\mathbf{w}_{t}(1), \ldots, \mathbf{w}_{t}(n)\right)$ where $\mathbf{w}_{1}:=(1,1, \ldots, 1)$.
- Update the weights at time t by
- $\mathbf{w}_{t}(i):=\mathbf{w}_{t-1}(i) \cdot e^{-\beta \ell_{t-1}(i)}$.
- $\mathbf{x}_{t}:=\frac{\mathbf{w}_{t}(i)}{\sum_{j=1}^{\mathbf{w}_{t}} \mathbf{w}_{t}(j)}$.
β : a parameter which will be optimized later.

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

- Maintain a vector of weights $\mathbf{w}_{t}=\left(\mathbf{w}_{t}(1), \ldots, \mathbf{w}_{t}(n)\right)$ where $\mathbf{w}_{1}:=(1,1, \ldots, 1)$.
- Update the weights at time t by
- $\mathbf{w}_{t}(i):=\mathbf{w}_{t-1}(i) \cdot e^{-\beta \ell_{t-1}(i)}$.
- $\mathbf{x}_{t}:=\frac{\mathbf{w}_{t}(i)}{\sum_{j=1}^{\mathbf{w}^{2}} \mathbf{w}_{t}(j)}$.
β : a parameter which will be optimized later.
The weight of expert i at time $t: \quad e^{-\beta \sum_{k=1}^{t-1} \ell_{k}(i)}$.

MWU is of no-regret

Theorem 1 (MWU is of no-regret)

Assume that $\left|\ell_{t}(i)\right| \leq 1$ for all t and i. For $\beta \in(0,1 / 2)$, the regret of MWU after T steps is bounded as

$$
\operatorname{regret}_{T} \leq \beta \sum_{t=1}^{T} \sum_{i=1}^{n} \mathbf{x}_{t}(i) \ell_{t}^{2}(i)+\frac{\ln n}{\beta} \leq \beta T+\frac{\ln n}{\beta} .
$$

In particular, if $T>4 \ln n$, then

$$
\operatorname{regret}_{T} \leq 2 \sqrt{T \ln n}
$$

by setting $\beta=\sqrt{\frac{\ln n}{T}}$.

Proof of Theorem 1

Let $W_{t}:=\sum_{i=1}^{n} \mathbf{w}_{t}(i)$.

- The total weight at time t.

The idea:

- If the algorithm incurs a large loss after T steps, then W_{T+1} is small.
- And, if W_{T+1} is small, then even the best expert performs quite badly.

Proof of Theorem 1

Let $W_{t}:=\sum_{i=1}^{n} \mathbf{w}_{t}(i)$.

- The total weight at time t.

The idea:

- If the algorithm incurs a large loss after T steps, then W_{T+1} is small.
- And, if W_{T+1} is small, then even the best expert performs quite badly.

Let $L^{*}:=\min _{i} \sum_{t=1}^{T} \ell_{t}(i)$.

- The cumulative loss of the "best" expert.

The proof (contd.)

$$
\begin{aligned}
& \text { Lemma } 1\left(W_{T+1} \text { is SMALL } \Rightarrow L^{*} \text { is LARGE }\right) \\
& W_{T+1} \geq e^{-\beta L^{*}} .
\end{aligned}
$$

Proof.

Let $j=\arg \min L^{*}=\arg \min _{i} \sum_{t=1}^{T} \ell_{t}(i)$.

$$
W_{T+1}=\sum_{i=1}^{n} e^{-\beta \sum_{t=1}^{T} \ell_{t}(i)} \geq e^{-\beta \sum_{t=1}^{T} \ell_{t}(j)}=e^{-\beta L^{*}} .
$$

The proof (contd.)
Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$
W_{T+1} \leq n \prod_{t=1}^{n}\left(1-\beta\left\langle\mathbf{x}_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle\mathbf{x}_{t}, \ell_{t}^{2}\right\rangle\right)
$$

Proof.

Note: $W_{1}=n$.

$$
\frac{W_{t+1}}{W_{t}}=\sum_{i=1}^{n} \frac{\mathbf{w}_{t+1}(i)}{W_{t}}=\sum_{i=1}^{n} \frac{\mathbf{w}_{t}(i) \cdot e^{-\beta \ell_{t}(i)}}{W_{t}}
$$

The proof (contd.)
Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$
W_{T+1} \leq n \prod_{t=1}^{n}\left(1-\beta\left\langle\mathbf{x}_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle\mathbf{x}_{t}, \ell_{t}^{2}\right\rangle\right)
$$

Proof.

Note: $W_{1}=n$.

$$
\begin{aligned}
\frac{W_{t+1}}{W_{t}} & =\sum_{i=1}^{n} \frac{\mathbf{w}_{t+1}(i)}{W_{t}}=\sum_{i=1}^{n} \frac{\mathbf{w}_{t}(i) \cdot e^{-\beta \ell_{t}(i)}}{W_{t}}=\sum_{i=1}^{n} \mathbf{x}_{t}(i) \cdot e^{-\beta \ell_{t}(i)} \\
& \leq \sum_{i=1}^{n} \mathbf{x}_{t}(i) \cdot\left(1-\beta \ell_{t}(i)+\beta^{2} \ell_{t}^{2}(i)\right)
\end{aligned}
$$

The proof (contd.)
Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$
W_{T+1} \leq n \prod_{t=1}^{n}\left(1-\beta\left\langle\mathbf{x}_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle\mathbf{x}_{t}, \ell_{t}^{2}\right\rangle\right)
$$

Proof.

Note: $W_{1}=n$.

$$
\begin{aligned}
\frac{W_{t+1}}{W_{t}} & =\sum_{i=1}^{n} \frac{\mathbf{w}_{t+1}(i)}{W_{t}}=\sum_{i=1}^{n} \frac{\mathbf{w}_{t}(i) \cdot e^{-\beta \ell_{t}(i)}}{W_{t}}=\sum_{i=1}^{n} \mathbf{x}_{t}(i) \cdot e^{-\beta \ell_{t}(i)} \\
& \leq \sum_{i=1}^{n} \mathbf{x}_{t}(i) \cdot\left(1-\beta \ell_{t}(i)+\beta^{2} \ell_{t}^{2}(i)\right) \\
& =1-\beta\left\langle\mathbf{x}_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle\mathbf{x}_{t}, \ell_{t}^{2}\right\rangle
\end{aligned}
$$

The proof (contd.)
Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$
W_{T+1} \leq n \prod_{t=1}^{n}\left(1-\beta\left\langle\mathbf{x}_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle\mathbf{x}_{t}, \ell_{t}^{2}\right\rangle\right),
$$

Proof.

Note: $W_{1}=n$.

$$
\begin{aligned}
\frac{W_{t+1}}{W_{t}} & =\sum_{i=1}^{n} \frac{\mathbf{w}_{t+1}(i)}{W_{t}}=\sum_{i=1}^{n} \frac{\mathbf{w}_{t}(i) \cdot e^{-\beta \ell_{t}(i)}}{W_{t}}=\sum_{i=1}^{n} \mathbf{x}_{t}(i) \cdot e^{-\beta \ell_{t}(i)} \\
& \leq \sum_{i=1}^{n} \mathbf{x}_{t}(i) \cdot\left(1-\beta \ell_{t}(i)+\beta^{2} \ell_{t}^{2}(i)\right) \\
& =1-\beta\left\langle\mathbf{x}_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle\mathbf{x}_{t}, \ell_{t}^{2}\right\rangle \leq e^{-\beta\left\langle\mathbf{x}_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle\mathbf{x}_{t}, \ell_{t}^{2}\right\rangle}
\end{aligned}
$$

The proof (contd.)
Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$
W_{T+1} \leq n \prod_{t=1}^{n} e^{-\beta\left\langle x_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle x_{t}, \ell_{t}^{2}\right\rangle}
$$

Proof.

Note: $W_{1}=n$.

$$
\begin{aligned}
\frac{W_{t+1}}{W_{t}} & =\sum_{i=1}^{n} \frac{\mathbf{w}_{t+1}(i)}{W_{t}}=\sum_{i=1}^{n} \frac{\mathbf{w}_{t}(i) \cdot e^{-\beta \ell_{t}(i)}}{W_{t}}=\sum_{i=1}^{n} \mathbf{x}_{t}(i) \cdot e^{-\beta \ell_{t}(i)} \\
& \leq \sum_{i=1}^{n} \mathbf{x}_{t}(i) \cdot\left(1-\beta \ell_{t}(i)+\beta^{2} \ell_{t}^{2}(i)\right) \\
& =1-\beta\left\langle\mathbf{x}_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle\mathbf{x}_{t}, \ell_{t}^{2}\right\rangle \leq e^{-\beta\left\langle\mathbf{x}_{t}, \ell_{t}\right\rangle+\beta^{2}\left\langle\mathbf{x}_{t}, \ell_{t}^{2}\right\rangle} .
\end{aligned}
$$

The proof (contd.)

Hence

$$
\ln W_{T+1} \leq \ln n-\left(\sum_{i=1}^{T} \beta\left\langle\ell_{t}, \mathbf{x}_{t}\right\rangle\right)+\left(\sum_{i=1}^{T} \beta^{2}\left\langle\ell_{t}^{2}, \mathbf{x}_{t}\right\rangle\right)
$$

and $\ln W_{T+1} \geq-\beta L^{*}($ by Lemma 1$)$.

The proof (contd.)

Hence

$$
\ln W_{T+1} \leq \ln n-\left(\sum_{i=1}^{T} \beta\left\langle\ell_{t}, \mathbf{x}_{t}\right\rangle\right)+\left(\sum_{i=1}^{T} \beta^{2}\left\langle\ell_{t}^{2}, \mathbf{x}_{t}\right\rangle\right)
$$

and $\ln W_{T+1} \geq-\beta L^{*}$ (by Lemma 1).
Thus,

$$
\left(\sum_{t=1}^{T}\left\langle\ell_{t}, \mathbf{x}_{t}\right\rangle\right)-L^{*} \leq \frac{\ln n}{\beta}+\beta \sum_{t=1}^{T}\left\langle\ell_{t}^{2}, \mathbf{x}_{t}\right\rangle .
$$

The proof (contd.)

Hence

$$
\ln W_{T+1} \leq \ln n-\left(\sum_{i=1}^{T} \beta\left\langle\ell_{t}, \mathbf{x}_{t}\right\rangle\right)+\left(\sum_{i=1}^{T} \beta^{2}\left\langle\ell_{t}^{2}, \mathbf{x}_{t}\right\rangle\right)
$$

and $\ln W_{T+1} \geq-\beta L^{*}$ (by Lemma 1).
Thus,

$$
\left(\sum_{t=1}^{T}\left\langle\ell_{t}, \mathbf{x}_{t}\right\rangle\right)-L^{*} \leq \frac{\ln n}{\beta}+\beta \sum_{t=1}^{T}\left\langle\ell_{t}^{2}, \mathbf{x}_{t}\right\rangle .
$$

Take $\beta=\sqrt{\frac{\ln n}{T}}$, we have $\operatorname{regret}_{T} \leq 2 \sqrt{T \ln n}$.

The proof (contd.)

Hence

$$
\ln W_{T+1} \leq \ln n-\left(\sum_{i=1}^{T} \beta\left\langle\ell_{t}, \mathbf{x}_{t}\right\rangle\right)+\left(\sum_{i=1}^{T} \beta^{2}\left\langle\ell_{t}^{2}, \mathbf{x}_{t}\right\rangle\right)
$$

and $\ln W_{T+1} \geq-\beta L^{*}$ (by Lemma 1).
Thus,

$$
\left(\sum_{t=1}^{T}\left\langle\ell_{t}, \mathbf{x}_{t}\right\rangle\right)-L^{*} \leq \frac{\ln n}{\beta}+\beta \sum_{t=1}^{T}\left\langle\ell_{t}^{2}, \mathbf{x}_{t}\right\rangle .
$$

Take $\beta=\sqrt{\frac{\ln n}{T}}$, we have $\operatorname{regret}_{T} \leq 2 \sqrt{T \ln n}$.
Note: $\sum_{i=1}^{n} \mathbf{x}_{t}(i)=1$ and $0 \leq \ell_{t}^{2}(i) \leq 1$.

Discussions

