Online Learning

— Online Mirror Descent (Part II)

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Spring 2023

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal: https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/

the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

Outline

A Short and Quick Review

- The Mirror Interpretation
- 3 Another Way for the Update

Outline

- A Short and Quick Review
- 2 The Mirror Interpretation
- 3 Another Way for the Update

Algorithm OMD

```
Input: Non-empty closed convex V \subseteq X \subseteq \mathbb{R}^d, \psi: X \mapsto \mathbb{R} strictly convex and continuously differentiable on \operatorname{int}(X), \mathbf{x}_1 \in V s.t. \psi is differentiable in \mathbf{x}_1, \eta_1, \ldots, \eta_T > 0.

1: for t \leftarrow 1 to T do

2: Output \mathbf{x}_t

3: Receive f_t: \mathbb{R}^d \mapsto (-\infty, +\infty] and suffer f_t(\mathbf{x}_t)

4: Set \mathbf{g}_t \in \partial f_t(\mathbf{x}_t)

5: \mathbf{x}_{t+1} \leftarrow \arg\min_{\mathbf{x} \in V} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{\eta_t} B_{\psi}(\mathbf{x}; \mathbf{x}_t)

6: end for
```

Assume one of the following boundary conditions.

- $\lim_{\mathbf{x}\to\partial X} \|\nabla \psi(\mathbf{x})\|_2 = +\infty.$
- $V \subset \operatorname{int}(X)$.

Main Lemma

Lemma (Regret Inequality for OMD)

- ψ : λ -strongly convex w.r.t. $\|\cdot\|$ in V.
- B_{ψ} : the Bregman divergence w.r.t. $\psi: X \mapsto \mathbb{R}$.
- $V \subseteq X$: non-empty, closed & convex.
- Set $\mathbf{g}_t \in \partial f_t(\mathbf{x}_t)$.
- Assume one of the two boundary conditions holds.

Then for each $\mathbf{u} \in V$ and Algorithm OMD, we have

$$\eta_t(f_t(\mathbf{x}_t) - f_t(\mathbf{u})) \leq \eta_t(\mathbf{g}_t, \mathbf{x}_t - \mathbf{u}) \leq B_{\psi}(\mathbf{u}; \mathbf{x}_t) - B_{\psi}(\mathbf{u}; \mathbf{x}_{t+1}) + \frac{\eta_t^2}{2\lambda} \|\mathbf{g}_t\|_*^2.$$

Main Theorem

Main Theorem I

- Set $\mathbf{x}_1 \in V$ such that ψ is differentiable in \mathbf{x}_1 .
- Assume that $\eta_{t+1} \leq \eta_t$ for $t = 1, \ldots, T$.

Then, under the assumption in the Main Lemma and $\forall \mathbf{u} \in V$, we have

$$\sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{u})) \leq \max_{1 \leq t \leq T} \frac{B_{\psi}(\mathbf{u}; \mathbf{x}_t)}{\eta_T} + \frac{1}{2\lambda} \sum_{t=1}^{T} \eta_t \|\mathbf{g}_t\|_*^2.$$

Remark on Main Theorem I

- The regret bound depends on arbitrary couple of dual norms $\|\cdot\|$ and $\|\cdot\|_*$.
 - Usually, the primal norm is used to measure the feasible set V or the distance between the competitor and the initial point.
 - The dual norm will be used to measure the gradients.

Outline

- A Short and Quick Review
- The Mirror Interpretation
- 3 Another Way for the Update

Why "Mirror"?

• Recall that $\mathbf{x} \in \partial f^*(\boldsymbol{\theta})$ if and only if $\boldsymbol{\theta} \in \partial f(\mathbf{x})$, for any closed and convex function $f : \mathbb{R}^d \mapsto (-\infty, +\infty]$.

Why "Mirror"?

- Recall that $\mathbf{x} \in \partial f^*(\boldsymbol{\theta})$ if and only if $\boldsymbol{\theta} \in \partial f(\mathbf{x})$, for any closed and convex function $f : \mathbb{R}^d \mapsto (-\infty, +\infty]$.
 - That is, $(\partial f)^{-1} = \partial f^*$.
- We will see that the Fenchel conjugate of a stronly convex function is smooth and differentiable.

Let $\psi: \mathbb{R}^d \mapsto (-\infty, +\infty]$ be a closed function. Then ψ is λ -strongly convex w.r.t. to $\|\cdot\|$ if and only if

- $\mathbf{0} \ \psi^*$ is differentiable;
- 2 ψ^* is $\frac{1}{\lambda}$ -smooth w.r.t. $\|\cdot\|_*$.

(⇒):

• Since ψ is strongly convex, the maximizer \mathbf{x}^* of $\max_{\mathbf{x}} \langle \boldsymbol{\theta}, \mathbf{x} \rangle - \psi(\mathbf{x})$ exists and is unique!

Let $\psi: \mathbb{R}^d \mapsto (-\infty, +\infty]$ be a closed function. Then ψ is λ -strongly convex w.r.t. to $\|\cdot\|$ if and only if

- $\mathbf{0} \ \psi^*$ is differentiable;
- 2 ψ^* is $\frac{1}{\lambda}$ -smooth w.r.t. $\|\cdot\|_*$.

(⇒):

- Since ψ is strongly convex, the maximizer \mathbf{x}^* of $\max_{\mathbf{x}} \langle \boldsymbol{\theta}, \mathbf{x} \rangle \psi(\mathbf{x})$ exists and is unique!
- $\mathbf{x}^* \in \partial \psi^*(\boldsymbol{\theta})$.

Let $\psi : \mathbb{R}^d \mapsto (-\infty, +\infty]$ be a closed function. Then ψ is λ -strongly convex w.r.t. to $\|\cdot\|$ if and only if

- ψ^* is differentiable;
- 2 ψ^* is $\frac{1}{\lambda}$ -smooth w.r.t. $\|\cdot\|_*$.

(⇒):

- Since ψ is strongly convex, the maximizer \mathbf{x}^* of $\max_{\mathbf{x}} \langle \boldsymbol{\theta}, \mathbf{x} \rangle \psi(\mathbf{x})$ exists and is unique!
- $\mathbf{x}^* \in \partial \psi^*(\boldsymbol{\theta})$.
- Suppose that $\exists \mathbf{x}' \in \partial \psi^*(\boldsymbol{\theta})$ and $\mathbf{x}' \neq \mathbf{x}$

Let $\psi: \mathbb{R}^d \mapsto (-\infty, +\infty]$ be a closed function. Then ψ is λ -strongly convex w.r.t. to $\|\cdot\|$ if and only if

- $\mathbf{0} \ \psi^*$ is differentiable;
- 2 ψ^* is $\frac{1}{\lambda}$ -smooth w.r.t. $\|\cdot\|_*$.

(⇒):

- Since ψ is strongly convex, the maximizer \mathbf{x}^* of $\max_{\mathbf{x}} \langle \boldsymbol{\theta}, \mathbf{x} \rangle \psi(\mathbf{x})$ exists and is unique!
- $\mathbf{x}^* \in \partial \psi^*(\boldsymbol{\theta})$.
- Suppose that $\exists \mathbf{x}' \in \partial \psi^*(\boldsymbol{\theta})$ and $\mathbf{x}' \neq \mathbf{x} \Rightarrow \psi^*(\boldsymbol{\theta}) = \langle \boldsymbol{\theta}, \mathbf{x}' \rangle \psi(\mathbf{x}')$ Uniqueness implies that $\mathbf{x}' = \mathbf{x}$.

$$(\Rightarrow)$$
:

Smoothness of ψ^* :

• For any θ_1, θ_2 , let $\mathbf{x}_1 = \nabla \psi^*(\theta_1), \mathbf{x}_2 = \nabla \psi^*(\theta_2)$.

$$(\Rightarrow)$$
:

Smoothness of ψ^* :

- For any θ_1, θ_2 , let $\mathbf{x}_1 = \nabla \psi^*(\theta_1), \mathbf{x}_2 = \nabla \psi^*(\theta_2)$.
- ullet By the strong convexity of ψ , we have

$$\psi(\mathbf{x}_2) \ge \psi(\mathbf{x}_1) + \langle \boldsymbol{\theta}_1, \mathbf{x}_2 - \mathbf{x}_1 \rangle + \frac{\lambda}{2} \|\mathbf{x}_1 - \mathbf{x}_2\|^2,$$

$$\psi(\mathbf{x}_1) \ge \psi(\mathbf{x}_2) + \langle \boldsymbol{\theta}_2, \mathbf{x}_1 - \mathbf{x}_2 \rangle + \frac{\lambda}{2} \|\mathbf{x}_1 - \mathbf{x}_2\|^2.$$

Summing them we derive

$$\|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|_* \|\mathbf{x}_1 - \mathbf{x}_2\| \ge \langle \boldsymbol{\theta}_2 - \boldsymbol{\theta}_1, \mathbf{x}_1 - \mathbf{x}_2 \rangle \ge \lambda \|\mathbf{x}_1 - \mathbf{x}_2\|^2$$

$$(\Rightarrow)$$
:

Smoothness of ψ^* :

- For any θ_1, θ_2 , let $\mathbf{x}_1 = \nabla \psi^*(\theta_1), \mathbf{x}_2 = \nabla \psi^*(\theta_2)$.
- ullet By the strong convexity of ψ , we have

$$\psi(\mathbf{x}_2) \ge \psi(\mathbf{x}_1) + \langle \boldsymbol{\theta}_1, \mathbf{x}_2 - \mathbf{x}_1 \rangle + \frac{\lambda}{2} \|\mathbf{x}_1 - \mathbf{x}_2\|^2,$$

$$\psi(\mathbf{x}_1) \ge \psi(\mathbf{x}_2) + \langle \boldsymbol{\theta}_2, \mathbf{x}_1 - \mathbf{x}_2 \rangle + \frac{\lambda}{2} \|\mathbf{x}_1 - \mathbf{x}_2\|^2.$$

Summing them we derive

$$\|{m{ heta}}_1 - {m{ heta}}_2\|_* \|{m{x}}_1 - {m{x}}_2\| \ge \langle {m{ heta}}_2 - {m{ heta}}_1, {m{x}}_1 - {m{x}}_2 \rangle \ge \lambda \|{m{x}}_1 - {m{x}}_2\|^2$$

So

$$\|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|_* \ge \lambda \|\mathbf{x}_1 - \mathbf{x}_2\| = \lambda \|\nabla \psi^*(\boldsymbol{\theta}_1) - \nabla \psi^*(\boldsymbol{\theta}_2)\|.$$

- Let $\mathbf{y} \in \text{dom}(\psi)$ and $\mathbf{u} \in \partial \psi(\mathbf{y})$.
- By previous Lemma and the differentiability of ψ^* , we have $\mathbf{y} = \nabla \psi^*(\mathbf{u})$.

- Let $\mathbf{y} \in \text{dom}(\psi)$ and $\mathbf{u} \in \partial \psi(\mathbf{y})$.
- By previous Lemma and the differentiability of ψ^* , we have $\mathbf{y} = \nabla \psi^*(\mathbf{u})$.
- Define: $\phi(\theta) := \psi^*(\theta + \mathbf{u}) \psi^*(\mathbf{u}) \langle \nabla \psi^*(\mathbf{u}), \theta \rangle$.

- Let $\mathbf{y} \in \mathsf{dom}(\psi)$ and $\mathbf{u} \in \partial \psi(\mathbf{y})$.
- By previous Lemma and the differentiability of ψ^* , we have $\mathbf{y} = \nabla \psi^*(\mathbf{u})$.
- Define: $\phi(\theta) := \psi^*(\theta + \mathbf{u}) \psi^*(\mathbf{u}) \langle \nabla \psi^*(\mathbf{u}), \theta \rangle$.
- By Lemma 4.21 [in Prof. Orabona's Monograph] & the $1/\lambda$ -smoothness of ψ^* , we have $\phi(\theta) \leq \frac{1}{2\lambda} \|\theta\|_*^2$ (Left as an exercise).

- Let $\mathbf{y} \in \mathsf{dom}(\psi)$ and $\mathbf{u} \in \partial \psi(\mathbf{y})$.
- By previous Lemma and the differentiability of ψ^* , we have $\mathbf{y} = \nabla \psi^*(\mathbf{u})$.
- Define: $\phi(\theta) := \psi^*(\theta + \mathbf{u}) \psi^*(\mathbf{u}) \langle \nabla \psi^*(\mathbf{u}), \theta \rangle$.
- By Lemma 4.21 [in Prof. Orabona's Monograph] & the $1/\lambda$ -smoothness of ψ^* , we have $\phi(\theta) \leq \frac{1}{2\lambda} \|\theta\|_*^2$ (Left as an exercise).
- Then we can obtain $\phi^*(\mathbf{x}) \geq \frac{\lambda}{2} ||\mathbf{x}||^2$ (Left as an exercise).

Calculate $\phi^*(\mathbf{x})$.

$$\begin{split} \phi^*(\mathbf{x}) &= \sup_{\boldsymbol{\theta}} \langle \boldsymbol{\theta}, \mathbf{x} \rangle - \psi^*(\boldsymbol{\theta} + \mathbf{u}) + \psi^*(\mathbf{u}) + \langle \boldsymbol{\theta}, \nabla \psi^*(\mathbf{u}) \rangle \\ &= \psi^*(\mathbf{u}) - \langle \mathbf{u}, \mathbf{x} + \nabla \psi^*(\mathbf{u}) \rangle + \sup_{\mathbf{v}} \langle \mathbf{v}, \mathbf{x} + \nabla \psi^*(\mathbf{u}) \rangle - \psi^*(\mathbf{v}) \\ &= \psi^*(\mathbf{u}) - \langle \mathbf{u}, \mathbf{x} + \nabla \psi^*(\mathbf{u}) \rangle + \psi^{**}(\mathbf{x} + \nabla \psi^*(\mathbf{u})) \\ &= \psi^*(\mathbf{u}) - \langle \mathbf{u}, \mathbf{x} + \nabla \psi^*(\mathbf{u}) \rangle + \psi(\mathbf{x} + \nabla \psi^*(\mathbf{u})) \\ &= -\langle \mathbf{u}, \mathbf{x} \rangle - \psi(\nabla \psi^*(\mathbf{u})) + \psi(\mathbf{x} + \nabla \psi^*(\mathbf{u})) \\ &= -\langle \mathbf{u}, \mathbf{x} \rangle - \psi(\mathbf{y}) + \psi(\mathbf{x} + \mathbf{y}). \end{split}$$

• Note that $\langle \mathbf{u}, \nabla \psi^*(\mathbf{u}) \rangle = \psi^*(\mathbf{u}) + \psi(\nabla \psi^*(\mathbf{u}))$; let $\mathbf{v} := \boldsymbol{\theta} + \mathbf{u}$.

Calculate $\phi^*(\mathbf{x})$.

$$\begin{split} \phi^*(\mathbf{x}) &= \sup_{\boldsymbol{\theta}} \langle \boldsymbol{\theta}, \mathbf{x} \rangle - \psi^*(\boldsymbol{\theta} + \mathbf{u}) + \psi^*(\mathbf{u}) + \langle \boldsymbol{\theta}, \nabla \psi^*(\mathbf{u}) \rangle \\ &= \psi^*(\mathbf{u}) - \langle \mathbf{u}, \mathbf{x} + \nabla \psi^*(\mathbf{u}) \rangle + \sup_{\mathbf{v}} \langle \mathbf{v}, \mathbf{x} + \nabla \psi^*(\mathbf{u}) \rangle - \psi^*(\mathbf{v}) \\ &= \psi^*(\mathbf{u}) - \langle \mathbf{u}, \mathbf{x} + \nabla \psi^*(\mathbf{u}) \rangle + \psi^{**}(\mathbf{x} + \nabla \psi^*(\mathbf{u})) \\ &= \psi^*(\mathbf{u}) - \langle \mathbf{u}, \mathbf{x} + \nabla \psi^*(\mathbf{u}) \rangle + \psi(\mathbf{x} + \nabla \psi^*(\mathbf{u})) \\ &= -\langle \mathbf{u}, \mathbf{x} \rangle - \psi(\nabla \psi^*(\mathbf{u})) + \psi(\mathbf{x} + \nabla \psi^*(\mathbf{u})) \\ &= -\langle \mathbf{u}, \mathbf{x} \rangle - \psi(\mathbf{y}) + \psi(\mathbf{x} + \mathbf{y}). \end{split}$$

- Note that $\langle \mathbf{u}, \nabla \psi^*(\mathbf{u}) \rangle = \psi^*(\mathbf{u}) + \psi(\nabla \psi^*(\mathbf{u}))$; let $\mathbf{v} := \boldsymbol{\theta} + \mathbf{u}$.
- Thus, $\psi(\mathbf{x} + \mathbf{y}) \psi(\mathbf{y}) \langle \mathbf{u}, \mathbf{x} \rangle = \phi^*(\mathbf{x}) \ge \frac{\lambda}{2} \|\mathbf{x}\|^2$.

Calculate $\phi^*(\mathbf{x})$.

$$\begin{split} \phi^*(\mathbf{x}) &= \sup_{\boldsymbol{\theta}} \langle \boldsymbol{\theta}, \mathbf{x} \rangle - \psi^*(\boldsymbol{\theta} + \mathbf{u}) + \psi^*(\mathbf{u}) + \langle \boldsymbol{\theta}, \nabla \psi^*(\mathbf{u}) \rangle \\ &= \psi^*(\mathbf{u}) - \langle \mathbf{u}, \mathbf{x} + \nabla \psi^*(\mathbf{u}) \rangle + \sup_{\mathbf{v}} \langle \mathbf{v}, \mathbf{x} + \nabla \psi^*(\mathbf{u}) \rangle - \psi^*(\mathbf{v}) \\ &= \psi^*(\mathbf{u}) - \langle \mathbf{u}, \mathbf{x} + \nabla \psi^*(\mathbf{u}) \rangle + \psi^{**}(\mathbf{x} + \nabla \psi^*(\mathbf{u})) \\ &= \psi^*(\mathbf{u}) - \langle \mathbf{u}, \mathbf{x} + \nabla \psi^*(\mathbf{u}) \rangle + \psi(\mathbf{x} + \nabla \psi^*(\mathbf{u})) \\ &= -\langle \mathbf{u}, \mathbf{x} \rangle - \psi(\nabla \psi^*(\mathbf{u})) + \psi(\mathbf{x} + \nabla \psi^*(\mathbf{u})) \\ &= -\langle \mathbf{u}, \mathbf{x} \rangle - \psi(\mathbf{y}) + \psi(\mathbf{x} + \mathbf{y}). \end{split}$$

- Note that $\langle \mathbf{u}, \nabla \psi^*(\mathbf{u}) \rangle = \psi^*(\mathbf{u}) + \psi(\nabla \psi^*(\mathbf{u}))$; let $\mathbf{v} := \boldsymbol{\theta} + \mathbf{u}$.
- Thus, $\psi(\mathbf{x} + \mathbf{y}) \psi(\mathbf{y}) \langle \mathbf{u}, \mathbf{x} \rangle = \phi^*(\mathbf{x}) \ge \frac{\lambda}{2} ||\mathbf{x}||^2$.

Theorem (FO Optimality Condition)

Given $f : \mathbb{R}^d \mapsto (-\infty, +\infty]$. Then $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ if and only if $\mathbf{0} \in \partial f(\mathbf{x}^*)$.

Theorem (FO Optimality Condition)

Given $f : \mathbb{R}^d \mapsto (-\infty, +\infty]$. Then $\mathbf{x}^* \in \operatorname{arg\,min}_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ if and only if $\mathbf{0} \in \partial f(\mathbf{x}^*)$.

$$\mathbf{x}^* \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \Leftrightarrow$$

Theorem (FO Optimality Condition)

Given $f : \mathbb{R}^d \mapsto (-\infty, +\infty]$. Then $\mathbf{x}^* \in \operatorname{arg\,min}_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ if and only if $\mathbf{0} \in \partial f(\mathbf{x}^*)$.

$$\mathbf{x}^* \in \operatorname*{arg\,min} f(\mathbf{x}) \Leftrightarrow \forall \mathbf{y} \in \mathbb{R}^d, f(\mathbf{y}) \geq f(\mathbf{x}^*)$$

Theorem (FO Optimality Condition)

Given $f : \mathbb{R}^d \mapsto (-\infty, +\infty]$. Then $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ if and only if $\mathbf{0} \in \partial f(\mathbf{x}^*)$.

$$\mathbf{x}^* \in \operatorname*{arg\,min} f(\mathbf{x}) \Leftrightarrow \forall \mathbf{y} \in \mathbb{R}^d, f(\mathbf{y}) \geq f(\mathbf{x}^*) = f(\mathbf{x}^*) + \langle \mathbf{0}, \mathbf{y} - \mathbf{x}^* \rangle$$

Theorem (FO Optimality Condition)

Given $f : \mathbb{R}^d \mapsto (-\infty, +\infty]$. Then $\mathbf{x}^* \in \operatorname{arg\,min}_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ if and only if $\mathbf{0} \in \partial f(\mathbf{x}^*)$.

$$\mathbf{x}^* \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \Leftrightarrow \forall \mathbf{y} \in \mathbb{R}^d, f(\mathbf{y}) \geq f(\mathbf{x}^*) = f(\mathbf{x}^*) + \langle \mathbf{0}, \mathbf{y} - \mathbf{x}^* \rangle \Leftrightarrow \mathbf{0} \in \partial f(\mathbf{x}^*).$$

The Mirror & Bregman Divergence

Theorem (Mirror & Bregman Divergence)

Let B_{ψ} be the Bregman divergence w.r.t. a λ -strongly convex and closed $\psi: X \mapsto \mathbb{R}$, where $\lambda > 0$. Let $V \subseteq X$ be a non-empty closed convex set and $\mathbf{x}_t \in V$. Define

$$\mathbf{x}_{t+1} = \underset{\mathbf{x} \in V}{\operatorname{arg\,min}} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{\eta_t} B_{\psi}(\mathbf{x}; \mathbf{x}_t).$$

Assume ψ to be differentiable in \mathbf{x}_t and \mathbf{x}_{t+1} . Then, for any $\mathbf{g}_t \in \mathbf{R}^d$, we have

$$\mathbf{x}_{t+1} = \nabla \psi_V^* (\nabla \phi(\mathbf{x}_t) - \eta_t \mathbf{g}_t),$$

where $\psi_V := \psi + i_V$ is the restriction of ψ to V, and

$$i_V(\mathbf{x}) = \left\{ egin{array}{ll} 0 & ext{if } \mathbf{x} \in V \ 1 & ext{otherwise} \end{array}
ight.$$

Illustration (refer to Prof. Orabona's Monograph, Ch.6)

The Proof (1/2)

$$\begin{aligned} \mathbf{x}_{t+1} &= & \arg\min_{\mathbf{x} \in V} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{\eta_t} B_{\psi}(\mathbf{x}; \mathbf{x}_t) \\ &= & \arg\min_{\mathbf{x} \in V} \eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + B_{\psi}(\mathbf{x}; \mathbf{x}_t) \\ &= & \arg\min_{\mathbf{x} \in V} \eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \nabla \psi(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle \\ &= & \arg\min_{\mathbf{x} \in V} \langle \eta_t \mathbf{g}_t - \nabla \psi(\mathbf{x}_t), \mathbf{x} \rangle + \psi(\mathbf{x}). \end{aligned}$$

The Proof (1/2)

$$\begin{aligned} \mathbf{x}_{t+1} &= \underset{\mathbf{x} \in V}{\arg\min} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{\eta_t} B_{\psi}(\mathbf{x}; \mathbf{x}_t) \\ &= \underset{\mathbf{x} \in V}{\arg\min} \eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + B_{\psi}(\mathbf{x}; \mathbf{x}_t) \\ &= \underset{\mathbf{x} \in V}{\arg\min} \eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \nabla \psi(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle \\ &= \underset{\mathbf{x} \in V}{\arg\min} \langle \eta_t \mathbf{g}_t - \nabla \psi(\mathbf{x}_t), \mathbf{x} \rangle + \psi(\mathbf{x}). \end{aligned}$$

Use the first-order optimality condition:

$$\mathbf{0} \in \eta_t \mathbf{g}_t + \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_t) + \partial i_V(\mathbf{x}_{t+1}).$$

The Proof (1/2)

$$\begin{aligned} \mathbf{x}_{t+1} &= & \arg\min_{\mathbf{x} \in V} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{\eta_t} B_{\psi}(\mathbf{x}; \mathbf{x}_t) \\ &= & \arg\min_{\mathbf{x} \in V} \eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + B_{\psi}(\mathbf{x}; \mathbf{x}_t) \\ &= & \arg\min_{\mathbf{x} \in V} \eta_t \langle \mathbf{g}_t, \mathbf{x} \rangle + \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \nabla \psi(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle \\ &= & \arg\min_{\mathbf{x} \in V} \langle \eta_t \mathbf{g}_t - \nabla \psi(\mathbf{x}_t), \mathbf{x} \rangle + \psi(\mathbf{x}). \end{aligned}$$

Use the first-order optimality condition:

$$\mathbf{0} \in \eta_t \mathbf{g}_t + \nabla \psi(\mathbf{x}_{t+1}) - \nabla \psi(\mathbf{x}_t) + \partial i_V(\mathbf{x}_{t+1}).$$
$$\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t \in \nabla \psi(\mathbf{x}_{t+1}) + \partial i_V(\mathbf{x}_{t+1}) \subseteq \partial \psi_V(\mathbf{x}_{t+1}).$$

The Proof (2/2)

$$\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t \in \partial \psi_V(\mathbf{x}_{t+1})$$

implies

The Proof (2/2)

$$\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t \in \partial \psi_V(\mathbf{x}_{t+1})$$

$$\mathbf{x}_{t+1} \in \partial \psi_V^* (\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t).$$

The Proof (2/2)

$$\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t \in \partial \psi_V(\mathbf{x}_{t+1})$$

implies

$$\mathbf{x}_{t+1} \in \partial \psi_V^*(\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t).$$

Since ψ_V is λ -strongly convex and closed, we have $\partial \psi_V^* = \{\nabla \psi_V^*\}$.

Therefore,

The Proof (2/2)

$$\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t \in \partial \psi_V(\mathbf{x}_{t+1})$$

implies

$$\mathbf{x}_{t+1} \in \partial \psi_V^* (\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t).$$

Since ψ_V is λ -strongly convex and closed, we have $\partial \psi_V^* = \{\nabla \psi_V^*\}$.

Therefore,

$$\mathbf{x}_{t+1} = \nabla \psi_V^* (\nabla \psi(\mathbf{x}_t) - \eta_t \mathbf{g}_t).$$

The Reasons...

- OMD extends the OSD to non-Euclidean norms.
 - Dual norms can be considered.
- It makes sense to use a dual norm to measure a gradient.
 - How "big" the linear functional $\mathbf{x} \mapsto \langle f(\mathbf{y}), \mathbf{x} \rangle$ is.

The Reasons...

- OMD extends the OSD to non-Euclidean norms.
 - Dual norms can be considered.
- It makes sense to use a dual norm to measure a gradient.
 - How "big" the linear functional $\mathbf{x} \mapsto \langle f(\mathbf{y}), \mathbf{x} \rangle$ is.
- ullet Gradients actually live in the *dual space*, which is different from where the predictions \mathbf{x}_t live

The Reasons...

- OMD extends the OSD to non-Euclidean norms.
 - Dual norms can be considered.
- It makes sense to use a dual norm to measure a gradient.
 - How "big" the linear functional $\mathbf{x} \mapsto \langle f(\mathbf{y}), \mathbf{x} \rangle$ is.
- Gradients actually live in the dual space, which is different from where the predictions x_t live
- So, why do we apply OSD??

- Let $\psi : \mathbf{R}^d \mapsto \mathbb{R}$, $\psi(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||_2^2$.
- $V = {\mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\|_2 \le 1}.$
- Let $\psi_V := \psi + i_V$.

- Let $\psi : \mathbf{R}^d \mapsto \mathbb{R}$, $\psi(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$.
- $V = \{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\|_2 \le 1 \}.$
- Let $\psi_V := \psi + i_V$.
- Then,

$$\psi_V^*(\boldsymbol{\theta}) =$$

- Let $\psi: \mathbf{R}^d \mapsto \mathbb{R}$, $\psi(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$.
- $V = \{ \mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||_2 \le 1 \}.$
- Let $\psi_V := \psi + i_V$.
- Then,

$$\psi_V^*(\boldsymbol{\theta}) = \sup_{\mathbf{x} \in V} \langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2} \|\mathbf{x}\|_2^2.$$

- Let $\psi : \mathbf{R}^d \mapsto \mathbb{R}$, $\psi(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||_2^2$.
- $V = \{ \mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||_2 \le 1 \}.$
- Let $\psi_V := \psi + i_V$.
- Then,

$$\psi_V^*(\boldsymbol{\theta}) = \sup_{\mathbf{x} \in V} \langle \boldsymbol{\theta}, \mathbf{x} \rangle - \frac{1}{2} \|\mathbf{x}\|_2^2.$$

• First, note that $\psi_V^*(\theta) = \mathbf{0}$ if $\theta = \mathbf{0}$.

- For any $\mathbf{x} \in V$, there exist \mathbf{q} and $\alpha \in \mathbb{R}$ such that
 - $\mathbf{x} = \alpha \frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|_2} + \mathbf{q}$.
 - $\langle \mathbf{q}, \boldsymbol{\theta} \rangle = 0.$
- So, we have

$$\begin{split} \sup_{\mathbf{x} \in V} \langle \boldsymbol{\theta}, \mathbf{x} \rangle &- \frac{1}{2} \| \mathbf{x} \|_2^2 \\ &= \sup_{\substack{\alpha, \mathbf{q}: \\ \alpha \frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|_2} + \mathbf{q} \in V, \langle \mathbf{q}, \boldsymbol{\theta} \rangle = 0}} \alpha \| \boldsymbol{\theta} \|_2 - \frac{\alpha^2}{2} - \frac{1}{2} \| \mathbf{q} \|_2^2 \\ &= \sup_{-1 \leq \alpha \leq 1} \alpha \| \boldsymbol{\theta} \|_2 - \frac{\alpha^2}{2}. \end{split}$$

Solving the above optimization problem, we have

$$\psi_V^*(\theta) = \begin{cases} \frac{1}{2} \|\theta\|_2^2, & \|\theta\|_2 \le 1 \\ \|\theta\|_2 - \frac{1}{2}, & \|\theta\|_2 > 1 \end{cases},$$

which is finite everywhere and differentiable.

Solving the above optimization problem, we have

$$\psi_V^*(\theta) = \left\{ \begin{array}{ll} \frac{1}{2} \|\theta\|_2^2, & \|\theta\|_2 \le 1 \\ \|\theta\|_2 - \frac{1}{2}, & \|\theta\|_2 > 1 \end{array} \right.,$$

which is finite everywhere and differentiable.

• Therefore, we have $\nabla \psi(\mathbf{x}) = \mathbf{x}$, and

$$\nabla \psi_V^*(\boldsymbol{\theta}) = \left\{ \begin{array}{l} \boldsymbol{\theta}, & \|\boldsymbol{\theta}\|_2 \leq 1 \\ \frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|_2}, & \|\boldsymbol{\theta}\|_2 > 1 \end{array} \right. = \Pi_V(\boldsymbol{\theta}).$$

Solving the above optimization problem, we have

$$\psi_V^*(\boldsymbol{\theta}) = \left\{ egin{array}{ll} rac{1}{2} \| \boldsymbol{\theta} \|_2^2, & \| \boldsymbol{\theta} \|_2 \leq 1 \\ \| \boldsymbol{\theta} \|_2 - rac{1}{2}, & \| \boldsymbol{\theta} \|_2 > 1 \end{array}
ight.,$$

which is finite everywhere and differentiable.

• Therefore, we have $\nabla \psi(\mathbf{x}) = \mathbf{x}$, and

$$\nabla \psi_V^*(\boldsymbol{\theta}) = \left\{ \begin{array}{l} \boldsymbol{\theta}, & \|\boldsymbol{\theta}\|_2 \leq 1 \\ \frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|_2}, & \|\boldsymbol{\theta}\|_2 > 1 \end{array} \right. = \Pi_V(\boldsymbol{\theta}).$$

⋆ This is exactly the update of projected online subgradient descent.

Outline

- A Short and Quick Review
- 2 The Mirror Interpretation
- Another Way for the Update

An Equivalent Two-Step Update (1/2)

Theorem (Two-Step Update)

- Let $f : \mathbb{R}^d \mapsto (-\infty, +\infty]$ be closed, strictly convex and differentiable in int dom(f).
- Let $V \subset \mathbb{R}^d$ be a non-empty, closed and convex set, such that $V \cap (\mathsf{f}) \neq \emptyset$.
- Assume that $\tilde{\mathbf{y}} = \arg\min_{\mathbf{z} \in \mathbb{R}^d} f(\mathbf{z})$ exists and $\tilde{\mathbf{y}} \in \operatorname{int} \operatorname{dom}(f)$.
- Denote by $\mathbf{y}' = \arg\min_{\mathbf{z} \in \mathbf{V}} B_f(\mathbf{z}; \tilde{\mathbf{y}})$.

Then the following hold:

- **1** $\mathbf{y} = \arg\min_{\mathbf{z} \in V} f(\mathbf{z})$ exists and is unique.
- **4** y = y'.

An Equivalent Two-Step Update (2/2)

Therefore, under the assumption of the theorem, we have that

$$\mathbf{x}_{t+1} = \operatorname*{arg\,min}_{\mathbf{x} \in V} \langle \mathbf{g}_t, \mathbf{x} \rangle + \frac{1}{\eta_t} B_{\psi}(\mathbf{x}; \mathbf{x}_t)$$

is equivalent to

$$egin{align*} & \mathbf{ ilde{x}}_{t+1} = \mathop{\mathrm{arg\,min}}_{\mathbf{x} \in \mathbb{R}^d} \langle \eta_t \mathbf{g}_t, \mathbf{x}
angle + B_{\psi}(\mathbf{x}; \mathbf{x}_t) \ & \mathbf{x}_{t+1} = \mathop{\mathrm{arg\,min}}_{\mathbf{x} \in V} B_{\psi}(\mathbf{x}; \mathbf{ ilde{x}}_{t+1}) \end{aligned}$$

Discussions