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Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan:
https://lucatrevisan.github.io/40391 /index.html

the lectures of Prof. Shipra Agrawal:
https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona:
https://parameterfree.com/lecture-notes-on-online-learning/
the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan's textbook:
Introduction to Online Convex Optimization, 2nd Edition.
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| would like to especially thank Prof. Francesco Orabona for the discussion
with me about the details for this part of lectures.
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e
Outline

@ Uninformative Subgradients

© Reinterpreting the Online Subgradient Descent

© An Alternative Distance Measure: Bregman Divergence
@ Online Mirror Descent - The First Attempt

© The Mirror Interpretation
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@ Uninformative Subgradients
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Online Subgradient Descent (OSD)

o Consider the simplified case that f;(-) = f(-) for all t > 0.

@ The key property for the convergence of OSD:

f(x¢) — f(u) < (g, xt — u), Yu.
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Online Subgradient Descent (OSD)

o Consider the simplified case that f;(-) = f(-) for all t > 0.

@ The key property for the convergence of OSD:
f(x¢) — f(u) < (g, xt — u), Yu.
@ However, for x € R?, consider the following two functions:

o f(x) = max{—x1,x1 — x2,x1 + X2}
o f(x) = max{x? + (x2 +1)%,xZ + (x2 — 1)?}.
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Online Subgradient Descent (OSD)

o Consider the simplified case that f;(-) = f(-) for all t > 0.

@ The key property for the convergence of OSD:

f(x¢) — f(u) < (g, xt — u), Yu.

@ However, for x € R?, consider the following two functions:
o f(x) = max{—x1,x1 — x2,x1 + X2}
o f(x) = max{x? + (x2 +1)%,xZ + (x2 — 1)?}.

@ Moving toward the direction of the negative subgradient may not
decrease the objective (loss).
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Reinterpreting the Online Subgradient Descent
Outline

© Reinterpreting the Online Subgradient Descent
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A Linear Lower Bound by a Subgradient

@ We can have a linear lower bound on function f around Xg:
f(x) > f(x) = f(xo) + (g, x — xg), Vx € V.

o Let's say V C RY is the domain.
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A Linear Lower Bound by a Subgradient

@ We can have a linear lower bound on function f around Xg:
f(x) > f(x) = f(xo) + (g, x — xg), Vx € V.
o Let's say V C RY is the domain.

@ Note that over unbounded domains the minimizer of linear function
at the right-hand side above is —o0.
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A Principle of Moderation

@ Minimizing the previous lower bound only in a neighborhood of x;.

Xry1 = argmin f(x¢) + (g, X — X¢)
xeV

subject to ||x; — x||> < h,
for some h > 0.
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A Principle of Moderation

@ Minimizing the previous lower bound only in a neighborhood of x;.

Xry1 = argmin f(x¢) + (g, X — X¢)
xeV

subject to ||x; — x||> < h,
for some h > 0.

@ Unconstrained formulation: (assume 1 > 0)

. 1
arg min f(x;) + (g,x — x¢) + 2*||"t —x|3.
xeV n
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Reinterpreting the Online Subgradient Descent

Solving the minimization (ignore non-variable terms):

i 1 i
arg min{g, x) + o —|x¢ — x||3 = arg min 2n: (g, x) + [|x¢ — |3
xeV Mt xeV
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Solving the minimization (ignore non-variable terms):

i 1 i
arg min{g, x) + o —|x¢ — x||3 = arg min 2n: (g, x) + [|x¢ — |3
xeV Mt xeV

= argmin [|7:ge |3 + 27¢ (e X — xe) + [|xe — x[|3
xeV

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 11 /50



Online Learning

Reinterpreting the Online Subgradient Descent

Solving the minimization (ignore non-variable terms):

. 1 .
arg min{ge, x) + 5 —|lxe = x[[5 = arg min 2ne(ge, x) + xe = x[13
xeV Nt xeV
_ - 2 2
= argmin|[n:g:3 + 21 (g, x — x¢) + (Xt — x]|3

xeV

= argmin ||x; — n:8¢ — x||%
xcV
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Reinterpreting the Online Subgradient Descent

Solving the minimization (ignore non-variable terms):

) 1 }
arg min{ge, x) + 5 —|lxe = x[[5 = arg min 2ne(ge, x) + xe = x[13
xeV Nt xeV
_ . 2 2
= argmin|[n:g:3 + 21 (g, x — x¢) + (Xt — x]|3

xeV
= argmin ||x; — n:8¢ — x||%

xcV

= I_|V(Xt - nrgt),

where Ty (x) = arg miny¢\/ [[x — y||2 (Euclidean projection onto V).
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Reinterpreting the Online Subgradient Descent

Solving the minimization (ignore non-variable terms):

) 1 }
arg min{ge, x) + 5 —|lxe = x[[5 = arg min 2ne(ge, x) + xe = x[13
xeV Nt xeV
_ . 2 2
= argmin|[n:g:3 + 21 (g, x — x¢) + (Xt — x]|3
xeV
= argmin ||x; — n:8¢ — x||%
xcV
= I_|V(Xt - nrgt),

where Ty (x) = arg miny¢\/ [[x — y||2 (Euclidean projection onto V).

@ So, we rediscovered the online subgradient descent with projection!
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Reinterpreting the Online Subgradient Descent

The Inspiration

@ Choosing a different norm or distance measure for the locality of x
leads to a different updating method.
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Reinterpreting the Online Subgradient Descent

The Inspiration

@ Choosing a different norm or distance measure for the locality of x
leads to a different updating method.

@ Change to which norm?

@ Any alternative to norms?

. 1
arg min(g;, x) + 5 lIx: — xH%
xcV Nt
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Reinterpreting the Online Subgradient Descent

The Inspiration

@ Choosing a different norm or distance measure for the locality of x
leads to a different updating method.

@ Change to which norm?

@ Any alternative to norms?

. 1
arg min(g;, x) + 5 lIx: — xH%
xcV Nt

1
= argmin(gs, x) + — By (x; x¢)
xeV n
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Reinterpreting the Online Subgradient Descent

The Inspiration

@ Choosing a different norm or distance measure for the locality of x
leads to a different updating method.

@ Change to which norm?

@ Any alternative to norms?

. 1
arg min(g;, x) + 5 lIx: — xH%
xcV Nt

1
= argmin(gs, x) + — By (x; x¢)
xeV n

Note: When 1(x) = 1||x||2, the two updates are exactly the same.
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An Alternative Distance Measure: Bregman Divergence
Outline

© An Alternative Distance Measure: Bregman Divergence
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Strictly Convexity

Strictly Convex Functions

A function f : V C RY — R, where V is a convex set, is strictly convex if
flax+ (1 — a)y) < af(x) + (1 — a)f(y),

Vx,y € V,x £y, a € (0,1).

@ Strong convexity w.r.t. any norm implies strict convexity.
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Strictly Convexity

Strictly Convex Functions

A function f : V C RY — R, where V is a convex set, is strictly convex if
flax+ (1 — a)y) < af(x) + (1 — a)f(y),

Vx,y € V,x £y, a € (0,1).

@ Strong convexity w.r.t. any norm implies strict convexity.

o If f is differentiable, strict convexity implies that
fly) > f(x) + (VF(x),y —x)

for x #y.
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An Alternative Distance Measure: Bregman Divergence

Bregman Divergence

Bregman Divergence

Let ¥ : X — R be strictly convex and continuously differentiable on
int(X). The Bregman Divergence w.r.t. ¥ is By, : X x int(X) — R defined
as

By(xiy) = ¥(x) — ¥(y) — (Vio(y),x —y).

@ Always non-negative (*." ¢ is convex).
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An Alternative Distance Measure: Bregman Divergence

Bregman Divergence

Bregman Divergence

Let ¥ : X — R be strictly convex and continuously differentiable on
int(X). The Bregman Divergence w.r.t. ¥ is By, : X x int(X) — R defined
as

By(xiy) = ¥(x) — ¥(y) — (Vio(y),x —y).

@ Always non-negative (*." ¢ is convex).

o P(x) > (y) + (Vi(y),x —y),Vy € X,
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An Alternative Distance Measure: Bregman Divergence

Bregman Divergence

Bregman Divergence

Let ¥ : X — R be strictly convex and continuously differentiable on
int(X). The Bregman Divergence w.r.t. ¥ is By, : X x int(X) — R defined
as

By(xiy) = ¥(x) — ¥(y) — (Vio(y),x —y).

@ Always non-negative (*." ¢ is convex).

e Y(x) > (y) + (Vi(y),x —y),Vy € X, and equality holds only for
y=x
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Bregman Divergence

Bregman Divergence

Let ¥ : X — R be strictly convex and continuously differentiable on
int(X). The Bregman Divergence w.r.t. ¥ is By, : X x int(X) — R defined
as

By(xiy) = ¥(x) — ¥(y) — (Vio(y),x —y).

@ Always non-negative (*." ¢ is convex).

e Y(x) > (y) + (Vi(y),x —y),Vy € X, and equality holds only for
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An Alternative Distance Measure: Bregman Divergence

Bregman Divergence

Bregman Divergence

Let ¥ : X — R be strictly convex and continuously differentiable on
int(X). The Bregman Divergence w.r.t. ¥ is By, : X x int(X) — R defined
as

By(xiy) = ¥(x) — ¥(y) — (Vio(y),x —y).

@ Always non-negative (*." ¢ is convex).

e Y(x) > (y) + (Vi(y),x —y),Vy € X, and equality holds only for
y = x (°." strictly convexity of ).

@ It can be a distance measure, though it is NOT Symmetric.
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Examples (1/5)

o Consider a twice differentiable ¢ in a ball B around y and x € B.

@ By Taylor's theorem, there exists 0 < o < 1 such that

By(x;y) = 1(x) —(y) — Vi(y) " (x—y)
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Examples (1/5)

o Consider a twice differentiable ¢ in a ball B around y and x € B.

@ By Taylor's theorem, there exists 0 < o < 1 such that

Bu(xi) = 1(x) — ¥(y) ~ V() (x—y) = 5 (x—y) V20 (x - y).

forz=oax+ (1 —a)y.
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An Alternative Distance Measure: Bregman Divergence

Examples (1/5)

o Consider a twice differentiable ¢ in a ball B around y and x € B.

@ By Taylor's theorem, there exists 0 < o < 1 such that

Bu(xiy) = ()~ ly) ~ Vi) T (x—y) = 5 (x—y) V() (xy),

forz=oax+ (1 —a)y.

* A squared local norm depending on the Hessian of ).
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Examples (2/5)

e If ¢ is A-strongly convex w.r.t. a norm || - || in int(X),

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 17 /50



Online Learning

Examples (2/5)

e If ¢ is A-strongly convex w.r.t. a norm || - || in int(X), we have
By(xiy) = 3lx —y[|*
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Examples (3/5)

o If ¢(x) = 3||x||3, then

1 1
Bulxiy) = 5IxI3 — 5 Iyli3 -
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Examples (3/5)

o If ¢(x) = 3||x||3, then

1 1
By(x;y) = 5lxI3 = Slylz = (y.x —y)
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Examples (3/5)

o If ¢(x) = 3||x||3, then

1 1 1
Bulxiy) = 5lxI3 — 5 I¥3 = &v.x —y) = 5 x — yI}3
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Examples (4/5): Exercise

Please show that:

o If h(x) = % xiInx;, and X = {x | x; > 0, ||x||; = 1}, then

d
By(x;y) = Zx,- In .
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Examples (4/5): Exercise

Please show that:

o If h(x) = % xiInx;, and X = {x | x; > 0, ||x||; = 1}, then
Zx, In—

* This is the Kullback-Leibler divergence (KL-divergence) between two
distributions x and y.
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Examples (5/5): Exercise

Please prove the following lemma.

Lemma [Chen & Teboulle 1993]

Let By, be the Bregman divergence w.r.t. ¢ : X — R. Then, for any three
points x,y € int(X) and z € X, we have

By(z:x) + By(x;y) — By(z:y) = (Vib(y) — Vi(x), 2 — x).
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Outline

@ Online Mirror Descent - The First Attempt
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Algorithm OMD

Input: Non-empty closed convex V C X C RY,
¥+ X — R strictly convex and continuously differentiable on int(X),
x1 € V s.t. v is differentiable in xq,
n,...,n7 > 0.
1. fort < 1to T do
2 Output x;
3. Receive f; : RY s (—00, +00] and suffer f;(x;)
4:  Set g¢ € Of(x¢)
B:  Xe1 < argminyey (8¢, X) + %
6: end for
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Online Mirror Descent - The First Attempt

Fix Some Minor Issues

Add one of the following boundary conditions.

o limy_o(VY(x + Ay — x)),y — x) = —o0, for any x € boundary(X),
y € int(X).

e V Cint(X).
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When arg min exists, x;1 € int(X)

Let
@ By be the Bregman divergence w.r.t. ¢ : X — R.
@ V C X be a non-empty closed and convex set.

Assume that previous two boundary conditions holds and the arg min of
the algorithm exists on all rounds, then we have x;11 € int(X).
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Online Mirror Descent - The First Attempt

Existence of the arg min's

Let
e A>0
o f:R — (—00,+00] a closed and A-strongly convex w.r.t. || - ||.

Assume that dom(9f) # (). Then, f has exactly one minimizer.
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Online Mirror Descent - The First Attempt

Main Lemma

Lemma (Regret Inequality for OMD)

@ . A-strongly convex w.r.t. |- || in V.

By: the Bregman divergence w.r.t. 1 : X — R.

V C X: non-empty, closed & convex.

Set g: € Ofe(x¢).

Assume one of the two boundary conditions holds.

Then for each u € V and Algorithm OMD, we have

2
e(lxe) = Fe(w) < (e xe — ) < By(uixe) — By(uixen) + 5 el
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Proof of the Main Lemma (1/3)

Input: Non-empty closed convex V C X C RY,
1+ X — R strictly convex and continuously differentiable on int(X),
x1 € V s.t. 9 is differentiable in x1,
771,‘-',77T>0~
1: fort+ 1to T do
2 Output x;
3 Receive £ : RY — (=00, +00] and suffer fi(x¢)
4:  Set g € Ofi(x:)
5 Xee1 < argminggy (g, x) + - Bu(x;x)
6: end for
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Proof of the Main Lemma (1/3)

Input: Non-empty closed convex V C X C RY,
1+ X — R strictly convex and continuously differentiable on int(X),
x1 € V s.t. 9 is differentiable in xq,
771,‘-',77T>0~
1: fort+ 1to T do
2 Output x;
3 Receive £ : RY — (=00, +00] and suffer fi(x¢)
4:  Set g € Ofi(x:)
5 Xee1 < argminggy (g, x) + - Bu(x;x)
6: end for

o (e, x) + By x0)
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Proof of the Main Lemma (1/3)

Input: Non-empty closed convex V C X C RY,
1+ X — R strictly convex and continuously differentiable on int(X),
x1 € V s.t. 9 is differentiable in xq,
771,‘-',77T>0~
1: fort+ 1to T do
2 Output x;
3 Receive £ : RY — (=00, +00] and suffer fi(x¢)
4:  Set g € Ofi(x:)
5 Xee1 < argminggy (g, x) + - Bu(x;x)
6: end for

O (el ) + Bylxixe)) = mege + Vi) — Vis(xe)
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Proof of the Main Lemma (1/3)

Input: Non-empty closed convex V C X C RY,
1+ X — R strictly convex and continuously differentiable on int(X),
x1 € V s.t. 9 is differentiable in xq,
771,...,77T>0.
1: fort+ 1to T do
2 Output x;
3 Receive £ : RY — (=00, +00] and suffer fi(x¢)
4:  Set g € Ofi(x:)
5 Xee1 < argminggy (g, x) + - Bu(x;x)
6: end for

O (el ) + Bylxixe)) = mege + Vi) — Vis(xe)

The optimality condition guarantees that
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Proof of the Main Lemma (1/3)

Input: Non-empty closed convex V C X C RY,
1+ X — R strictly convex and continuously differentiable on int(X),
x1 € V s.t. 9 is differentiable in xq,
771,...,77T>0.
1: fort+ 1to T do
2 Output x;
3 Receive £ : RY — (=00, +00] and suffer fi(x¢)
4:  Set g € Ofi(x:)
5 Xee1 < argminggy (g, x) + - Bu(x;x)
6: end for

0
Ix (ne(gt, %) + By(xixt)) = me@e + Vib(x) — Vih(x¢)
The optimality condition guarantees that

<77tgt + V1/’(Xt+1) - V¢(xt), u-— Xt+1> >0,Vue V.
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Proof of the Main Lemma (2/3)

(e, xe —u) = —(mege + Vh(xer1) — Vi(xe),u — Xes1)
H(V(xey1) — V(Xe), 0 — Xep1) + (0:8e, Xe — Xeq1)
< (V(xe1) — V(Xe), u — Xeq1) + (1e8e, Xe — Xet1)
By (u; x:) — By (u; Xeq1) — By (Xes1; Xe) + (168, Xe — Xes1)

IN

A
By (u;x¢) — By (u; xe+1) — EHXt = xeq1]|? + mellgell« Ixe — xeqa|

IA

2
B (i xe) = Bu(uixenn) + 25 el
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Proof of the Main Lemma (2/3)

(e, xe —u) = —(1:8e + Vb (xer1) — Vb(xe),u — xep1)
H(Vh(xe41) — Vp(Xe), u — Xeq1) + (MeGe, Xe — Xet1)
< (V(xe1) — V(Xe), u — Xeq1) + (1e8e, Xe — Xet1)
By (u; x:) — By (u; Xeq1) — By (Xes1; Xe) + (168, Xe — Xes1)

IN

A
By (u;x¢) — By (u; xe+1) — EHXt = xeq1]|? + mellgell« Ixe — xeqa|

IA

2
B (i xe) = Bu(uixenn) + 25 el
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Proof of the Main Lemma (2/3)

(e, xe —u) = —(1:8e + Vb (xer1) — Vb(xe),u — xep1)
H(V(xey1) — V(Xe), 0 — Xep1) + (0:8e, Xe — Xeq1)
< (V(xe1) — V(Xe), u — Xeq1) + (1e8e, Xe — Xet1)
By (u; x:) — By (u; Xeq1) — B (015 %2 ) + (18, Xe — Xe1)

A
By (uixe) = By(uixern) = 5 e —xe 4 mellge e lIxe — xesa|

IN

IA

2
B (i xe) — Bu(wixen) + 5y el
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Online Mirror Descent - The First Attempt
Hint

a b2<a2 forxe Rand a,b >0
X — —X — X )
27 —2b’ ’
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Online Mirror Descent - The First Attempt

Main Theorem

Main Theorem |
@ Set x; € V such that v is differentiable in x7.

@ Assume that Ny <mefort=1,...,T.

Then, under the assumption in the Main Lemma and Yu € V, we have

T

S (hlxe) — ilw) < max 24X 2/\Zmllgrllz-

1<t<T
—1 nr
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Online Mirror Descent - The First Attempt

Proof of Main Theorem |

T T
> (flxe) — fiu)) < Z( By (u;xc) — —Bw(u Xt+1)> +Z gl
t=1 t=1

_—
1 1

= —By(u;x1) — —By(u; x E — — ) By(u;x E,

m (U5 x1) nr (U XT41) (nt+1 ) (U5 Xe41) + ||gtH

t=1

1 T-1 1 T
< =D*+D%) ( ——)+§
Tom 7 \Me+1 T ”gtH
1 11 LI
= —D2+D2(———>+§ o el
p o m > 5y el
D2 LA Nt 2
= o T2y led

where D? := maxi<¢<7 By (u; x¢).
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What we can learn from OMD?

@ OMD allows us to prove regret guarantees depending on arbitrary
norms || - || and || - [|«.

@ The primal norm: measure in the feasible space.

@ The dual norm: measuring the gradients.
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Using a Fixed Learning Rate n;, =1

@ Assume that f; is L-Lipschitz continuous = ||g:||? = ||g:||3 < L°.

e D2 T Nt 2 D2 TT]L2
@ To minimize o +> =1 ﬂ”gtH* =2+ 25
. n 2 2
o Take the derivative w.r.t.  and get root: = % =1L n= va//\?D

. DLV2T
o Then the regret is Uk
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Using Adaptive Learning Rate

DVx
o Setn, — —DVA__
Sy

@ We can show that

in,g . Z ||gt||%
p o\ tl2 — 2\/*

Yo lleill3
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Online Mirror Descent - The First Attempt

Using Adaptive Learning Rate

DV
i lleill3

@ We can show that

u g2 12
> gy el = MZ 2 Zugfrz

, 1 ”&Hz

@ Set Ne =
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Online Mirror Descent - The First Attempt

Using Adaptive Learning Rate

DV
i lleill3

@ We can show that

T 2 T
Nt ||gt||2 2 DLV'T
*’gtH llgell5 <
Z:J 22 = MZ S e S ; T A

@ Set Ne =
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Online Mirror Descent - The First Attempt

Using Adaptive Learning Rate

DVx
o Setn, — —DVA__
Sy

@ We can show that

.
e ||gt||2 2 DL

})—rgu }j < §jug < bvT
L2\ P2 M > el M =05

DLVT
VA

@ The regret turns out to be < 7%2 + , which is bounded by
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Online Mirror Descent - The First Attempt

Using Adaptive Learning Rate

DV
i lleill3

@ We can show that

T T
e g2 D , _ DLVT
= ||| < lgells <
gk” MZ Sl S 2 ;” VA

@ Set Ne =

@ The regret turns out to be < 7%2 + DLﬁ, which is bounded by

VA
22/ leel3

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 34 /50



Online Learning
Online Mirror Descent - The First Attempt

Using Adaptive Learning Rate

DVx
o Setn, — —DVA__
Sy

@ We can show that

.
e ||gt||2 2 DL

})—rgu }j < §jug < bvT
L2\ P2 M > el M =05

DLVT
VA

@ The regret turns out to be < 7%2 + , which is bounded by

2\ 5L el < 22T
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Online Mirror Descent - The First Attempt

Remark on Main Theorem |

@ The regret bound depends on arbitrary couple of dual norms || - || and

- Il

o Usually, the primal norm is used to measure the feasible set V' or the
distance between the competitor and the initial point.

e The dual norm will be used to measure the gradients.
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Outline

© The Mirror Interpretation
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Duality Strong Convexity /Smoothness

Let
@ f:RY— (—o0,+00] be a closed and convex function

@ dom(9f) £ 0

Then for A > 0, f is A-strongly convex w.r.t. || - || iff £* is +-smooth w.r.t. |- |
on RY.

e f* is differentiable.
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Duality Strong Convexity /Smoothness

Let
@ f:RY— (—o0,+00] be a closed and convex function

@ dom(9f) £ 0

Then for A > 0, f is A-strongly convex w.r.t. || - || iff £* is +-smooth w.r.t. |- |
on RY.

e f* is differentiable.

e f is proper, closed and strongly convex = the maximizer x* of
maxx (0, x) — f(x) exists and is unique (p. 24).
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Duality Strong Convexity /Smoothness

Let
@ f:RY— (—o0,+00] be a closed and convex function

@ dom(9f) £ 0

Then for A > 0, f is A-strongly convex w.r.t. || - || iff £* is +-smooth w.r.t. |- |
on RY.

e f* is differentiable.

e f is proper, closed and strongly convex = the maximizer x* of
maxx (0, x) — f(x) exists and is unique (p. 24).
o Hence, x* € 0f*(0).
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Duality Strong Convexity /Smoothness

Let
@ f:RY— (—o0,+00] be a closed and convex function
@ dom(9f) £ 0

Then for A > 0, f is A-strongly convex w.r.t. || - || iff £* is +-smooth w.r.t. |- |
on RY.

e f* is differentiable.
e f is proper, closed and strongly convex = the maximizer x* of
maxx (0, x) — f(x) exists and is unique (p. 24).
o Hence, x* € 0f*(0).
o Assume another x’ € 9f*(0) = f*(6) = (0,x’) — f(x').
e By the uniqueness of the maximizer, we have x* = x’.
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The Mirror Interpretation

(= contd.)
e For any 01,0, let x; = V*(01),x2 = V*(67).
o Then we have 0; € 9f(x1), 02 € Of(xz).

@ By the strong convexity, we have
A 2
f(XQ) > f(xl) + <01,X2 — X1> + §HX1 — X2H
A
f(x1) = f(x2)+(62,x1 —x2) + §Hxl — xo?

= (62 — 61,x1 — x2) > A|[x1 — %22
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The Mirror Interpretation

(= contd.)
e For any 01,0, let x; = V*(01),x2 = V*(67).
o Then we have 0; € 9f(x1), 02 € Of(xz).

@ By the strong convexity, we have
A 2
f(XQ) > f(xl) + <01,X2 — X1> + §HX1 — X2H
A
f(x1) = f(x2)+(62,x1 —x2) + §HX1 — xo?

= 61 — 02« |Ix1 — x2|| > (62 — 01, x1 — x2) > Al|x1 — 2|2
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The Mirror Interpretation

(<)

e Assume that f* is $-smooth w.r.t. || - [|. on R
o Lety € dom(9f) and u € Of(y).

@ Since f* is differentiable, we have y = V*(u).
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The Mirror Interpretation

(<)
Assume that f* is %—smooth w.rt. || -]« on RY.
o Lety € dom(9f) and u € Of(y).
@ Since f* is differentiable, we have y = V*(u).
o Define ¢(0) := *(60 + u) — *(u) — (6, V*(u)).

Recall that if f: V — R is M-smooth, then for any x,y € V we have

[F(y) — FG) — (VF(x),y = x)| < Sy — .
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The Mirror Interpretation

(<)

@ Assume that f* is %—smooth w.rt. || -]« on RY.
o Lety € dom(9f) and u € Of(y).

@ Since f* is differentiable, we have y = V*(u).

o Define ¢(0) := *(60 + u) — *(u) — (6, V*(u)).

Recall that if f: V — R is M-smooth, then for any x,y € V we have
M
IF(y) = f(x) = (VF(x),y =x)| < glly—XIIZ- J

e Hence, ¢(6) < 562 := 3(0).
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The Mirror Interpretation

(<)

@ Assume that f* is %—smooth w.rt. || -]« on RY.
o Lety € dom(9f) and u € Of(y).

@ Since f* is differentiable, we have y = V*(u).

o Define ¢(0) := *(60 + u) — *(u) — (6, V*(u)).

Recall that if f: V — R is M-smooth, then for any x,y € V we have
M
IF(y) = f(x) = (VF(x),y =x)| < glly—XIIZ- J

o Hence, ¢(8) < (10|12 := ¢(6).

A

?°(x) = ¢°(x) = sup(6, ><>—fH<9H2
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The Mirror Interpretation
(<)

@ Assume that f* is %—smooth w.rt. || -]« on RY.
o Lety € dom(9f) and u € Of(y).

@ Since f* is differentiable, we have y = V*(u).

o Define ¢(0) := *(60 + u) — *(u) — (6, V*(u)).

Recall that if f: V — R is M-smooth, then for any x,y € V we have J

[F(y) — FG) — (VF(x),y = x)| < Sy — .

o Hence, ¢(8) < (10|12 := ¢(6).

| % Tk 1 2 1 2
50 = B = suplo.x) — 51612 < sup 6] [x] — 55 0]

1
sup | —=—([1011Z — 2X[Ix|[[|0]]+ + (AIx]1)?)
o\ 2x

A
= Ik
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The Mirror Interpretation

(«<=) Recall that ¢(0) := *(0 + u) — *(u) — (0, VF*(u)).
e Calculate ¢*(x): (Let v=0 + u)
¢*(x) = sn;p((H,x) — (0 +u) + f*(u) + (6, VF*(u)))
= *(u) = (u,x+ VF*(u)) + s?’p ((v,x + VF*(u)) — f*(v))

= f*(u) = (u,x+ V*(u)) + f(x + VF*(u))

= — (u,x) — + f(x+ VF*(u))
= —(u,x) — f(VF*(u)) + f(x + V*(u))

= flx+y)—f(y)—(ux)

o Using ¢*(x) > 3||x||? then we are done.
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First-order optimality

For a function f : RY = (—o0, +00], we have

x* € argmin f(x) if and only if 0 € Of (x*).
xR

x* €argminf(x) < VyeRY f(y) > f(x*)+(0,y — x*)
x€R9

& 0 € of(x").
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The OMD update in terms of duality mappings

Theorem (OMD & Duality Mappings)

o Let By be the Bregman divergence w.r.t. 1 : X = R, where 9 is
closed and A-strongly convex for A > 0.

o Define x¢41 := arg min,c\ (8¢, x) + %Bw(x; X¢), and assume that 1 is
differentiable in x; and x;1.

Then, for any g: € R?, we have

Xt+1 = Vlz)’\‘/(vlb(xt) — 0:8t),

where 1y := 1 + iy which restricts ¥ to V.
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The Mirror Interpretation

The OMD update in terms of duality mappings

%A A,
. V?J (x¢) — mge
Vgt _____________
. 1
Xer1 = argmin(g:, x) + —By(x; x¢)
xeV Nt

= Xep1 = VL (VY(xe) — 0ege).
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The Mirror Interpretation

Proof of the main theorem (1/2)

) 1
Xer1 = argmin(gs, X) + — By (X; x¢)
xeV Nt

= arger\n/in 1e(8e, X) + By(x; xt)
= argmin 1e(8e, X) +1h(x) = 1h(xe) = (Vih(xe), x — x¢)

= argefp/in(ntgt = Vii(xe), x) + ¥(x).

By the first-order optimality condition, we have
0 € nge + Vi(xer1) — V(xe) + Div(xXe41)
V(xe) —nige € (VY + 0iv)(xe41) € 0Yv(Xes1)
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The Mirror Interpretation

Proof of the main theorem (1/2)

. 1
Xer1 = argmin(gs, X) + — By (X; x¢)
xeV Uis
= arg r\n/in Nt (e, X) + By (X; X¢)
Xe
= arg r\n/in Nt(8e, X) + V(x) — h(xe) — (V(Xt), X — X¢)
XE

= argefp/in(ntgt = Vii(xe), x) + ¥(x).

By the first-order optimality condition, we have
0 € nge + Vi(xer1) — V(xe) + Div(xXe41)
V(xe) —nige € (VY + 0iv)(xe41) € 0Yv(Xes1)

Hence, x¢11 € 0Y, (Vh(xt) — 1:8¢)-
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Proof of the main theorem (2/2)

o Note that 9y := ¥ + iy is proper, A-strongly convex and closed.

o 0Py ={Viy}.

o Therefore, since x¢11 € 9, (V(x¢) — 1:8t), we have
Xt+1 = V%(Vw(m) - 77tgt)-
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Example (1/2)

o ¢ :RY =R, p(x) = 3[x|3
o V={xeR9: x| <1}
o Yy =v+iy.
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Example (1/2)

o ¢ :RY =R, p(x) = 3[x|3
o V={xeR9: x| <1}
o Yy =v+iy.

® }/(6) = supycv (0. %) — 3IxII3.
e Assume 0 # 0 (otherwise, trivially ¢/{,(0) = 0).
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Example (1/2)

o ¢ :RY =R, p(x) = 3[x|3
o V={xeR9: x| <1}
o Yy =v+iy.

® }/(6) = supycv (0. %) — 3IxII3.
e Assume 0 # 0 (otherwise, trivially ¢/{,(0) = 0).

@ For any x € V, there exists q and « such that x = aHg“2 +q and
(q,0) =0.
o Vii(x) =x.
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Example (2/2)

1 a® 1
sup(0, )~ S[x[3 = swp ol %~ Sl
xeV aqa‘BHQquGV(q 6)=0

2

«

= s afl- %
“1<a<1

1 1
= sup 5~ [61) + 516153
~1<a<l

@ Solving the constrained optimization problem, we have o = min(1, ||0]2).

@ Hence, if 0], <1

* _ 2”0”27 —
vi(6) {wnz—, 62> 1 °
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Example (2/2)

1 a® 1
sup(0, )~ S[x[3 = swp ol %~ Sl
xeV aqa‘BHQquGV(q 6)=0

2

«

= s afl- %
“1<a<1

1 1
= sup 5~ [61) + 516153
~1<a<l

@ Solving the constrained optimization problem, we have o = min(1, ||0]2).

o Hence, 1/]* (0) o %||0||27 if H0||2 < 1
VL 16l -5, if 0] >1
v = { o el >1 =M@
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Remark

OMD extends the OSD to non-Euclidean norms.

@ The dual norm is used to measure a gradient.

Gradients live in the dual space, different from the predictions x;.

In the OSD, the dual space coincides with the primal space.

The ways we go from one space to the other: Vi and Vy,.
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Discussions
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e
Test

We have the following formula:

Jo(zs) = —log(0(z,2)) = Q - Ey,mpy(v) log(0(~2,24,))
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