Online Learning — Online-to-Batch Conversion

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Spring 2023

Joseph C. C. Lin (CSIE, TKU, TW)

Online Learning

Spring 2023

イロト イボト イヨト イヨト

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal: https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/ the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

Outline

1 Stochastic Optimization \Rightarrow OCO

Example: Binary Classification

э

イロト イボト イヨト イヨト

Goal of this Subject

• Reduce stochastic optimization of convex functions to online convex optimization (OCO).

э

4/14

The Main Theorem

Theorem (3.1 in the monograph by Prof. Orabona)

• Assume that we are given $F(\mathbf{x}) = \mathbf{E}_{\mathbf{z} \sim \rho(V)}[h(\mathbf{x}, \mathbf{z})]$, such that

- **z** is drawn from ρ over a vector space V.
- $h: \mathbb{R}^d \times V \mapsto \mathbb{R}$ is convex w.r.t. the first argument.
- Drawn T samples z₁, z₂,..., z_T i.i.d. from ρ and receive the sequence of losses f_t(x) := α_th(x, z_t), where α_t > 0 are deterministic.
- Run any OCO algorithm over the losses f_t to construct the sequence of predictions x₁, x₂,..., x_{T+1}.

Then, we have

$$\mathbf{E}\left[F\left(\frac{1}{\sum_{t=1}^{T}\alpha_t}\sum_{t=1}^{T}\alpha_t\mathbf{x}_t\right)\right] \leq F(\mathbf{u}) + \frac{\mathbf{E}[\operatorname{Regret}_{T}(\mathbf{u})]}{\sum_{t=1}^{T}\alpha_t}$$

for any $\mathbf{u} \in \mathbb{R}^d$.

• Note that we already have $f_t(\mathbf{x}) := \alpha_t h(\mathbf{x}, \mathbf{z}_t)$ and $F(\mathbf{x}) = \mathbf{E}[h(\mathbf{x}, \mathbf{z})]$.

First, we claim that

$$\mathbf{E}\left[\sum_{t=1}^{T} \alpha_t F(\mathbf{x}_t)\right] = \mathbf{E}\left[\sum_{t=1}^{T} f_t(\mathbf{x}_t)\right]$$

イロト 不得 トイヨト イヨト 二日

• Note that we already have $f_t(\mathbf{x}) := \alpha_t h(\mathbf{x}, \mathbf{z}_t)$ and $F(\mathbf{x}) = \mathbf{E}[h(\mathbf{x}, \mathbf{z})]$.

First, we claim that

$$\mathsf{E}\left[\sum_{t=1}^{T} \alpha_t F(\mathsf{x}_t)\right] = \mathsf{E}\left[\sum_{t=1}^{T} f_t(\mathsf{x}_t)\right]$$

• By the linearity of expectation:

$$\mathbf{E}\left[\sum_{t=1}^{T} f_t(\mathbf{x}_t)\right]$$

イロト 不得 トイヨト イヨト

• Note that we already have $f_t(\mathbf{x}) := \alpha_t h(\mathbf{x}, \mathbf{z}_t)$ and $F(\mathbf{x}) = \mathbf{E}[h(\mathbf{x}, \mathbf{z})]$.

First, we claim that

$$\mathsf{E}\left[\sum_{t=1}^{T} \alpha_t F(\mathsf{x}_t)\right] = \mathsf{E}\left[\sum_{t=1}^{T} f_t(\mathsf{x}_t)\right]$$

• By the linearity of expectation:

$$\mathbf{E}\left[\sum_{t=1}^{T} f_t(\mathbf{x}_t)\right] = \sum_{t=1}^{T} \mathbf{E}[f_t(\mathbf{x}_t)].$$

イロト 不得 トイヨト イヨト

• From the law of total expectation, we have

$$\mathsf{E}[f_t(\mathsf{x}_t)] = \mathsf{E}[\mathsf{E}[f_t(\mathsf{x}_t) \mid \mathsf{z}_1, \mathsf{z}_2, \dots, \mathsf{z}_{t-1}]]$$

(日)

• From the law of total expectation, we have

$$\begin{aligned} \mathsf{E}[f_t(\mathsf{x}_t)] &= \mathsf{E}[\mathsf{E}[f_t(\mathsf{x}_t) \mid \mathsf{z}_1, \mathsf{z}_2, \dots, \mathsf{z}_{t-1}]] \\ &= \mathsf{E}[\mathsf{E}[\alpha_t h(\mathsf{x}_t, \mathsf{z}_t) \mid \mathsf{z}_1, \mathsf{z}_2, \dots, \mathsf{z}_{t-1}]] \end{aligned}$$

(日)

• From the law of total expectation, we have

$$\begin{aligned} \mathsf{E}[f_t(\mathsf{x}_t)] &= \mathsf{E}[\mathsf{E}[f_t(\mathsf{x}_t) \mid \mathsf{z}_1, \mathsf{z}_2, \dots, \mathsf{z}_{t-1}]] \\ &= \mathsf{E}[\mathsf{E}[\alpha_t h(\mathsf{x}_t, \mathsf{z}_t) \mid \mathsf{z}_1, \mathsf{z}_2, \dots, \mathsf{z}_{t-1}]] \\ &= \mathsf{E}[\alpha_t F(\mathsf{x}_t)]. \end{aligned}$$

• Note: \mathbf{x}_t only depends on $\mathbf{z}_1, \ldots, \mathbf{z}_{t-1}$.

3

イロン イヨン イヨン

• From the law of total expectation, we have

$$\begin{aligned} \mathsf{E}[f_t(\mathsf{x}_t)] &= \mathsf{E}[\mathsf{E}[f_t(\mathsf{x}_t) \mid \mathsf{z}_1, \mathsf{z}_2, \dots, \mathsf{z}_{t-1}]] \\ &= \mathsf{E}[\mathsf{E}[\alpha_t h(\mathsf{x}_t, \mathsf{z}_t) \mid \mathsf{z}_1, \mathsf{z}_2, \dots, \mathsf{z}_{t-1}]] \\ &= \mathsf{E}[\alpha_t F(\mathsf{x}_t)]. \end{aligned}$$

- Note: \mathbf{x}_t only depends on $\mathbf{z}_1, \ldots, \mathbf{z}_{t-1}$.
- Thus, we have

$$\mathbf{E}\left[\sum_{t=1}^{T} \alpha_t F(\mathbf{x}_t)\right] = \mathbf{E}\left[\sum_{t=1}^{T} f_t(\mathbf{x}_t)\right]$$

Joseph C. C. Lin (CSIE, TKU, TW)

By Jensen's inequality and the fact that f is convex,

$$\mathcal{F}\left(\frac{1}{\sum_{t=1}^{T} \alpha_t} \sum_{t=1}^{T} \alpha_t \mathbf{x}_t\right) \leq \mathbf{x}_t$$

э

8/14

By Jensen's inequality and the fact that f is convex,

$$F\left(\frac{1}{\sum_{t=1}^{T} \alpha_t} \sum_{t=1}^{T} \alpha_t \mathbf{x}_t\right) \leq \frac{1}{\sum_{t=1}^{T} \alpha_t} \sum_{t=1}^{T} \alpha_t F(\mathbf{x}_t).$$

By Jensen's inequality and the fact that f is convex,

$$F\left(\frac{1}{\sum_{t=1}^{T}\alpha_t}\sum_{t=1}^{T}\alpha_t\mathbf{x}_t\right) \leq \frac{1}{\sum_{t=1}^{T}\alpha_t}\sum_{t=1}^{T}\alpha_tF(\mathbf{x}_t).$$

So

$$\mathbf{E}\left[F\left(\frac{1}{\sum_{t=1}^{T}\alpha_{t}}\sum_{t=1}^{T}\alpha_{t}\mathbf{x}_{t}\right)\right] \leq \mathbf{E}\left[\frac{1}{\sum_{t=1}^{T}\alpha_{t}}\sum_{t=1}^{T}\alpha_{t}F(\mathbf{x}_{t})\right]$$

$$= \frac{1}{\sum_{t=1}^{T}\alpha_{t}}\mathbf{E}\left[\sum_{t=1}^{T}\alpha_{t}F(\mathbf{x}_{t})\right]$$

$$= \frac{1}{\sum_{t=1}^{T}\alpha_{t}}\mathbf{E}\left[\sum_{t=1}^{T}f_{t}(\mathbf{x}_{t})\right].$$

To wrap up all of these:

$$\mathbf{E}\left[F\left(\frac{1}{\sum_{t=1}^{T}\alpha_t}\sum_{t=1}^{T}\alpha_t\mathbf{x}_t\right)\right] \leq \frac{1}{\sum_{t=1}^{T}\alpha_t}\mathbf{E}\left[\sum_{t=1}^{T}f_t(\mathbf{x}_t)\right].$$

イロン 不聞 とくほとう ほとう

To wrap up all of these:

$$\mathbf{E}\left[F\left(\frac{1}{\sum_{t=1}^{T}\alpha_t}\sum_{t=1}^{T}\alpha_t\mathbf{x}_t\right)\right] \leq \frac{1}{\sum_{t=1}^{T}\alpha_t}\mathbf{E}\left[\sum_{t=1}^{T}f_t(\mathbf{x}_t)\right].$$

Together with

$$\mathbf{E}\left[\sum_{t=1}^{T}(f_t(\mathbf{x}_t) - f_t(\mathbf{u}))\right] = \mathbf{E}[\operatorname{Regret}_{T}(\mathbf{u})]$$

and

イロト イポト イヨト イヨト

To wrap up all of these:

$$\mathbf{E}\left[F\left(\frac{1}{\sum_{t=1}^{T}\alpha_t}\sum_{t=1}^{T}\alpha_t\mathbf{x}_t\right)\right] \leq \frac{1}{\sum_{t=1}^{T}\alpha_t}\mathbf{E}\left[\sum_{t=1}^{T}f_t(\mathbf{x}_t)\right].$$

Together with

$$\mathsf{E}\left[\sum_{t=1}^{T}(f_t(\mathsf{x}_t) - f_t(\mathsf{u}))\right] = \mathsf{E}[\mathsf{Regret}_{T}(\mathsf{u})]$$

and $\mathbf{E}[f_t(\mathbf{u})] = (\sum_{t=1}^T \alpha_t) F(\mathbf{u})$, dividing $\sum_{t=1}^T \alpha_t$ we can finish the proof of the theorem.

Joseph C. C. Lin (CSIE, TKU, TW)

イロト 不得下 イヨト イヨト 二日

Outline

Example: Binary Classification

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Example: Binary Classification (1/2)

- The inputs: $\mathbf{z}_i \in \mathbb{R}^d$.
- The outputs: $y_i \in \{-1, 1\}$.
- The loss function (hinge loss): $f(\mathbf{x}, (\mathbf{z}, y)) = \max(1 y \langle \mathbf{z}, \mathbf{x} \rangle, 0)$.
- **Our goal:** Minimize the training error over a training set of *N* samples: $\{(\mathbf{z}_i, y_i)\}_{i=1}^N$.
 - That is,

$$\min_{\mathbf{x}} F(\mathbf{x}) := \frac{1}{N} \max(1 - y_i \langle \mathbf{z}_i, \mathbf{x}_i \rangle, \mathbf{0}).$$

and let

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{arg\,min}} F(\mathbf{x}).$$

• Additional assumption: the maximum L_2 -norm of the samples is D.

11/14

イロト イポト イヨト イヨト 二日

Example: Binary Classification (2/2)

• Using the reduction in the theorem for T iterations, and use OGD as the OCO algorithm.

(日)

Example: Binary Classification (2/2)

- Using the reduction in the theorem for T iterations, and use OGD as the OCO algorithm.
- Loss in each iteration: $f_t(\mathbf{x}) = \max(1 y_t \langle \mathbf{z}_t, \mathbf{x} \rangle, 0)$, sampling a training point (\mathbf{z}_t, y_t) uniformly at random from 1 to N.

• Here, $\alpha_t = 1$ for each t.

Example: Binary Classification (2/2)

- Using the reduction in the theorem for T iterations, and use OGD as the OCO algorithm.
- Loss in each iteration: $f_t(\mathbf{x}) = \max(1 y_t \langle \mathbf{z}_t, \mathbf{x} \rangle, 0)$, sampling a training point (\mathbf{z}_t, y_t) uniformly at random from 1 to N.

• Here, $\alpha_t = 1$ for each t.

• Set $\mathbf{x}_1 = \mathbf{0}$ and learning rate $\eta = \frac{1}{D\sqrt{T}}$. We have

$$\mathbf{E}\left[F\left(\frac{1}{T}\sum_{t=1}^{T}\mathbf{x}_{t}\right)\right]-F(\mathbf{x}^{*})\leq D\frac{\|\mathbf{x}^{*}\|_{2}^{2}+1}{2\sqrt{T}}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remark

• What does the previous example tell us?

3

イロン イ理 とくほとう ほんし

Remark

- What does the previous example tell us?
- We can use an online-convex optimization algorithm to stochastically optimize a function.

э

イロト イポト イヨト イヨト

Remark

- What does the previous example tell us?
- We can use an online-convex optimization algorithm to stochastically optimize a function.
 - The regret is transformed into a convergence rate.

イロト イボト イヨト イヨト

Discussions

Joseph C. C. Lin (CSIE, TKU, TW)

Online Learning

Spring 2023

イロト イヨト イヨト

14 / 14