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© A Short and Quick Review
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Algorithm OMD

Input: Non-empty closed convex V C X C RY,
1 : X — R strictly convex and continuously differentiable on int(X),
x1 € V s.t. ¢ is differentiable in xi,
7]1,...,77T>0.
1: fort < 1to T do
2 Output x;
3 Receive f; : R? — (—o0, +-00] and suffer f;(x;)
4: Set g; € Of(x:)
5 1
6:

Xe1 < argmin,cy (8, X) + e

end for

Assume one of the following boundary conditions.
@ limy_,ox ||V’L/)(X)||2 = +o00.
e V Cint(X).

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 5/27



Online Learning

A Short and Quick Review

Main Lemma

Lemma (Regret Inequality for OMD)
@ . A-strongly convex w.r.t. |- || in V.
@ By: the Bregman divergence w.r.t. ¢ : X — R.
e V C X: non-empty, closed & convex.
o Set g: € Ofe(x¢).

@ Assume one of the two boundary conditions holds.

Then for each u € V and Algorithm OMD, we have

2
e(lxe) = Fe(w) < (e xe — ) < By(uixe) — By(uixen) + 5 el
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A Short and Quick Review

Main Theorem

Main Theorem |
@ Set x; € V such that v is differentiable in x7.
@ Assume that ny13 < myfort=1,...,T.

Then, under the assumption in the Main Lemma and Yu € V, we have

T

S (hlxe) — ilw) < max 24X 2/\Zmllgrllz

1<t<T
—1 nr
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A Short and Quick Review

Remark on Main Theorem |

@ The regret bound depends on arbitrary couple of dual norms || - || and

- Il

o Usually, the primal norm is used to measure the feasible set V' or the
distance between the competitor and the initial point.

e The dual norm will be used to measure the gradients.
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© The Mirror Interpretation
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Why “Mirror”?

@ Recall that x € 9f*(0) if and only if @ € 9f(x), for any closed and
convex function f : RY i (—o0, +o<].
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Why “Mirror”?

@ Recall that x € 9f*(0) if and only if @ € 9f(x), for any closed and
convex function f : RY i (—o0, +o<].
o Thatis, (0f)~! = of*.

@ We will see that the Fenchel conjugate of a stronly convex function is
smooth and differentiable.
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The Mirror Interpretation

Theorem (Duality Strong Convexity/Smoothness)

Let ¢ : RY — (—o00, +-00] be a closed function. Then 4 is \-strongly

convex w.r.t. to || - || if and only if
© v is differentiable;
Q@ v~ is -smooth w.r.t. | - .
=):

@ Since 1 is strongly convex, the maximizer x* of maxx (6, x) — ¥ (x)
exists and is unique!
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The Mirror Interpretation

Theorem (Duality Strong Convexity/Smoothness)

Let ¢ : RY — (—o00, +-00] be a closed function. Then 4 is \-strongly

convex w.r.t. to || - || if and only if
© v is differentiable;
Q@ v~ is -smooth w.r.t. | - .
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The Mirror Interpretation

Theorem (Duality Strong Convexity/Smoothness)

Let ¢ : RY — (—o00, +-00] be a closed function. Then 4 is \-strongly

convex w.r.t. to || - || if and only if
© v is differentiable;
Q@ v~ is -smooth w.r.t. | - .
=):

@ Since 1 is strongly convex, the maximizer x* of maxx (6, x) — ¥ (x)
exists and is unique!

e x* € 9v*(0).
@ Suppose that Ix’ € 91*(0) and x’ # x
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The Mirror Interpretation

Theorem (Duality Strong Convexity/Smoothness)

Let ¢ : RY — (—o00, +-00] be a closed function. Then 4 is \-strongly

convex w.r.t. to || - || if and only if
© v is differentiable;
Q@ v~ is -smooth w.r.t. | - .
=):

@ Since 1 is strongly convex, the maximizer x* of maxx (6, x) — ¥ (x)
exists and is unique!

o x* € 9Y*(6).
@ Suppose that Ix' € 9¢*(0) and X' # x = ¥*(0) = (0,x) — (X))

Uniqueness implies that x’ = x.
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The Mirror Interpretation

Smoothness of ¥*:
e For any 601,05, let x; = Vi*(61),x2 = VY*(03).
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The Mirror Interpretation

Smoothness of ¥*:
e For any 601,05, let x; = Vi*(61),x2 = VY*(03).

@ By the strong convexity of 1), we have
Y0) = ) + (B30 —xa) + 5 b — ol
V() 2 v(x) + (02,31 — xa) + Hllxt — x>
Summing them we derive

161 — 62[|.[1x1 — x| > (B2 — B1, %1 — x2) > Allx1 — x|
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The Mirror Interpretation

(=):
Smoothness of ¥*:

e For any 601,05, let x; = Vi*(61),x2 = VY*(03).
@ By the strong convexity of 1), we have

De) 2 0xa) + (01,5 = x1) + 5 x1 —l
V() 2 wlxa) + (8251 —x2) + 1 — ol

Summing them we derive

161 — 62[|.[1x1 — x| > (B2 — B1, %1 — x2) > Allx1 — x|
So
101 — 02|« = Allx1 — x2f| = AV (61) — V™ (62)].
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The Mirror Interpretation

(<=):

Assume that 1* is differentiable and (1/\)-smooth.
o Lety € dom(v)) and u € 9y (y).

@ By previous Lemma and the differentiability of ¥*, we have
y = V¢ (u).
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The Mirror Interpretation

(<=):

Assume that 1* is differentiable and (1/\)-smooth.
o Lety € dom(v)) and u € 9y (y).
@ By previous Lemma and the differentiability of ¥*, we have
y = V¢ (u).
o Define: ¢(0) := ¢*(0 + u) — ¢»*(u) — (V¢)*(u), 0).
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The Mirror Interpretation

Assume that 1* is differentiable and (1/\)-smooth.
o Lety € dom(v)) and u € 9y (y).
@ By previous Lemma and the differentiability of ¥*, we have
y = Vi (u).
o Define: ¢(0) := ¢*(0 + u) — ¢»*(u) — (V¢)*(u), 0).
e By Lemma 4.21 [in Prof. Orabona’s Monograph] & the
1/A-smoothness of ¥*, we have ¢(0) < %HBHE (Left as an exercise).
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The Mirror Interpretation

(<=):

Assume that 1* is differentiable and (1/\)-smooth.
o Lety € dom(v)) and u € 9y (y).
@ By previous Lemma and the differentiability of ¥*, we have
y = Vi (u).
o Define: ¢(0) := ¢*(0 + u) — ¢»*(u) — (V¢)*(u), 0).
e By Lemma 4.21 [in Prof. Orabona’s Monograph] & the
1/A-smoothness of ¥*, we have ¢(0) < %HOHE (Left as an exercise).

@ Then we can obtain ¢*(x) > %||x||2 (Left as an exercise).
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Calculate ¢*(x).

¢ (x) = SUP(9 x) — (60 +

u) + ¢ (u) + (6, Vi'(u))
= ¥7(u) = {ux+ VY (u)) + suplv, x + Vii(u)) = v7(v)
= P(u) = (u,x+ Vy© (U)>+¢**(X+V¢ (u))
(
)

P (u) = (U, x4+ Vo' (u)) + 9(x + Vi*(u))
—(u,x) = (Ve (u)
= —(u,x) —¥(y) + ¥

P(x+ Vo' (u))

+
+y).

e Note that (u, V¢y*(u)) = ¢*(u) + ¢(Vy*(u)); let v := 6 + u.
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Calculate ¢*(x).

¢ (x) = SUP(9 x) — (60 +

+ ¢ (u) + (0, V¢ (u))
= ¥7(u) = {ux+ VY (u)) + suplv, x + Viri(u)) = v7(v)

u)

(

= P(u) = (u,x+ Vy© (U)>+¢**( + Vi (u))
= ¢"(u) = (u,x+ V¢ (u)) + ¢(x + V™ (u))
= —(u,x) = (Ve (u) + P(x + V()
= —(u,x) —¥(y) + (x +y).
o Note that (u, Vi)*(u)) = ¢*(u) + (Vyp*(u)); let v := 0 + u.
o Thus, Y(x +y) — ¥(y) — (u,x) = ¢*(x) > 3(|x||*.
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The First-Order Optimality Condition

Theorem (FO Optimality Condition)

Given f : RY = (—00, +00]. Then x* € arg min,cga f(x) if and only if
0 € Of (x*).
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The Mirror Interpretation

The First-Order Optimality Condition

Theorem (FO Optimality Condition)

Given f : RY = (—00, +00]. Then x* € arg min,cga f(x) if and only if
0 € Of (x*).

x* € argmin f(x) <
x€R?
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The Mirror Interpretation

The First-Order Optimality Condition

Theorem (FO Optimality Condition)

Given f : RY = (—00, +00]. Then x* € arg min,cga f(x) if and only if
0 € Of (x*).

x* € argmin f(x) & Yy € R?, f(y) > f(x*)
x€R?
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The Mirror Interpretation

The First-Order Optimality Condition

Theorem (FO Optimality Condition)

Given f : RY = (—00, +00]. Then x* € arg min,cga f(x) if and only if
0 € Of (x*).

x* € argmin f(x) & Vy € Rd, f(y) > f(x*) = f(x*)+ (0,y — x*)
xERd
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The Mirror Interpretation

The First-Order Optimality Condition

Theorem (FO Optimality Condition)

Given f : RY = (—00, +00]. Then x* € arg min,cga f(x) if and only if
0 € Of (x*).

x* € argmin f(x) & Yy € RY, f(y) > f(x*) = f(x*) + (0,y — x*) & 0 € Of(x*).
x€R?
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The Mirror Interpretation

The Mirror & Bregman Divergence

Theorem (Mirror & Bregman Divergence)

Let By, be the Bregman divergence w.r.t. a A-strongly convex and closed
¥ : X — R, where A > 0. Let V C X be a non-empty closed convex set
and x; € V. Define

: 1
X¢+1 = arg min(ge, X) + — By (X; X¢).
xeV Nt

Assume 1) to be differentiable in x; and x;11. Then, for any g; € RY, we

have .
xe11 = Vu (Vé(xe) — n:ge),
where ¢y := 1 + iy is the restriction of ¢ to V/, and

= 0 ifxeV
WVXI =1 1 otherwise
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lllustration (refer to Prof. Orabona’s Monograph, Ch.6)

i

Vip(xy) — g,
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The Proof (1/2)

. 1
Xep1 = argmin(ge, x) + — By (x; x¢)
xeV Ui

= argminn:(ge, x) + By (x; x¢)
xeV

= argerp/in ne(ge, x) + 1(x) = P(y) — (Vib(xt), x — x¢)
= argmin(n:g: — Vip(x¢), X) + 1¥(x).

xeV
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The Proof (1/2)

. 1
Xep1 = argmin(ge, x) + — By (x; x¢)
xeV Ui

= arg rp/in ne(8e, X) + By (x; x¢)
S
= argerp/in Ne(8t, X) +Y(x) — Y(y) — (Vib(xe), x — x¢)

= argmin(n:ge — Vi)(xe), %) + 1h(x).

xeV

Use the first-order optimality condition:

0 € nege + V(xer1) — Vo(xt) + Oiv(Xe11).
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The Proof (1/2)

. 1
Xep1 = argmin(ge, x) + — By (x; x¢)
xeV Ui

= arg rp/in ne(8e, X) + By (x; x¢)
S
= argerp/in Ne(8t, X) +Y(x) — Y(y) — (Vib(xe), x — x¢)

= argmin(n:ge — Vi)(xe), %) + 1h(x).

xeV

Use the first-order optimality condition:

0 € nege + V(xer1) — Vo(xt) + Oiv(Xe11).

Vi(xt) — 18t € Vh(xey1) + Oiv(xe11) C Oy (Xer1)-

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 18 /27



Online Learning

The Proof (2/2)

Vip(xt) — 1e8t € Oy (Xe+1)
implies
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The Proof (2/2)

Vp(xe) — 108t € 0y (Xe41)
implies
xe41 € Oy (VY (Xt) — 1e8t)-
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The Proof (2/2)

Vip(xt) — nege € Oy (Xe11)
implies
Xey1 € 0Py (VY (xt) — ne8t)-
Since 1y is A-strongly convex and closed, we have 0y}, = {V47,}.

Therefore,
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The Proof (2/2)

Vip(xt) — nege € Oy (Xe11)
implies
Xey1 € 0Py (VY (xt) — ne8t)-
Since 1y is A-strongly convex and closed, we have 0y}, = {V47,}.

Therefore,
xe+1 = VYU (VY(xt) — 7e8t)-
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The Mirror Interpretation

The Reasons...

@ OMD extends the OSD to non-Euclidean norms.
e Dual norms can be considered.

@ It makes sense to use a dual norm to measure a gradient.
e How “big" the linear functional x — (f(y), x) is.
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The Mirror Interpretation

The Reasons...

@ OMD extends the OSD to non-Euclidean norms.
e Dual norms can be considered.

@ It makes sense to use a dual norm to measure a gradient.
e How “big" the linear functional x — (f(y), x) is.

o Gradients actually live in the dual space, which is different from where
the predictions x; live
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The Mirror Interpretation

The Reasons...

@ OMD extends the OSD to non-Euclidean norms.
e Dual norms can be considered.

@ It makes sense to use a dual norm to measure a gradient.
e How “big" the linear functional x — (f(y), x) is.

o Gradients actually live in the dual space, which is different from where
the predictions x; live

@ So, why do we apply OSD??
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Example for ¢(x) being the L,-Norm (1/3)

o Let 1 : R? — R, 1(x) = 1|x3.
o V={xeR9: x| <1}.
o Let ¥y =1 + iy.
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Example for ¢(x) being the L,-Norm (1/3)

Let ¢ : RY = R, 9(x) = 3(x13.
V={xecR?: x|, <1}.

Let ¢y == ¢ + iy.

@ Then,
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Example for ¢(x) being the L,-Norm (1/3)

Let ¢ : RY = R, 9(x) = 3(x13.
V={xecR?: x|, <1}.

Let ¢y == ¢ + iy.

@ Then,

i} 1
0(0) = sup(0,x) — 5 IxI

xeV
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Example for ¢(x) being the L,-Norm (1/3)

Let ¢ : RY = R, 9(x) = 3(x13.
V={xecR?: x|, <1}.

Let ¢y == ¢ + iy.

@ Then,

. 1
0(0) = sup(6,%) — 3 I3
xeV

o First, note that ¢},(0) =0 if 6 = 0.
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Example for ¢(x) being the L,-Norm (2/3)
@ For any x € V, there exist g and a € R such that

° x:aﬁ—i—q.
° (q,0)=0.

@ So, we have

1
sup (0, %) o [x|3
xeV

2
o 1. 5
= s al6l— 5 olal
aﬁ+qev,<q,9):0
2
o
= sup |02 — >
—1<a<1
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Example for ¢(x) being the L,-Norm (3/3)

@ Solving the above optimization problem, we have

1 2

Lolg. 6l <1
* 9) = 2” 29 ,
@) { 1021, [l > 1

which is finite everywhere and differentiable.
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Example for ¢(x) being the L,-Norm (3/3)

@ Solving the above optimization problem, we have

1 2

Lolg. 6l <1
* 9) = 2“ 29 ,
@) { 1021, [l > 1

which is finite everywhere and differentiable.

@ Therefore, we have Vi(x) = x, and

\ 6, [0<1
V@ZJ\/(O) - { ) H0||2 >1 I_IV(H)'

161]2
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Example for ¢(x) being the L,-Norm (3/3)

@ Solving the above optimization problem, we have

1 2

Lolg. 6l <1
* 9) = 2” 29 ,
@) { 1021, [l > 1

which is finite everywhere and differentiable.

@ Therefore, we have Vi(x) = x, and

: 6, [6]:<1
Wv(‘”:{ o, Jolp>1 = MO
161]]2” 2

* This is exactly the update of projected online subgradient descent.
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Outline

© Another Way for the Update
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An Equivalent Two-Step Update (1/2)

Theorem (Two-Step Update)

o Let f:RY — (—00,+0o0] be closed, strictly convex and differentiable
in int dom(f).

o Let V C RY be a non-empty, closed and convex set, such that
vV n(f) #0.

o Assume that § = arg min g« f(z) exists and § € int dom(f).

o Denote by y’ = argmin,cy Bf(z; ¥).

Then the following hold:
@ y = argmin,c, f(z) exists and is unique.
Qy=y.
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Another Way for the Update

An Equivalent Two-Step Update (2/2)

Therefore, under the assumption of the theorem, we have that
. 1
X¢41 = argmin(gs, x) + — By (X; x¢)
xeV Ui
is equivalent to
X1 = argmin(nege, X) + By (X; x¢)
xeR

X¢+1 = argmin By (X; Xe41)
xeV
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Discussions
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