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Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan:
https://lucatrevisan.github.io/40391 /index.html

the lectures of Prof. Shipra Agrawal:
https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona:
https://parameterfree.com/lecture-notes-on-online-learning/
the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan's textbook:
Introduction to Online Convex Optimization, 2nd Edition.
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e
Outline

@ Stochastic Optimization = 0OCO

© Example: Binary Classification
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Goal of this Subject

@ Reduce stochastic optimization of convex functions to online convex
optimization (OCO).
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The Main Theorem

Theorem (3.1 in the monograph by Prof. Orabona)

@ Assume that we are given F(x) = E,_,v)[h(x,2)], such that

e z is drawn from p over a vector space V.
o h:RY x V= R is convex w.r.t. the first argument.

@ Drawn T samples z1,25,...,z7 i.i.d. from p and receive the
sequence of losses f¢(x) := ath(x,z¢), where oy > 0 are deterministic.
@ Run any OCO algorithm over the losses f; to construct the
X1,X2, .y XT41-
Then, we have

- F(g - )] < Fu) . ERegretr (@]

—
D=1 Ot t=1 Do—1 Ot

for any u € R9.
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Proof of the Theorem (1/4)

o Note that we already have fi(x) := ath(x,z;) and F(x) = E[h(x, 2)].

First, we claim that

: [jatp(xt)] e lz ft(xt)] |

t=1 t=1
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Proof of the Theorem (1/4)

o Note that we already have fi(x) := ath(x,z;) and F(x) = E[h(x, 2)].

First, we claim that

T T
E [Z atF(xt)] =E [Z ft(xt)] .
t=1

t=1

@ By the linearity of expectation:

.
E [Z ft(xt)]
t=1

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 6/14



Online Learning

Proof of the Theorem (1/4)

o Note that we already have fi(x) := ath(x,z;) and F(x) = E[h(x, 2)].

First, we claim that

T T
E [Z atF(xt)] =E [Z ft(xt)] .
t=1

t=1

@ By the linearity of expectation:

T T
E [Z ft(xt)] = S E[f(x)]
t=1 t=1
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Proof of the Theorem (2/4)

@ From the law of total expectation, we have

Elfe(x))] = E[E[f(xt) |z1,22,...,2¢1]]
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Proof of the Theorem (2/4)

@ From the law of total expectation, we have

E[fe(x:)] = E[E[fi(xt)|21,22,...,2¢-1]]
E[E[a:h(x¢,2¢) | 21,22, .., Z¢-1]]
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Proof of the Theorem (2/4)

@ From the law of total expectation, we have

E[fe(xe)] = E[E[fi(x¢) | 2z1,22,...,2¢-1]]
= E[E[ath(xt,2¢) | 21,22, ... ,2¢-1]]
= E[a:F(x¢)]-

o Note: x; only depends on zy,...,2z;_1.
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Proof of the Theorem (2/4)

@ From the law of total expectation, we have

E[fe(xe)] = E[E[fi(x¢) | 2z1,22,...,2¢-1]]
= E[E[ath(xt,2¢) | 21,22, ... ,2¢-1]]
= E[a:F(x¢)]-

o Note: x; only depends on zy,...,2z;_1.

@ Thus, we have

T T
E [Z atF(xt)] —E [Z ft(xt)] :
t=1

t=1
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Proof of the Theorem (3/4)

By Jensen's inequality and the fact that f is convex,

1 T
Fl —— atxt> <
=
<Zt—1 At 41
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Proof of the Theorem (3/4)

By Jensen's inequality and the fact that f is convex,

(a7 & o F(x¢).
<Zt Z > Zt Z (

10t =1 1%t =1
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Proof of the Theorem (3/4)

By Jensen's inequality and the fact that f is convex,

1 & 1 &
F| —— atxt> S e —— OétF(Xt).
T T
<Zt—1 At 41 Zt:l At -1

1 T
E|F| —— E Xy E o F(x¢
l ( tT:1 S ) )] [Zt 10t =1 1

ot F(x;:
Zt 1@t [; ( ‘|

T
= E ft(xt ‘| .
Zt 1% L 1
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Proof of the Theorem (4/4)

To wrap up all of these:

E lF (Tl LA atxt)] < %E [XT: ft(xt)] :
Zt:l At =1 Zt:l Qy t=1
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Proof of the Theorem (4/4)

To wrap up all of these:

E Q¢ Xt < ftxt .
l (Zt lat; >] Zt 1% LX; ]

Together with

_
E [Z(ft(xt) - ft(u))] — E[Regret (u)]

t=1

and
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Proof of the Theorem (4/4)

To wrap up all of these:

ElF<ZT110‘t TlatXtﬂ = E =10t [z;ft)(t].

Together with

_
E [Z(ft(xt) - ft(u))] — E[Regret (u)]
t=1

and E[fy(u)] = (3, a¢)F(u), dividing 3>/, a: we can finish the proof
of the theorem.
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Outline

© Example: Binary Classification
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Example: Binary Classification (1/2)

The inputs: z; € RY.

The outputs: y; € {—1,1}.
@ The loss function (hinge loss): f(x,(z,y)) = max(1 — y(z,x),0).

@ QOur goal: Minimize the training error over a training set of N
samples: {(z;, i)},
e That is, 1
min F(x) := N max(1 — yi(zi, x;), 0).
and let

x* = argmin F(x).

X

Additional assumption: the maximum Ly-norm of the samples is D.
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Example: Binary Classification (2/2)

@ Using the reduction in the theorem for T iterations, and use OGD as
the OCO algorithm.
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Example: Binary Classification

Example: Binary Classification (2/2)

@ Using the reduction in the theorem for T iterations, and use OGD as
the OCO algorithm.
@ Loss in each iteration: fi(x) = max(1 — y:(z;,x),0), sampling a
training point (z¢, y¢) uniformly at random from 1 to N.
o Here, a; = 1 for each t.
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Example: Binary Classification (2/2)

@ Using the reduction in the theorem for T iterations, and use OGD as
the OCO algorithm.

@ Loss in each iteration: fi(x) = max(1 — y:(z;,x),0), sampling a
training point (z¢, y¢) uniformly at random from 1 to N.

e Here, a; =1 for each t.

@ Set x; = 0 and learning rate n = D— We have

1« o o X3 +1
E [F (T;xt>] — F(x*) < DT.

ﬂ
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Example: Binary Classification

Remark

@ What does the previous example tell us?
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Example: Binary Classification
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@ What does the previous example tell us?

@ We can use an online-convex optimization algorithm to
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Example: Binary Classification

Remark

@ What does the previous example tell us?

@ We can use an online-convex optimization algorithm to

o The regret is transformed into a
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Discussions
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