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Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan:
https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal:
https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona:
https://parameterfree.com/lecture-notes-on-online-learning/
the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan’s textbook:
Introduction to Online Convex Optimization, 2nd Edition.
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Stochastic Optimization ⇒ OCO

Goal of this Subject

Reduce stochastic optimization of convex functions to online convex
optimization (OCO).
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Stochastic Optimization ⇒ OCO

The Main Theorem

Theorem (3.1 in the monograph by Prof. Orabona)

Assume that we are given F (x) = Ez∼ρ(V )[h(x, z)], such that

z is drawn from ρ over a vector space V .
h : Rd × V 7→ R is convex w.r.t. the first argument.

Drawn T samples z1, z2, . . . , zT i.i.d. from ρ and receive the
sequence of losses ft(x) := αth(x, zt), where αt > 0 are deterministic.

Run any OCO algorithm over the losses ft to construct the sequence
of predictions x1, x2, . . . , xT+1.

Then, we have

E

[
F

(
1∑T

t=1 αt

T∑
t=1

αtxt

)]
≤ F (u) +

E[RegretT (u)]∑T
t=1 αt

,

for any u ∈ Rd .
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Stochastic Optimization ⇒ OCO

Proof of the Theorem (1/4)

Note that we already have ft(x) := αth(x, zt) and F (x) = E[h(x, z)].

First, we claim that

E

[
T∑
t=1

αtF (xt)

]
= E

[
T∑
t=1

ft(xt)

]
.

By the linearity of expectation:

E

[
T∑
t=1

ft(xt)

]
=

T∑
t=1

E[ft(xt)].
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Stochastic Optimization ⇒ OCO

Proof of the Theorem (2/4)

From the law of total expectation, we have

E[ft(xt)] = E[E[ft(xt) | z1, z2, . . . , zt−1]]

= E[E[αth(xt , zt) | z1, z2, . . . , zt−1]]

= E[αtF (xt)].

Note: xt only depends on z1, . . . , zt−1.

Thus, we have

E

[
T∑
t=1

αtF (xt)

]
= E

[
T∑
t=1

ft(xt)

]
.
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Stochastic Optimization ⇒ OCO

Proof of the Theorem (3/4)

By Jensen’s inequality and the fact that f is convex,

F

(
1∑T

t=1 αt

T∑
t=1

αtxt

)
≤

1∑T
t=1 αt

T∑
t=1

αtF (xt).

So

E

[
F

(
1∑T

t=1 αt

T∑
t=1

αtxt

)]
≤ E

[
1∑T

t=1 αt

T∑
t=1

αtF (xt)

]

=
1∑T

t=1 αt

E

[
T∑
t=1

αtF (xt)

]

=
1∑T

t=1 αt

E

[
T∑
t=1

ft(xt)

]
.
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Stochastic Optimization ⇒ OCO

Proof of the Theorem (4/4)

To wrap up all of these:

E

[
F

(
1∑T

t=1 αt

T∑
t=1

αtxt

)]
≤ 1∑T

t=1 αt

E

[
T∑
t=1

ft(xt)

]
.

Together with

E

[
T∑
t=1

(ft(xt)− ft(u))

]
= E[RegretT (u)]

and E[ft(u)] = (
∑T

t=1 αt)F (u), dividing
∑T

t=1 αt we can finish the proof
of the theorem.
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Example: Binary Classification

Example: Binary Classification (1/2)

The inputs: zi ∈ Rd .

The outputs: yi ∈ {−1, 1}.

The loss function (hinge loss): f (x, (z, y)) = max(1− y⟨z, x⟩, 0).
Our goal: Minimize the training error over a training set of N
samples: {(zi , yi )}Ni=1.

That is,

min
x

F (x) :=
1

N
max(1− yi ⟨zi , xi ⟩, 0).

and let
x∗ = argmin

x
F (x).

Additional assumption: the maximum L2-norm of the samples is D.
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Example: Binary Classification

Example: Binary Classification (2/2)

Using the reduction in the theorem for T iterations, and use OGD as
the OCO algorithm.

Loss in each iteration: ft(x) = max(1− yt⟨zt , x⟩, 0), sampling a
training point (zt , yt) uniformly at random from 1 to N.

Here, αt = 1 for each t.

Set x1 = 0 and learning rate η = 1
D
√
T
. We have

E

[
F

(
1

T

T∑
t=1

xt

)]
− F (x∗) ≤ D

∥x∗∥22 + 1

2
√
T

.
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Example: Binary Classification

Remark

What does the previous example tell us?

We can use an online-convex optimization algorithm to stochastically
optimize a function.

The regret is transformed into a convergence rate.
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Discussions
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