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Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan:
https://lucatrevisan.github.io/40391 /index.html

the lectures of Prof. Shipra Agrawal:
https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona:
https://parameterfree.com/lecture-notes-on-online-learning/
the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan's textbook:
Introduction to Online Convex Optimization, 2nd Edition.
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© Does FTL always work?

© Gradient Descent for Online Convex Optimization (GD)

© Subgradient & Subdifferential
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Why so complicated?

@ How about just following the one with best performance?
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Why so complicated?

@ How about just following the one with best performance?
o Follow The Leader (FTL) Algorithm.

e First, we assume to make no assumptions on K and {f; : L — R}.

@ At time t, we are given previous cost functions f,...,f;_1, and then

give the solution
t—1

Xt 1= arg Tellg Z fi(x).
k=1
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Does FTL always work?

Why so complicated?

@ How about just following the one with best performance?
o Follow The Leader (FTL) Algorithm.

e First, we assume to make no assumptions on K and {f; : L — R}.
@ At time t, we are given previous cost functions f,...,f;_1, and then

give the solution
t—1

Xt 1= arg Tellg Z fi(x).
k=1

That is, the best solution for the previous t — 1 steps.
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Why so complicated?

@ How about just following the one with best performance?
o Follow The Leader (FTL) Algorithm.

e First, we assume to make no assumptions on K and {f; : L — R}.

@ At time t, we are given previous cost functions f,...,f;_1, and then

give the solution
t—1

Xy 1= argmin i (x).
t gxeK Z k(x)
k=1
That is, the best solution for the previous t — 1 steps.

@ It seems reasonable and makes sense, doesn't it?
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FTL leads to “overfitting”

t: 1

X¢: (0.5,0.5)

Uy (0,0.5)
fr(x¢): 0.25

arg miny 22:1 fi (x): (1,0)
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FTL leads to “overfitting”

t: 1 2

Xt (0.5,0.5) (1,0)

Uy (0,0.5) (1,0)
fr(xe): 0.25 1

arg ming > 7 _; fi(x): (1,0)  (0,1)

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 5/28



Online Learning

FTL leads to “overfitting”

t: 1 2 3
Xt (0.5,0.5) (1,0) (0,1)
Uy (0,0.5) (1,0) (0,1)

fr(xe): 0.25 1 1

arg miny 22:1 fi (x): (1,0) (0,1) (1,0)
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FTL leads to “overfitting”

t: 1 2 3 4

Xt (0.5,0.5) (1,0) (0,1) (1,0)

U (0,0.5) (1,0) (0,1) (1,0)
fr(xe): 0.25 1 1 1

arg ming > 7 _; fi(x): (1,0)  (0,1) (1,0) (0,1)
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FTL leads to “overfitting”

t: 1 2 3 4 5
X¢: (0.5,0.5) (1,0) (0,1) (1,0) (0,1)
0y (0,05) (1,0) (0,1) (1,0) (0,1)
fo(xe): 0.25 1 1 1 1

arg ming > 7 _; fi(x): (1,0) (0,1) (1,0) (0,1) (1,0)
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Does FTL always work?

FTL leads to “overfitting”

t: 1 2 3 4 5
X¢: (0.5,0.5) (1,0) (0,1) (1,0) (0,1)
0y (0,05) (1,0) (0,1) (1,0) (0,1)

fo(xe): 0.25 1 1 1 1

arg ming > 7 _; fi(x): (1,0) (0,1) (1,0) (0,1) (1,0)

optimum loss: ~ T/2.
FTL's loss: ~ T.
regret: ~ T /2 (linear).
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Does FTL always work?

Remark

@ Note that the first example of no-regret analysis in this course uses a
special kind of loss function.

o Squared difference: |x; — y:|)3.
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Gradient Descent for Online Convex Optimization (GD)
Outline

© Gradient Descent for Online Convex Optimization (GD)
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Online Gradient Descent (GD)

© Input: convex set K, T, x; € K, learning rate {n;}.
Q fort+ 1to T do:

@ Play x; and observe cost fi(x;).
@ Update and Project:

Yt+1 = xt—met(xt)
Xt+1 = nlC(Yt+1)

@ end for
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Gradient Descent for Online Convex Optimization (GD)

GD for online convex optimization is of no-regret

Online gradient descent with learning rate {n; = #7 t € [T]} guarantees
the following for all T > 1:

T T
regret = Z fr(x¢) — ereir;CZ fr(x*) < gGD\/?.
t=1 t=1

@ D: the diameter of K.
@ Assume that Vf;(x) < G for each x € K.
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Proof of Theorem A (1/4)

@ Let x* € argmingcc Zthl fe(x).

@ Since f; is convex, we have
fo(xe) = fr(x*) < (VHe(xe)) " (xe —x").
@ By the updating rule for x;4+1 and the Pythagorean theorem, we have

Ixe1 —x*[1% = M (xe =1V E(xe) = x| < [1xe = 0eV e(xe) — x|
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PG e Decen T Onine Conver Opimiaton (G) =SS S
Proof of Theorem A (2/4)

@ Hence

xer1 = X[ < flxe = x* |12+ nF [ VH(xe)|* — 277t(Vft(Xt))T(Xt —x*)

| — X*||2 — [|xe41 — x*||2

AVE(x) (ke — x7) < | G

Nt

@ Summing above inequality from t =1 to T and setting n; = GL\/E and

L -—0 we have :
70
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Proof of Theorem A (3/4)

T T
2 (Z fu(xe) — ﬂ(X*)) < 2) VAx)) (xe — x7)
t=1 t=1
T T
[xe = x* |12 = [[xep1 = x* |12
< +G
Z Nt Zm
< ant—x HEr— +GzZnt
T /1
< D2 ( )+62
- Z Nt Nt—1 Zm
< + G2Znt
t=1
< 3DGVT.
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PG e Decen T Onine Conver Opimiaton (G) =SS S
Proof of Theorem A (4/4)

Note that we can also deduce in this way

T * (|2 * |2 T
Xt — X — ||X — X
Sl =X e = oy
t=1 e t=1

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 13 /28



Online Learning

Proof of Theorem A (4/4)
Note that we can also deduce in this way
t=1 e t=1

[Ix1 — x*|| af1 1 a1 1
At =X === ) =X = —— )+
m m 3

T2
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Proof of Theorem A (4/4)
Note that we can also deduce in this way
t=1 e t=1

[Ix1 — x*|| af1 1 a1 1
At =X === ) =X = —— )+
m m

T2 UK T2

1 1 Ix7 — x*| T
Hr =< (7 - =) - X @y,
nr —1 —1

nr nr
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Gradient Descent for Online Convex Optimization (GD)

Proof of Theorem A (4/4)

Note that we can also deduce in this way

T * (|2 * |2 T
Xt — X — ||X — X
S LTy R,
t=1 e t=1

[Ix1 — x*|| af1 1 1
= P20 e x| (= - =) e =X { === )+
m 2 M 2
. 1 1 x7T — X"
Hr =) (- 2 ) - B +GZZm
nr Nr-1 nr =1
lxi — x7 |2 (1
1— 2
< ——+D + G2
< loo > (s zm
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Gradient Descent for Online Convex Optimization (GD)

Proof of Theorem A (4/4)

Note that we can also deduce in this way
T * (|2 * |2 T
Xt — X7 — ||xe41 — X
3 [[xe [I* = l[xes I &S
t=1 e t=1

[Ix1 — x*|| af1 1 a1 1
= T Flx—x —— )l =X === )+
m T2 m m 72

1 1 Ix7 — x*| T
Hr =< (7 - =) - X @y,
T NT-1 nr p—

- n = Mt Tl t=1
D> < 1 1) o

< —+D'(——-—]+G

Tom nroom Zm

t=1
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Proof of Theorem A (4/4)

Note that we can also deduce in this way
T * (|2 * |2 T
Xt — X7 — ||xe41 — X
3 [[xe [I* = l[xes I &S
t=1 e t=1

[Ix1 — x*|| af1 1 a1 1
= —Fle-x{=——=)+lx-x{——— ]+
m T2 m m 72

1 1 Ix7 — x*| T
Hr =< (7 - =) - X @y,
T NT-1 nr p—
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Gradient Descent for Online Convex Optimization (GD)

Proof of Theorem A (4/4)

Note that we can also deduce in this way
T * (|2 * |2 T
Xe — X7 = [|Xex1 — x
Ll e P
t=1 e t=1

[Ix1 — x*|| af1 1 1
= ———Fle-x{=—-=)+lxs—x (== )+
m 2 M 2

* 1 1 HXT 2
+||x7 —x — = + G
Ier =<l (7 - =) - §jn

IA IA
3|9 <
+ \
D X
/N o
‘.—- +
| <
|
gle I~
+ | =

Q,

M~ =

3

- N——
Jr
Q
M*I
3

+DG(2VT —1)

TP SN /(Gf )
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Gradient Descent for Online Convex Optimization (GD)

Proof of Theorem A (4/4)

Note that we can also deduce in this way
T * (|2 * |2 T
Xe — X7 = [|Xex1 — x
Ll e P
t=1 e t=1

[Ix1 — x*|| af1 1 1
= ———Fle-x{=—-=)+lxs—x (== )+
m 2 M 2

* 1 1 HXT 2
+||x7 —x — = + G
Ier =<l (7 - =) - §jn

IA IA
3|9 <
+ \
D X
/N o
‘.—- +
| <
|
gle I~
+ | =

Q,

M~ =

3

- N——
Jr
Q
M*I
3

+DG(2V'T —1) <3DGVT.

TP SN /(Gf )
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The Lower Bound (for OLO)

Let K = {x € R? : ||x||oc < r} be a convex subset of R?. Let A be any
algorithm for Online Optimization on /. Then for any T > 1, there
exists a sequence of vectors g1, ...,87 with ||g¢]|2 < L and u € K such
that the regret of A satisfies

T T
regret(u) = Z<gt,xt> - Z(gt, u) > \/ﬂTD\/?

t=1 t=1

o The diameter D of K is at most 1/>°9_;(2r)2 < 2rV/d.

0 [|x]|oo < r & |x(i)| < rfor each i € [n].
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Proof of Theorem B (1/2)

@ The approach:
For any random variable z with domain V and any function f,

sup F(x) > E[f(2)]
xcV
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Proof of Theorem B (1/2)

@ The approach:
For any random variable z with domain V and any function f,

sup F(x) > E[f(2)]
xcV

@ regretr = maxyek regretr(u).
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Proof of Theorem B (1/2)

@ The approach:
For any random variable z with domain V and any function f,

sup F(x) > E[f(2)]
xcV

@ regretr = maxyek regretr(u).
o Let v,w € K such that |v—w]| = D.
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Proof of Theorem B (1/2)

@ The approach:
For any random variable z with domain V and any function f,

sup F(x) > E[f(z)].
xcV

@ regretr = maxyek regretr(u).

o Let v,w € K such that |v—w]| = D.

R vV—w
o lLet z:= Tv=w]
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Proof of Theorem B (1/2)

The approach:
For any random variable z with domain V and any function f,

sup F(x) > E[f(2)]

xcV

regretT = maxuci regret(u).
Let v,w € K such that ||v —w| =D
Let z := ”V xl\ = (z,v —w) =D.

Let €1,¢€p,...,eT be i.i.d. random variables such that
Prle; = 1] = Pr[e; = —1] = 1/2 for each t.
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Proof of Theorem B (1/2)

@ The approach:
For any random variable z with domain V and any function f,

sup F(x) > E[f(2)]
xeV

@ regretr = maxyek regretr(u).

o Let v,w € K such that |[v—w| =D

o Letz:= ”V xl\ = (z,v —w) =D.

o Let e1,€p,...,€e7 bei.i.d. random variables such that

Prle; = 1] = Pr[e; = —1] = 1/2 for each t.
@ We choose the losses g = Le;z.
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Proof of Theorem B (1/2)

@ The approach:
For any random variable z with domain V and any function f,

sup F(x) > E[f(2)]
xeV

@ regretr = maxyek regretr(u).

o Let v,w € K such that |[v—w| =D

o Letz:= ”V xl\ = (z,v —w) =D.

o Let e1,€p,...,€e7 bei.i.d. random variables such that

Prle; = 1] = Pr[e; = —1] = 1/2 for each t.
@ We choose the losses g = Le;z.

e The cost at t: (Le;z, x;).

o llgll = VL% - ||zl < L.
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Proof of Theorem B (2/2)

sup regrety >
81,---,8T

>

>

>

Joseph C. C. Lin (CSIE, TKU, TW)

rT T
E Z Le(z, %) — min Z Lei(z, u)]
=1 e
r T T
E |- min ; Le;(z,u)| = E [Teai%(; Lei(z, u)]
r T
E | max Lei(z,u
_u€{v,w} ; t< >
1T 1T
E 22L6t<z,v—|—w>+2’2Lq<z,v—w>”
L t=1 t=1
T T
L LD
EE ‘Z€t<Z,V7w>‘ :7E ‘Zﬁt]
t=1 t=1

V2LDVT
—a

(by Khintchine inequality)
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Gradient Descent for Online Convex Optimization (GD)

Prove the last inequality by Khintchine inequality.
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Subgradient & Subdifferential

Remark on the differentiability assumption

@ The differentiability for loss function f; is quite strong.
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Subgradient & Subdifferential

Remark on the differentiability assumption

@ The differentiability for loss function f; is quite strong.

@ There are losses that are NOT differentiable.
o fy(x) = |x — 10|, for x € R.
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Subgradient & Subdifferential

Remark on the differentiability assumption

@ The differentiability for loss function f; is quite strong.

@ There are losses that are NOT differentiable.
o fy(x) = |x — 10|, for x € R.
o f(x) = max(1 — (z,x),0) for x,z € R
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Subgradient & Subdifferential

Remark on the differentiability assumption

@ The differentiability for loss function f; is quite strong.

@ There are losses that are NOT differentiable.
o fy(x) = |x — 10|, for x € R.
o f(x) = max(1 — (z,x),0) for x,z € R

o RelU activation function: f;(x) = max(x, 0).
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Subgradient & Subdifferential

Recall

Subgradient

For a function f : R? — R, g € RY is a subgradient of f at x € R? if for
ally € RY,
fly) = f(x) + (g y —x).
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Subgradient & Subdifferential

Recall

Subgradient

For a function f : R? — R, g € RY is a subgradient of f at x € R? if for
ally € RY,
fly) = f(x) + (g y —x).

@ Note that the subgradient may NOT be unique!

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 19/28


https://en.wikipedia.org/wiki/Subderivative

Online Learning

Subgradient & Subdifferential

Recall

Subgradient

For a function f : R? — R, g € RY is a subgradient of f at x € R? if for
ally € RY,
fly) = f(x) + (g y —x).

@ Note that the subgradient may NOT be unique!

e We denote by df(x) the subdifferential at x which consists of all
subgradients of f in x.
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Subgradient & Subdifferential

Recall

Subgradient
For a function f : R? — R, g € RY is a subgradient of f at x € R? if for
ally € RY,

fly) = f(x) + (g8 y — x).

@ Note that the subgradient may NOT be unique!

e We denote by df(x) the subdifferential at x which consists of all
subgradients of f in x.

e If f is convex, then Of(x) turns out to be V£(x).
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Examples and Useful Facts (1/5)

Let f1,f,..., f,, be convex functions on R and let f = 4 + fo + ... + fm.
Then 9f(x) 2 9fi(x) + 0f(x) + - - - + Ofm(x), for each x € R¢.

e For any z, define g; € 0fi(z) for i =1,2,...,m.

°fx) = fi(x) >
i=1
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Examples and Useful Facts (1/5)

Let f1,f,..., f,, be convex functions on R and let f = 4 + fo + ... + fm.
Then 9f(x) 2 9fi(x) + 0f(x) + - - - + Ofm(x), for each x € R¢.

e For any z, define g; € 0fi(z) for i =1,2,...,m.

m

S ) =D F(x) > D (F(2) + (gix — 2))
i=1

i=1
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Examples and Useful Facts (1/5)

Let f1,f,..., f,, be convex functions on R and let f = 4 + fo + ... + fm.
Then 9f(x) 2 9fi(x) + 0f(x) + - - - + Ofm(x), for each x € R¢.

e For any z, define g; € 0fi(z) for i =1,2,...,m

zf > S° (@) + (g x—2) — F(2)+ <zg,, >

i=1

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 20/28



Online Learning

Examples and Useful Facts (1/5)

Let f1,f,..., f,, be convex functions on R and let f = 4 + fo + ... + fm.
Then 9f(x) 2 9fi(x) + 0f(x) + - - - + Ofm(x), for each x € R¢.

e For any z, define g; € 0fi(z) for i =1,2,...,m

zf > S° (@) + (g x—2) — F(2)+ <zg,, >

i=1
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Examples and Useful Facts (2/5)

Subgradients of an Absolute Value Function
Let f(x) = |x|, then the subdifferential set Of(x) is

{1}, x >0,
of(x)=1¢ {-1}, x<0,
[-1,1], x=0.
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Examples and Useful Facts (3/5)

Subgradients of the Hinge Loss

Consider f : RY = R, such that f(x) = max(1 — (z,x),0) for z € R
Then the subdifferential set 0f(x) is

{0}, if 1—(z,x) <0
of(x) =4 {—az:aecl0,1]}, ifl—(z,x)=0 .
{-z}, otherwise
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Examples and Useful Facts (4/5)

Subgradients of 2-Norm

Consider f : RY — R, such that f(x) = ||x/l2. Then the subdifferential set
O0f(x) is
_ { x/lxl, for x 0,
OF(x) = { :|z]a <1}, forx=0.
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Examples and Useful Facts (5/5)

A function f : RY — R is L-Lipschitz over a set V with respect to a norm
|- 1 if [£(x) = f(y)| < Llx — y]| for all x,y € V.

Let £ : R — R be a convex function. Then, f is L-Lipschitz in int dom(f)
with respect to the Ly-norm if and only if

for all x € int dom(f) and g € J0f(x), we have ||g|[> < L.

* The (sub-)gradient is also bounded by L!
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Subgradient & Subdifferential

A Recall for Conventional Continuity

Continuous Function
For a function f : D — R, D C R, f is continuous at xp € D if and only if

Ve > 0,35 >0, s.t. forall x € D,|x — x| <0 = |[f(x) — f(x0)| < €.
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Proof

@ Assume that f is L-Lipschitz, then
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Proof

@ Assume that f is L-Lipschitz, then|f(x) — f(y)| <
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Proof

@ Assume that f is L-Lipschitz, then|f(x) — f(y)| < L||x — y||2, for each
x,y € dom(f).
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Proof

@ Assume that f is L-Lipschitz, then|f(x) — f(y)| < L||x — y||2, for each
x,y € dom(f).

@ For small enough € > 0, let y = x + er5- € int dom(f).

||g||
o [x—yl2=
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Proof

@ Assume that f is L-Lipschitz, then|f(x) — f(y)| < L||x — y||2, for each
x,y € dom(f).

@ For small enough € > 0, let y = x + er5- € int dom(f).

||g||
o [x—yl2=e

@ Then,

Le=Llx—yl2 > [f(x)—f(y)|

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 26/28



Online Learning

Proof

@ Assume that f is L-Lipschitz, then|f(x) — f(y)| < L||x — y||2, for each
x,y € dom(f).

@ For small enough € > 0, let y = x + er5- € int dom(f).

||g||
o [x—yl2=e

@ Then,

Le=Llx—yll2 > [f(x)—f(y)| > f(y) — f(x)
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Proof

@ Assume that f is L-Lipschitz, then|f(x) — f(y)| < L||x — y||2, for each
x,y € dom(f).

@ For small enough € > 0, let y = x + er5- € int dom(f).

||g||
o [x—yl2=e

@ Then,

F(x) = F(y)l = f(y) — f(x)
<g7 y— X>

Le = Lljx —yll2
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Proof

@ Assume that f is L-Lipschitz, then|f(x) — f(y)| < L||x — y||2, for each
x,y € dom(f).

@ For small enough € > 0, let y = x + er5- € int dom(f).

||g||
o [x—yl2=e

@ Then,

F(x) = F(y)l = f(y) — f(x)
<g7 y— X>

)
= (ge——
< |gll2

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 26/28

Le = Lljx —yll2

(AVANAYS



Online Learning

Proof

@ Assume that f is L-Lipschitz, then|f(x) — f(y)| < L||x — y||2, for each
x,y € dom(f).

@ For small enough € > 0, let y = x + er5- € int dom(f).

||g||
o [x—yl2=e

@ Then,

F(x) = F(y)l = f(y) — f(x)
<g7 y— X>

g
_ <gm> — clgll.
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Projected Online Subgradient Descent

© Input: convex set IC, T, x; € K, step size {n;}.
Q fort <+ 1to T do:

© Play x; and observe cost f;(x;).

@ Set g; € Of(x¢).

@ Update and Project:

Yi+1 = X¢ — N8t

Xer1 = Mic(Yer1)
@ end for

Joseph C. C. Lin (CSIE, TKU, TW) Online Learning Spring 2023 27/28



Online Learning

Discussions
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