Online Learning
 - Online-to-Batch Conversion

Joseph Chuang-Chieh Lin
Department of Computer Science \& Information Engineering, Tamkang University

Spring 2023

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html
the lectures of Prof. Shipra Agrawal: https://ieor8100.github.io/mab/
the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/ the monograph: https://arxiv.org/abs/1912.13213
and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

Outline

(1) Stochastic Optimization $\Rightarrow \mathrm{OCO}$

(2) Example: Binary Classification

Goal of this Subject

- Reduce stochastic optimization of convex functions to online convex optimization (OCO).

The Main Theorem

Theorem (3.1 in the monograph by Prof. Orabona)

- Assume that we are given $F(\mathbf{x})=\mathbf{E}_{\mathbf{z} \sim \rho(V)}[h(\mathbf{x}, \mathbf{z})]$, such that
- \mathbf{z} is drawn from ρ over a vector space V.
- $h: \mathbb{R}^{d} \times V \mapsto \mathbb{R}$ is convex w.r.t. the first argument.
- Drawn T samples $\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{T}$ i.i.d. from ρ and receive the sequence of losses $f_{t}(\mathbf{x}):=\alpha_{t} h\left(\mathbf{x}, \mathbf{z}_{t}\right)$, where $\alpha_{t}>0$ are deterministic.
- Run any OCO algorithm over the losses f_{t} to construct the sequence of predictions $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{T+1}$.
Then, we have

$$
\mathbf{E}\left[F\left(\frac{1}{\sum_{t=1}^{T} \alpha_{t}} \sum_{t=1}^{T} \alpha_{t} \mathbf{x}_{t}\right)\right] \leq F(\mathbf{u})+\frac{\mathbf{E}\left[\operatorname{Regret}_{T}(\mathbf{u})\right]}{\sum_{t=1}^{T} \alpha_{t}}
$$

for any $\mathbf{u} \in \mathbb{R}^{d}$.

Proof of the Theorem (1/4)

- Note that we already have $f_{t}(\mathbf{x}):=\alpha_{t} h\left(\mathbf{x}, \mathbf{z}_{t}\right)$ and $F(\mathbf{x})=\mathbf{E}[h(\mathbf{x}, \mathbf{z})]$.

First, we claim that

$$
\mathbf{E}\left[\sum_{t=1}^{T} \alpha_{t} F\left(\mathbf{x}_{t}\right)\right]=\mathbf{E}\left[\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)\right] .
$$

Proof of the Theorem (1/4)

- Note that we already have $f_{t}(\mathbf{x}):=\alpha_{t} h\left(\mathbf{x}, \mathbf{z}_{t}\right)$ and $F(\mathbf{x})=\mathbf{E}[h(\mathbf{x}, \mathbf{z})]$.

First, we claim that

$$
\mathbf{E}\left[\sum_{t=1}^{T} \alpha_{t} F\left(\mathbf{x}_{t}\right)\right]=\mathbf{E}\left[\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)\right] .
$$

- By the linearity of expectation:

$$
\mathbf{E}\left[\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)\right]
$$

Proof of the Theorem (1/4)

- Note that we already have $f_{t}(\mathbf{x}):=\alpha_{t} h\left(\mathbf{x}, \mathbf{z}_{t}\right)$ and $F(\mathbf{x})=\mathbf{E}[h(\mathbf{x}, \mathbf{z})]$.

First, we claim that

$$
\mathbf{E}\left[\sum_{t=1}^{T} \alpha_{t} F\left(\mathbf{x}_{t}\right)\right]=\mathbf{E}\left[\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)\right] .
$$

- By the linearity of expectation:

$$
\mathbf{E}\left[\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)\right]=\sum_{t=1}^{T} \mathbf{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right]
$$

Proof of the Theorem (2/4)

- From the law of total expectation, we have

$$
\mathbf{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right]=\mathbf{E}\left[\mathbf{E}\left[f_{t}\left(\mathbf{x}_{t}\right) \mid \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{t-1}\right]\right]
$$

Proof of the Theorem (2/4)

- From the law of total expectation, we have

$$
\begin{aligned}
\mathbf{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right] & =\mathbf{E}\left[\mathbf{E}\left[f_{t}\left(\mathbf{x}_{t}\right) \mid \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{t-1}\right]\right] \\
& =\mathbf{E}\left[\mathbf{E}\left[\alpha_{t} h\left(\mathbf{x}_{t}, \mathbf{z}_{t}\right) \mid \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{t-1}\right]\right]
\end{aligned}
$$

Proof of the Theorem (2/4)

- From the law of total expectation, we have

$$
\begin{aligned}
\mathbf{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right] & =\mathbf{E}\left[\mathbf{E}\left[f_{t}\left(\mathbf{x}_{t}\right) \mid \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{t-1}\right]\right] \\
& =\mathbf{E}\left[\mathbf{E}\left[\alpha_{t} h\left(\mathbf{x}_{t}, \mathbf{z}_{t}\right) \mid \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{t-1}\right]\right] \\
& =\mathbf{E}\left[\alpha_{t} F\left(\mathbf{x}_{t}\right)\right] .
\end{aligned}
$$

- Note: \mathbf{x}_{t} only depends on $\mathbf{z}_{1}, \ldots, \mathbf{z}_{t-1}$.

Proof of the Theorem (2/4)

- From the law of total expectation, we have

$$
\begin{aligned}
\mathbf{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right] & =\mathbf{E}\left[\mathbf{E}\left[f_{t}\left(\mathbf{x}_{t}\right) \mid \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{t-1}\right]\right] \\
& =\mathbf{E}\left[\mathbf{E}\left[\alpha_{t} h\left(\mathbf{x}_{t}, \mathbf{z}_{t}\right) \mid \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{t-1}\right]\right] \\
& =\mathbf{E}\left[\alpha_{t} F\left(\mathbf{x}_{t}\right)\right] .
\end{aligned}
$$

- Note: \mathbf{x}_{t} only depends on $\mathbf{z}_{1}, \ldots, \mathbf{z}_{t-1}$.
- Thus, we have

$$
\mathbf{E}\left[\sum_{t=1}^{T} \alpha_{t} F\left(\mathbf{x}_{t}\right)\right]=\mathbf{E}\left[\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)\right] .
$$

Proof of the Theorem (3/4)

By Jensen's inequality and the fact that f is convex,

$$
F\left(\frac{1}{\sum_{t=1}^{T} \alpha_{t}} \sum_{t=1}^{T} \alpha_{t} \mathbf{x}_{t}\right) \leq
$$

Proof of the Theorem (3/4)

By Jensen's inequality and the fact that f is convex,

$$
F\left(\frac{1}{\sum_{t=1}^{T} \alpha_{t}} \sum_{t=1}^{T} \alpha_{t} \mathbf{x}_{t}\right) \leq \frac{1}{\sum_{t=1}^{T} \alpha_{t}} \sum_{t=1}^{T} \alpha_{t} F\left(\mathbf{x}_{t}\right) .
$$

Proof of the Theorem (3/4)

By Jensen's inequality and the fact that f is convex,

$$
F\left(\frac{1}{\sum_{t=1}^{T} \alpha_{t}} \sum_{t=1}^{T} \alpha_{t} \mathbf{x}_{t}\right) \leq \frac{1}{\sum_{t=1}^{T} \alpha_{t}} \sum_{t=1}^{T} \alpha_{t} F\left(\mathbf{x}_{t}\right) .
$$

So

$$
\begin{aligned}
\mathbf{E}\left[F\left(\frac{1}{\sum_{t=1}^{T} \alpha_{t}} \sum_{t=1}^{T} \alpha_{t} \mathbf{x}_{t}\right)\right] & \leq \mathbf{E}\left[\frac{1}{\sum_{t=1}^{T} \alpha_{t}} \sum_{t=1}^{T} \alpha_{t} F\left(\mathbf{x}_{t}\right)\right] \\
& =\frac{1}{\sum_{t=1}^{T} \alpha_{t}} \mathbf{E}\left[\sum_{t=1}^{T} \alpha_{t} F\left(\mathbf{x}_{t}\right)\right] \\
& =\frac{1}{\sum_{t=1}^{T} \alpha_{t}} \mathbf{E}\left[\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)\right]
\end{aligned}
$$

Proof of the Theorem (4/4)

To wrap up all of these:

$$
\mathbf{E}\left[F\left(\frac{1}{\sum_{t=1}^{T} \alpha_{t}} \sum_{t=1}^{T} \alpha_{t} \mathbf{x}_{t}\right)\right] \leq \frac{1}{\sum_{t=1}^{T} \alpha_{t}} \mathbf{E}\left[\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)\right] .
$$

Proof of the Theorem (4/4)

To wrap up all of these:

$$
\mathbf{E}\left[F\left(\frac{1}{\sum_{t=1}^{T} \alpha_{t}} \sum_{t=1}^{T} \alpha_{t} \mathbf{x}_{t}\right)\right] \leq \frac{1}{\sum_{t=1}^{T} \alpha_{t}} \mathbf{E}\left[\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)\right]
$$

Together with

$$
\mathbf{E}\left[\sum_{t=1}^{T}\left(f_{t}\left(\mathbf{x}_{t}\right)-f_{t}(\mathbf{u})\right)\right]=\mathbf{E}\left[\operatorname{Regret}_{T}(\mathbf{u})\right]
$$

and

Proof of the Theorem (4/4)

To wrap up all of these:

$$
\mathbf{E}\left[F\left(\frac{1}{\sum_{t=1}^{T} \alpha_{t}} \sum_{t=1}^{T} \alpha_{t} \mathbf{x}_{t}\right)\right] \leq \frac{1}{\sum_{t=1}^{T} \alpha_{t}} \mathbf{E}\left[\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)\right] .
$$

Together with

$$
\mathbf{E}\left[\sum_{t=1}^{T}\left(f_{t}\left(\mathbf{x}_{t}\right)-f_{t}(\mathbf{u})\right)\right]=\mathbf{E}\left[\operatorname{Regret}_{T}(\mathbf{u})\right]
$$

and $\mathbf{E}\left[f_{t}(\mathbf{u})\right]=\left(\sum_{t=1}^{T} \alpha_{t}\right) F(\mathbf{u})$, dividing $\sum_{t=1}^{T} \alpha_{t}$ we can finish the proof of the theorem.

Outline

(1) Stochastic Optimization $\Rightarrow \mathrm{OCO}$

(2) Example: Binary Classification

Example: Binary Classification (1/2)

- The inputs: $\mathbf{z}_{i} \in \mathbb{R}^{d}$.
- The outputs: $y_{i} \in\{-1,1\}$.
- The loss function (hinge loss): $f(\mathbf{x},(\mathbf{z}, y))=\max (1-y\langle\mathbf{z}, \mathbf{x}\rangle, 0)$.
- Our goal: Minimize the training error over a training set of N samples: $\left\{\left(\mathbf{z}_{i}, y_{i}\right)\right\}_{i=1}^{N}$.
- That is,

$$
\min _{\mathbf{x}} F(\mathbf{x}):=\frac{1}{N} \max \left(1-y_{i}\left\langle\mathbf{z}_{i}, \mathbf{x}_{i}\right\rangle, 0\right)
$$

and let

$$
\mathbf{x}^{*}=\underset{\mathbf{x}}{\arg \min } F(\mathbf{x})
$$

- Additional assumption: the maximum L_{2}-norm of the samples is D.

Example: Binary Classification (2/2)

- Using the reduction in the theorem for T iterations, and use OGD as the OCO algorithm.

Example: Binary Classification (2/2)

- Using the reduction in the theorem for T iterations, and use OGD as the OCO algorithm.
- Loss in each iteration: $f_{t}(\mathbf{x})=\max \left(1-y_{t}\left\langle\mathbf{z}_{t}, \mathbf{x}\right\rangle, 0\right)$, sampling a training point $\left(\mathbf{z}_{t}, y_{t}\right)$ uniformly at random from 1 to N.
- Here, $\alpha_{t}=1$ for each t.

Example: Binary Classification (2/2)

- Using the reduction in the theorem for T iterations, and use OGD as the OCO algorithm.
- Loss in each iteration: $f_{t}(\mathbf{x})=\max \left(1-y_{t}\left\langle\mathbf{z}_{t}, \mathbf{x}\right\rangle, 0\right)$, sampling a training point $\left(\mathbf{z}_{t}, y_{t}\right)$ uniformly at random from 1 to N.
- Here, $\alpha_{t}=1$ for each t.
- Set $\mathbf{x}_{1}=\mathbf{0}$ and learning rate $\eta=\frac{1}{D \sqrt{T}}$. We have

$$
\mathbf{E}\left[F\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{t}\right)\right]-F\left(\mathbf{x}^{*}\right) \leq D \frac{\left\|\mathbf{x}^{*}\right\|_{2}^{2}+1}{2 \sqrt{T}} .
$$

Remark

- What does the previous example tell us?

Remark

- What does the previous example tell us?
- We can use an online-convex optimization algorithm to stochastically optimize a function.

Remark

- What does the previous example tell us?
- We can use an online-convex optimization algorithm to stochastically optimize a function.
- The regret is transformed into a convergence rate.

Discussions

