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Introduction

Online Learning

Online Convex Optimization

Goal: Design an algorithm such that

At discrete time steps t = 1, 2, . . ., output xt ∈ K, for each t.

K: a convex set of feasible solutions.

After xt is generated, a convex cost function ft : K 7→ R is revealed.

Then the algorithm suffers the loss ft(xt).

And we want to minimize the cost.
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The difficulty

The cost functions ft is unknown before t.

f1, f2, . . . , ft , . . . are not necessarily fixed.

Can be generated dynamically by an adversary.
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Introduction

Regret

What’s the regret?

The offline optimum: After T steps,

min
x∈K

T∑
t=1

ft(x).

The regret after T steps:

regretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

The rescue: regretT ≤ o(T ). ⇒ No-Regret in average when
T → ∞.

For example, regretT/T =
√
T
T → 0 when T → ∞.
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Multi-Armed Bandit

Multi-Armed Bandit

Fig.: Image credit: Microsoft Research
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Introduction

Multi-Armed Bandit

The setting

We can see N arms as N experts.

Arms give are independent.

We can only pull an arm and observe the reward of it.

It’s NOT possible to observe the reward of pulling the other arms...

Each arm i has its own reward ri ∈ [0, 1].

µi : the mean of reward of arm i

µ̂i : the empirical mean of reward of arm i

µ∗: the mean of reward of the BEST arm.
∆i : µ

∗ − µi .
Index of the best arm: I ∗ := argmaxi∈{1,...,N}µi .
The associated highest expected reward: µ∗ = µI∗ .
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Introduction

Multi-Armed Bandit

The regret formulation for MAB

Let It be the arm played by the algorithm at time t.
The regret of the algorithm in T rounds is

regretT =
T∑
t=1

(µ∗ − µIt )

=
N∑
i=1

∑
t:It=i

(µ∗ − µi )

=
N∑
i=1

ni ,T∆i

=
∑

i :µi<µ∗

ni ,T∆i .
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Solving the Stochastic Multi-Armed Bandit Problem

Greedy Algorithms

A Näıve Greedy Algorithm

Greedy Algorithm

1 For t ≤ cN, select a random arm with probability 1/N and pull it.

2 For t > cN, pull the arm It := argmaxi=1,...,N µ̂i ,t .

Here c is a constant.

This algorithm is of linear regret, hence is not a no-regret algorithm.

For example,

Arm 1: 0/1 reward with mean 3/4.
Arm 2: Fixed reward of 1/4.
After cN = 2c steps, with constant probability, we have µ̂1,cN < µ̂2,cN .
If this is the case, the algorithm will keep pulling arm 2 and will never
change!
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Solving the Stochastic Multi-Armed Bandit Problem

Greedy Algorithms

ϵ-Greedy Algorithm

ϵ-Greedy Algorithm

For all t = 1, 2, . . . ,N:

With probability 1− ϵ, pull arm It := argmaxi=1,...,N µ̂i ,t .

With probability ϵ, select an arm uniformly at random (i.e., each with
probability 1/N).

It looks good.

Unfortunately, this algorithm still incurs linear regret.

Indeed,

Each arm is pulled in average ϵT/N times.
Hence the (expected) regret will be at least ϵT

N

∑
i :µi<µ∗ ∆i .
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Solving the Stochastic Multi-Armed Bandit Problem

Upper Confidence Bound (UCB)

The upper confidence bound algorithm (UCB)

At each time step (round), we simply pull the arm with the highest
“empirical reward estimate + high-confidence interval size”.

The empirical reward estimate of arm i at time t:

µ̂i ,t =

∑t
s=1 Is,i · rs
ni ,t

.

ni ,t : the number of times arm i is played.
Is,i : 1 if the choice of arm is i at time s and 0 otherwise.

Reward estimate + confidence interval:

UCBi ,t := µ̂i ,t +

√
ln t

ni ,t
.
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Solving the Stochastic Multi-Armed Bandit Problem

Upper Confidence Bound (UCB)

Algorithm UCB

UCB Algorithm

N arms, T rounds such that T ≥ N.

1 For t = 1, . . . ,N, play arm t.

2 For t = N + 1, . . . ,T , play arm

At = argmaxi∈{1,...,N}UCBi ,t−1.
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Solving the Stochastic Multi-Armed Bandit Problem

Upper Confidence Bound (UCB)

Algorithm UCB

(after more time steps...)
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Solving the Stochastic Multi-Armed Bandit Problem

Upper Confidence Bound (UCB)

From the Chernoff bound (proof skipped)

For each arm i at time t, we have

|µ̂i ,t − µi | <

√
ln t

ni ,t

with probability ≥ 1− 2/t2.

To understand why, please take my Randomized Algorithms course. :)

Immediately, we know that

with prob. ≥ 1− 2/t2, UCBi ,t := µ̂i ,t +
√

ln t
ni,t

> µi .

with prob. ≥ 1− 2/t2, µ̂i ,t < µi +
∆i
2 when ni ,t ≥ 4 ln t

∆2
i
.
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Solving the Stochastic Multi-Armed Bandit Problem

Upper Confidence Bound (UCB)

Tail probability by the Chernoff/Hoeffding bound

The Chernoff/Hoeffding bound

For independent and identically distributed (i.i.d.) samples
x1, . . . , xn ∈ [0, 1] with E[xi ] = µ, we have

Pr

[∣∣∣∣∑n
i=1 xi
n

− µ

∣∣∣∣ ≥ δ

]
≤ 2e−2nδ2 .

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 19 / 29



Online Learning

Solving the Stochastic Multi-Armed Bandit Problem

Upper Confidence Bound (UCB)

Very unlikely to play a suboptimal arm

Lemma 3

At any time step t, if a suboptimal arm i (i.e., µi < µ∗) has been played
for ni ,t ≥ 4 ln t

∆2
i

times, then UCBi ,t < UCBI∗,t with probability ≥ 1− 4/t2.

Therefore, for any t,

Pr

[
It+1,i = 1

∣∣∣∣ ni ,t ≥ 4 ln t

∆2
i

]
≤ 4

t2
.
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Solving the Stochastic Multi-Armed Bandit Problem

Upper Confidence Bound (UCB)

Proof of Lemma 3

With probability < 2/t2 + 2/t2 (union bound) that

UCBi ,t = µ̂i ,t +

√
ln t

ni ,t
≤ µ̂i ,t +

∆i

2

<

(
µi +

∆i

2

)
+

∆i

2

= µ∗ < UCBi∗,t

does NOT hold.
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Solving the Stochastic Multi-Armed Bandit Problem

Upper Confidence Bound (UCB)

Playing suboptimal arms for very limited number of times

Lemma 4

For any arm i with µi < µ∗,

E[ni ,T ] ≤
4 lnT

∆2
i

+ 8.

E[ni,T ] = 1 + E

[
T∑

t=N

1 {It+1,i = 1}

]

= 1 + E

[
T∑

t=N

1

{
It+1,i = 1, ni,t <

4 ln t

∆2
i

}]

+ E

[
T∑

t=N

1

{
It+1,i = 1, ni,t ≥

4 ln t

∆2
i

}]
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Solving the Stochastic Multi-Armed Bandit Problem

Upper Confidence Bound (UCB)

Proof of Lemma 4 (contd.)

E[ni,T ] ≤ 4 lnT

∆2
i

+ E

[
T∑

t=N

1

{
It+1,i = 1, ni,t ≥

4 ln t

∆2
i

}]

=
4 lnT

∆2
i

+
T∑

t=N

Pr

[
It+1,i = 1, ni,t ≥

4 ln t

∆2
i

]

=
4 lnT

∆2
i

+
T∑

t=N

Pr

[
It+1,i = 1

∣∣∣∣ ni,t ≥ 4 ln t

∆2
i

]
· Pr

[
ni,t ≥

4 ln t

∆2
i

]

≤ 4 lnT

∆2
i

+
T∑

t=N

4

t2

≤ 4 lnT

∆2
i

+ 8.
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Solving the Stochastic Multi-Armed Bandit Problem

Upper Confidence Bound (UCB)

The regret bound for the UCB algorithm

Theorem 4

For all T ≥ N, the (expected) regret by the UCB algorithm in round T is

E[regretT ] ≤ 5
√
NT lnT + 8N.
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Solving the Stochastic Multi-Armed Bandit Problem

Upper Confidence Bound (UCB)

Proof of Theorem 4

Divide the arms into two groups:

1 Group ONE (G1): “almost optimal arms” with ∆i <
√

N
T lnT .

2 Group TWO (G2): “bad” arms with ∆i ≥
√

N
T lnT .

∑
i∈G1

ni,T∆i ≤

(√
N

T
lnT

)∑
i∈G1

ni,T ≤ T ·
√

N

T
lnT =

√
NT lnT .

By Lemma 4,

∑
i∈G2

E[ni,T ]∆i ≤
∑
i∈G2

4 lnT

∆i
+ 8∆i ≤

∑
i∈G2

4

√
T lnT

N
+ 8

≤ 4
√
NT lnT + 8N.
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Solving the Stochastic Multi-Armed Bandit Problem

Time-Decay ϵ-Greedy

Time Decaying ϵ-Greedy Algorithm

What if the horizon T is known in advance when we run ϵ-Greedy?

Time-Decaying ϵ-Greedy Algorithm

For all t = 1, 2, . . . ,N, set ϵ := N1/3/T 1/3:

With probability 1− ϵ, pull arm It := argmaxi=1,...,N µ̂i ,t .

With probability ϵ, select an arm uniformly at random (i.e., each with
probability 1/N).

Claim

Time-Decaying ϵ-Greedy Algorithm gets roughly O(N1/3T 2/3) regret.
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Solving the Stochastic Multi-Armed Bandit Problem

Time-Decay ϵ-Greedy

Sketch of proving the claim

The expected regret E[R(T )] =
∑T

t=1 E[µ
∗ − µTt ].

Using the greedy choice that µ̂It ≥ µ̂I∗ , we have

E[R(T )] ≤
T∑
t=1

(1− ϵ)E[(µI∗ − µ̂I∗ + µ̂It − µIt ) | greedy choice of It ] + ϵT

≤
T∑
t=1

(√
lnT

nI∗,t
+

√
lnT

nIt ,t

)
+

1

T
· 1 · T + ϵT (Chernoff)

≈≤
T∑
t=1

(√
lnT

ϵt/N
+

√
lnT

ϵt/N

)
+ ϵT + 1

≤
√

N

ϵ

√
T logT + ϵT + 1 = O(N1/3T 2/3

√
logT ).
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