Online Learning

— Online Gradient Descent & Subgradients

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Spring 2023

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal: https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/the monograph: https://arxiv.org/abs/1912.13213

and also Elad Hazan's textbook:

Introduction to Online Convex Optimization, 2nd Edition.

Outline

- Does FTL always work?
- ② Gradient Descent for Online Convex Optimization (GD)
- 3 Subgradient & Subdifferential

• How about just following the one with best performance?

- How about just following the one with best performance?
 - Follow The Leader (FTL) Algorithm.

- How about just following the one with best performance?
 - Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\{f_t : L \mapsto \mathbb{R}\}$.
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_k(\mathbf{x}).$$

- How about just following the one with best performance?
 - Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\{f_t : L \mapsto \mathbb{R}\}$.
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_k(\mathbf{x}).$$

That is, the best solution for the previous t-1 steps.

- How about just following the one with best performance?
 - Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\{f_t : L \mapsto \mathbb{R}\}$.
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_k(\mathbf{x}).$$

That is, the best solution for the previous t-1 steps.

• It seems reasonable and makes sense, doesn't it?

t: 1 \mathbf{x}_{t} : (0.5, 0.5) ℓ_{t} : (0, 0.5) $f_{t}(\mathbf{x}_{t})$: 0.25 $f_{t}(\mathbf{x}_{t})$: (1, 0)

$$t$$
: 1 2
 \mathbf{x}_t : (0.5, 0.5) (1, 0)
 ℓ_t : (0, 0.5) (1, 0)
 $f_t(\mathbf{x}_t)$: 0.25 1
 $\operatorname{arg\,min}_{\mathbf{x}} \sum_{k=1}^t f_k(\mathbf{x})$: (1, 0) (0, 1)

t: 1 2 3
$$\mathbf{x}_{t}: \qquad (0.5, 0.5) \quad (1, 0) \quad (0, 1)$$

$$\ell_{t}: \qquad (0, 0.5) \quad (1, 0) \quad (0, 1)$$

$$f_{t}(\mathbf{x}_{t}): \qquad 0.25 \qquad 1 \qquad 1$$

$$\arg\min_{\mathbf{x}} \sum_{k=1}^{t} f_{k}(\mathbf{x}): \qquad (1, 0) \quad (0, 1) \quad (1, 0)$$

t: 1 2 3 4

$$\mathbf{x}_t$$
: (0.5,0.5) (1,0) (0,1) (1,0)

 ℓ_t : (0,0.5) (1,0) (0,1) (1,0)

 $f_t(\mathbf{x}_t)$: 0.25 1 1 1

 $\operatorname{arg\,min}_{\mathbf{x}} \sum_{k=1}^t f_k(\mathbf{x})$: (1,0) (0,1) (1,0) (0,1)

t: 1 2 3 4 5

$$\mathbf{x}_t$$
: (0.5,0.5) (1,0) (0,1) (1,0) (0,1)
 ℓ_t : (0,0.5) (1,0) (0,1) (1,0) (0,1)
 $f_t(\mathbf{x}_t)$: 0.25 1 1 1 1 arg min_x $\sum_{k=1}^{t} f_k(\mathbf{x})$: (1,0) (0,1) (1,0) (0,1) (1,0)

t: 1 2 3 4 5 ...

$$\mathbf{x}_t$$
: (0.5,0.5) (1,0) (0,1) (1,0) (0,1) ...

 ℓ_t : (0,0.5) (1,0) (0,1) (1,0) (0,1) ...

 $f_t(\mathbf{x}_t)$: 0.25 1 1 1 ...

arg min _{\mathbf{x}} $\sum_{k=1}^{t} f_k(\mathbf{x})$: (1,0) (0,1) (1,0) (0,1) ...

(0,1) (1,0) (0,1) (1,0)

t: 1 2 3 4 5 ...

$$\mathbf{x}_t$$
: (0.5,0.5) (1,0) (0,1) (1,0) (0,1) ...

 ℓ_t : (0,0.5) (1,0) (0,1) (1,0) (0,1) ...

 $f_t(\mathbf{x}_t)$: 0.25 1 1 1 1 ...

arg $\min_{\mathbf{x}} \sum_{k=1}^t f_k(\mathbf{x})$: (1,0) (0,1) (1,0) (0,1) (1,0) ...

optimum loss: $\approx T/2$.

FTL's loss: $\approx T$.

regret: $\approx T/2$ (linear).

Remark

- Note that the first example of no-regret analysis in this course uses a special kind of loss function.
 - Squared difference: $\|\mathbf{x}_t \mathbf{y}_t\|_2^2$.

Outline

- Does FTL always work?
- ② Gradient Descent for Online Convex Optimization (GD)
- 3 Subgradient & Subdifferential

Online Gradient Descent (GD)

- **1 Input:** convex set \mathcal{K} , T, $\mathbf{x}_1 \in \mathcal{K}$, learning rate $\{\eta_t\}$.
- **2** for $t \leftarrow 1$ to T do:
 - Play \mathbf{x}_t and observe cost $f_t(\mathbf{x}_t)$.
 - Update and Project:

$$\mathbf{y}_{t+1} = \mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t)$$

 $\mathbf{x}_{t+1} = \Pi_{\mathcal{K}}(\mathbf{y}_{t+1})$

end for

GD for online convex optimization is of no-regret

Theorem A

Online gradient descent with learning rate $\{\eta_t = \frac{D}{G\sqrt{t}}, t \in [T]\}$ guarantees the following for all $T \geq 1$:

$$\mathsf{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}_t) - \min_{\mathbf{x}^* \in \mathcal{K}} \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}^*) \leq \frac{3}{2} \mathit{GD} \sqrt{\mathcal{T}}.$$

- D: the diameter of K.
- Assume that $\nabla f_t(\mathbf{x}) \leq G$ for each $\mathbf{x} \in \mathcal{K}$.

- Let $\mathbf{x}^* \in \operatorname{arg\,min}_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x})$.
- Since f_t is convex, we have

$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}^*) \leq (\nabla f_t(\mathbf{x}_t))^{\top} (\mathbf{x}_t - \mathbf{x}^*).$$

ullet By the updating rule for $oldsymbol{x}_{t+1}$ and the Pythagorean theorem, we have

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 = \|\Pi_{\mathcal{K}}(\mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t)) - \mathbf{x}^*\|^2 \leq \|\mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t) - \mathbf{x}^*\|^2.$$

Hence

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \le \|\mathbf{x}_t - \mathbf{x}^*\|^2 + \eta_t^2 \|\nabla f_t(\mathbf{x}_t)\|^2 - 2\eta_t(\nabla f_t(\mathbf{x}_t))^\top (\mathbf{x}_t - \mathbf{x}^*)$$
$$2(\nabla f_t(\mathbf{x}_t))^\top (\mathbf{x}_t - \mathbf{x}^*) \le \frac{\|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2}{\eta_t} + \eta_t G^2.$$

• Summing above inequality from t=1 to T and setting $\eta_t=\frac{D}{G\sqrt{t}}$ and $\frac{1}{\eta_0}:=0$ we have :

$$2\left(\sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - f_{t}(\mathbf{x}^{*})\right) \leq 2\sum_{t=1}^{T} \nabla f_{t}(\mathbf{x}_{t}))^{\top}(\mathbf{x}_{t} - \mathbf{x}^{*})$$

$$\leq \sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \sum_{t=1}^{T} \|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq D^{2} \sum_{t=1}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq D^{2} \frac{1}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq 3DG\sqrt{T}.$$

$$\sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\begin{split} & \sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t} \\ & = & \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots \end{split}$$

$$\sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots$$

$$+ \|\mathbf{x}_{T} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{T-1}}\right) - \frac{\|\mathbf{x}_{T} - \mathbf{x}^{*}\|}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots$$

$$+ \|\mathbf{x}_{T} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{T-1}}\right) - \frac{\|\mathbf{x}_{T} - \mathbf{x}^{*}\|}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + D^{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots$$

$$+ \|\mathbf{x}_{T} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{T-1}}\right) - \frac{\|\mathbf{x}_{T} - \mathbf{x}^{*}\|}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + D^{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{D^{2}}{\eta_{1}} + D^{2} \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots$$

$$+ \|\mathbf{x}_{T} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{T-1}}\right) - \frac{\|\mathbf{x}_{T} - \mathbf{x}^{*}\|}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + D^{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{D^{2}}{\eta_{1}} + D^{2} \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{D^{2}}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \frac{D}{G\sqrt{t}} \leq$$

$$\sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots$$

$$+ \|\mathbf{x}_{T} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{T-1}}\right) - \frac{\|\mathbf{x}_{T} - \mathbf{x}^{*}\|}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + D^{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{D^{2}}{\eta_{1}} + D^{2} \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{D^{2}}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \frac{D}{G\sqrt{t}} \leq \frac{D^{2}}{D/(G\sqrt{T})} + DG(2\sqrt{T} - 1)$$

$$\sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots$$

$$+ \|\mathbf{x}_{T} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{T-1}}\right) - \frac{\|\mathbf{x}_{T} - \mathbf{x}^{*}\|}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + D^{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{D^{2}}{\eta_{1}} + D^{2} \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{D^{2}}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \frac{D}{G\sqrt{t}} \leq \frac{D^{2}}{D/(G\sqrt{T})} + DG(2\sqrt{T} - 1) \leq 3DG\sqrt{T}.$$

The Lower Bound (for OLO)

Theorem B

Let $\mathcal{K}=\{\mathbf{x}\in\mathbb{R}^d:\|\mathbf{x}\|_\infty\leq r\}$ be a convex subset of \mathbb{R}^d . Let A be any algorithm for Online Linear Optimization on \mathcal{K} . Then for any $T\geq 1$, there exists a sequence of vectors $\mathbf{g}_1,\ldots,\mathbf{g}_T$ with $\|\mathbf{g}_t\|_2\leq L$ and $\mathbf{u}\in\mathcal{K}$ such that the regret of A satisfies

$$\mathsf{regret}_{\mathcal{T}}(\mathbf{u}) = \sum_{t=1}^{\mathcal{T}} \langle \mathbf{g}_t, \mathbf{x}_t \rangle - \sum_{t=1}^{\mathcal{T}} \langle \mathbf{g}_t, \mathbf{u} \rangle \geq \frac{\sqrt{2}LD\sqrt{\mathcal{T}}}{4}.$$

- The diameter D of K is at most $\sqrt{\sum_{i=1}^{d} (2r)^2} \leq 2r\sqrt{d}$.
- $\|\mathbf{x}\|_{\infty} \le r \Leftrightarrow |\mathbf{x}(i)| \le r$ for each $i \in [n]$.

4 D > 4 D > 4 E > 4 E > E 900

• The approach:

For any random variable z with domain V and any function f,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

• The approach:

For any random variable ${\bf z}$ with domain ${\cal V}$ and any function f,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

• $\operatorname{regret}_T = \max_{\mathbf{u} \in \mathcal{K}} \operatorname{regret}_T(\mathbf{u})$.

• The approach:

For any random variable ${\bf z}$ with domain ${\cal V}$ and any function f,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

- $\operatorname{regret}_{\mathcal{T}} = \max_{\mathbf{u} \in \mathcal{K}} \operatorname{regret}_{\mathcal{T}}(\mathbf{u})$.
- Let $\mathbf{v}, \mathbf{w} \in \mathcal{K}$ such that $\|\mathbf{v} \mathbf{w}\| = D$.

• The approach:

For any random variable ${\bf z}$ with domain ${\cal V}$ and any function f,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

- $\operatorname{regret}_T = \max_{\mathbf{u} \in \mathcal{K}} \operatorname{regret}_T(\mathbf{u})$.
- Let $\mathbf{v}, \mathbf{w} \in \mathcal{K}$ such that $\|\mathbf{v} \mathbf{w}\| = D$.
- Let $z := \frac{v-w}{\|v-w\|}$

• The approach:

For any random variable ${\bf z}$ with domain ${\cal V}$ and any function f ,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

- $regret_T = max_{\mathbf{u} \in \mathcal{K}} regret_T(\mathbf{u})$.
- Let $\mathbf{v}, \mathbf{w} \in \mathcal{K}$ such that $\|\mathbf{v} \mathbf{w}\| = D$.
- Let $\mathbf{z} := \frac{\mathbf{v} \mathbf{w}}{\|\mathbf{v} \mathbf{w}\|} \Rightarrow \langle \mathbf{z}, \mathbf{v} \mathbf{w} \rangle = D$.
- Let $\epsilon_1, \epsilon_2, \dots, \epsilon_T$ be i.i.d. random variables such that $\Pr[\epsilon_t = 1] = \Pr[\epsilon_t = -1] = 1/2$ for each t.

Proof of Theorem B (1/2)

• The approach:

For any random variable ${\bf z}$ with domain ${\cal V}$ and any function f ,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

- $regret_T = max_{\mathbf{u} \in \mathcal{K}} regret_T(\mathbf{u})$.
- Let $\mathbf{v}, \mathbf{w} \in \mathcal{K}$ such that $\|\mathbf{v} \mathbf{w}\| = D$.
- Let $\mathbf{z} := \frac{\mathbf{v} \mathbf{w}}{\|\mathbf{v} \mathbf{w}\|} \Rightarrow \langle \mathbf{z}, \mathbf{v} \mathbf{w} \rangle = D$.
- Let $\epsilon_1, \epsilon_2, \dots, \epsilon_T$ be i.i.d. random variables such that $\Pr[\epsilon_t = 1] = \Pr[\epsilon_t = -1] = 1/2$ for each t.
- We choose the losses $\mathbf{g}_t = L\epsilon_t \mathbf{z}$.

Proof of Theorem B (1/2)

• The approach:

For any random variable ${\bf z}$ with domain ${\cal V}$ and any function f ,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

- $regret_T = max_{\mathbf{u} \in \mathcal{K}} regret_T(\mathbf{u})$.
- Let $\mathbf{v}, \mathbf{w} \in \mathcal{K}$ such that $\|\mathbf{v} \mathbf{w}\| = D$.
- Let $\mathbf{z} := \frac{\mathbf{v} \mathbf{w}}{\|\mathbf{v} \mathbf{w}\|} \Rightarrow \langle \mathbf{z}, \mathbf{v} \mathbf{w} \rangle = D$.
- Let $\epsilon_1, \epsilon_2, \dots, \epsilon_T$ be i.i.d. random variables such that $\Pr[\epsilon_t = 1] = \Pr[\epsilon_t = -1] = 1/2$ for each t.
- We choose the losses $\mathbf{g}_t = L\epsilon_t \mathbf{z}$.
 - The cost at $t: \langle L\epsilon_t \mathbf{z}, \mathbf{x}_t \rangle$.
 - $\bullet \|g_t\| = \sqrt{L^2 \epsilon_t^2} \cdot \|\mathbf{z}\| \le L.$

Proof of Theorem B (2/2)

$$\begin{split} \sup_{\mathbf{g}_{1},...,\mathbf{g}_{T}} \operatorname{regret}_{T} & \geq & E\left[\sum_{t=1}^{T} L\epsilon_{t}\langle\mathbf{z},\mathbf{x}_{t}\rangle - \min_{\mathbf{u} \in \mathcal{K}} \sum_{t=1}^{T} L\epsilon_{t}\langle\mathbf{z},\mathbf{u}\rangle\right] \\ & = & E\left[-\min_{\mathbf{u} \in \mathcal{K}} \sum_{t=1}^{T} L\epsilon_{t}\langle\mathbf{z},\mathbf{u}\rangle\right] = E\left[\max_{\mathbf{u} \in \mathcal{K}} \sum_{t=1}^{T} L\epsilon_{t}\langle\mathbf{z},\mathbf{u}\rangle\right] \\ & \geq & E\left[\max_{\mathbf{u} \in \{\mathbf{v},\mathbf{w}\}} \sum_{t=1}^{T} L\epsilon_{t}\langle\mathbf{z},\mathbf{u}\rangle\right] \\ & = & E\left[\frac{1}{2} \sum_{t=1}^{T} L\epsilon_{t}\langle\mathbf{z},\mathbf{v}+\mathbf{w}\rangle + \frac{1}{2} \Big| \sum_{t=1}^{T} L\epsilon_{t}\langle\mathbf{z},\mathbf{v}-\mathbf{w}\rangle\Big|\right] \\ & \geq & \frac{L}{2} E\left[\Big|\sum_{t=1}^{T} \epsilon_{t}\langle\mathbf{z},\mathbf{v}-\mathbf{w}\rangle\Big|\right] = \frac{LD}{2} E\left[\Big|\sum_{t=1}^{T} \epsilon_{t}\Big|\right] \\ & \geq & \frac{\sqrt{2} LD \sqrt{T}}{4}. \quad \text{(by Khintchine inequality)} \end{split}$$

Gradient Descent for Online Convex Optimization (GD)

Exercise

Prove the last inequality by Khintchine inequality.

• The differentiability for loss function f_t is quite strong.

- The differentiability for loss function f_t is quite strong.
- There are losses that are NOT differentiable.

- The differentiability for loss function f_t is quite strong.
- There are losses that are NOT differentiable.
 - $f_t(x) = |x 10|$, for $x \in \mathbb{R}$.

- The differentiability for loss function f_t is quite strong.
- There are losses that are NOT differentiable.
 - $f_t(x) = |x 10|$, for $x \in \mathbb{R}$.
 - $f_t(\mathbf{x}) = \max(1 \langle \mathbf{z}, \mathbf{x} \rangle, 0)$ for $\mathbf{x}, \mathbf{z} \in \mathbb{R}^d$.

- The differentiability for loss function f_t is quite strong.
- There are losses that are NOT differentiable.
 - $f_t(x) = |x 10|$, for $x \in \mathbb{R}$.
 - $f_t(\mathbf{x}) = \max(1 \langle \mathbf{z}, \mathbf{x} \rangle, 0)$ for $\mathbf{x}, \mathbf{z} \in \mathbb{R}^d$.
 - ReLU activation function: $f_t(x) = \max(x, 0)$.

Subgradient

For a function $f : \mathbb{R}^d \to \mathbb{R}$, $\mathbf{g} \in \mathbb{R}^d$ is a subgradient of f at $x \in \mathbb{R}^d$ if for all $\mathbf{y} \in \mathbb{R}^d$,

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle.$$

Subgradient

For a function $f : \mathbb{R}^d \mapsto \mathbb{R}$, $\mathbf{g} \in \mathbb{R}^d$ is a subgradient of f at $x \in \mathbb{R}^d$ if for all $\mathbf{y} \in \mathbb{R}^d$,

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle.$$

Note that the subgradient may NOT be unique!

Subgradient

For a function $f : \mathbb{R}^d \mapsto \mathbb{R}$, $\mathbf{g} \in \mathbb{R}^d$ is a subgradient of f at $x \in \mathbb{R}^d$ if for all $\mathbf{y} \in \mathbb{R}^d$,

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle.$$

- Note that the subgradient may NOT be unique!
- We denote by $\partial f(\mathbf{x})$ the subdifferential at \mathbf{x} which consists of all subgradients of f in \mathbf{x} .

Subgradient

For a function $f : \mathbb{R}^d \mapsto \mathbb{R}$, $\mathbf{g} \in \mathbb{R}^d$ is a subgradient of f at $x \in \mathbb{R}^d$ if for all $\mathbf{y} \in \mathbb{R}^d$,

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle.$$

- Note that the subgradient may NOT be unique!
- We denote by $\partial f(\mathbf{x})$ the subdifferential at \mathbf{x} which consists of all subgradients of f in \mathbf{x} .
- If f is convex, then $\partial f(\mathbf{x})$ turns out to be $\nabla f(\mathbf{x})$.

Theorem

Let f_1, f_2, \ldots, f_m be convex functions on \mathbb{R}^d and let $f = f_1 + f_2 + \ldots + f_m$. Then $\partial f(\mathbf{x}) \supseteq \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x}) + \cdots + \partial f_m(\mathbf{x})$, for each $\mathbf{x} \in \mathbb{R}^d$.

•
$$f(\mathbf{x}) = \sum_{i=1}^{m} f_i(\mathbf{x}) \geq$$

Theorem

Let f_1, f_2, \ldots, f_m be convex functions on \mathbb{R}^d and let $f = f_1 + f_2 + \ldots + f_m$. Then $\partial f(\mathbf{x}) \supseteq \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x}) + \cdots + \partial f_m(\mathbf{x})$, for each $\mathbf{x} \in \mathbb{R}^d$.

•
$$f(\mathbf{x}) = \sum_{i=1}^{m} f_i(\mathbf{x}) \geq \sum_{i=1}^{m} (f_i(\mathbf{z}) + \langle \mathbf{g}_i, \mathbf{x} - \mathbf{z} \rangle)$$

Theorem

Let f_1, f_2, \ldots, f_m be convex functions on \mathbb{R}^d and let $f = f_1 + f_2 + \ldots + f_m$. Then $\partial f(\mathbf{x}) \supseteq \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x}) + \cdots + \partial f_m(\mathbf{x})$, for each $\mathbf{x} \in \mathbb{R}^d$.

•
$$f(\mathbf{x}) = \sum_{i=1}^{m} f_i(\mathbf{x}) \geq \sum_{i=1}^{m} (f_i(\mathbf{z}) + \langle \mathbf{g}_i, \mathbf{x} - \mathbf{z} \rangle) = f(\mathbf{z}) + \left\langle \sum_{i=1}^{m} \mathbf{g}_i, \mathbf{x} - \mathbf{z} \right\rangle.$$

Theorem

Let f_1, f_2, \ldots, f_m be convex functions on \mathbb{R}^d and let $f = f_1 + f_2 + \ldots + f_m$. Then $\partial f(\mathbf{x}) \supseteq \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x}) + \cdots + \partial f_m(\mathbf{x})$, for each $\mathbf{x} \in \mathbb{R}^d$.

•
$$f(\mathbf{x}) = \sum_{i=1}^{m} f_i(\mathbf{x}) \geq \sum_{i=1}^{m} (f_i(\mathbf{z}) + \langle \mathbf{g}_i, \mathbf{x} - \mathbf{z} \rangle) = f(\mathbf{z}) + \left\langle \sum_{i=1}^{m} \mathbf{g}_i, \mathbf{x} - \mathbf{z} \right\rangle.$$

Subgradients of an Absolute Value Function

Let f(x) = |x|, then the subdifferential set $\partial f(x)$ is

$$\partial f(x) = \begin{cases} \{1\}, & x > 0, \\ \{-1\}, & x < 0, \\ [-1, 1], & x = 0. \end{cases}$$

Subgradients of the Hinge Loss

Consider $f: \mathbb{R}^d \to \mathbb{R}$, such that $f(\mathbf{x}) = \max(1 - \langle \mathbf{z}, \mathbf{x} \rangle, 0)$ for $\mathbf{z} \in \mathbb{R}^d$. Then the subdifferential set $\partial f(\mathbf{x})$ is

$$\partial f(\mathbf{x}) = \left\{ \begin{array}{ll} \{\mathbf{0}\}, & \text{if } 1 - \langle \mathbf{z}, \mathbf{x} \rangle < 0 \\ \{-\alpha \mathbf{z} : \alpha \in [0, 1]\}, & \text{if } 1 - \langle \mathbf{z}, \mathbf{x} \rangle = 0 \\ \{-\mathbf{z}\}, & \text{otherwise} \end{array} \right..$$

Subgradients of 2-Norm

Consider $f: \mathbb{R}^d \to \mathbb{R}$, such that $f(\mathbf{x}) = \|\mathbf{x}\|_2$. Then the subdifferential set $\partial f(\mathbf{x})$ is

$$\partial f(\mathbf{x}) = \left\{ egin{array}{ll} \mathbf{x}/\|\mathbf{x}\|_2, & ext{for } \mathbf{x}
eq \mathbf{0}, \\ \{\mathbf{z}: \|\mathbf{z}\|_2 \le 1\}, & ext{for } \mathbf{x} = \mathbf{0}. \end{array}
ight.$$

Lipschitz Continuity

A function $f : \mathbb{R}^d \mapsto \mathbb{R}$ is *L*-Lipschitz over a set V with respect to a norm $\|\cdot\|$ if $|f(\mathbf{x}) - f(\mathbf{y})| \le L\|\mathbf{x} - \mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in V$.

Theorem

Let $f : \mathbb{R}^d \mapsto \mathbb{R}$ be a convex function. Then, f is L-Lipschitz in int dom(f) with respect to the L_2 -norm if and only if

for all $\mathbf{x} \in \text{int dom}(f)$ and $\mathbf{g} \in \partial f(\mathbf{x})$, we have $\|\mathbf{g}\|_2 \leq L$.

 \star The (sub-)gradient is also bounded by L!

A Recall for Conventional Continuity

Continuous Function

For a function $f:D\mapsto \mathbb{R}$, $D\subseteq \mathbb{R}$, f is continuous at $x_0\in D$ if and only if

$$\forall \epsilon > 0, \exists \delta > 0$$
, s.t. for all $x \in D, |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$.

• Assume that *f* is *L*-Lipschitz, then

• Assume that f is L-Lipschitz, then $|f(\mathbf{x}) - f(\mathbf{y})| \le$

• Assume that f is L-Lipschitz, then $|f(\mathbf{x}) - f(\mathbf{y})| \le L ||\mathbf{x} - \mathbf{y}||_2$, for each $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$.

- Assume that f is L-Lipschitz, then $|f(\mathbf{x}) f(\mathbf{y})| \le L ||\mathbf{x} \mathbf{y}||_2$, for each $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$.
- For small enough $\epsilon > 0$, let $\mathbf{y} = \mathbf{x} + \epsilon \frac{\mathbf{g}}{\|\mathbf{g}\|_2} \in \text{int dom}(f)$.
 - $\|\mathbf{x} \mathbf{y}\|_2 =$

- Assume that f is L-Lipschitz, then $|f(\mathbf{x}) f(\mathbf{y})| \le L ||\mathbf{x} \mathbf{y}||_2$, for each $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$.
- For small enough $\epsilon > 0$, let $\mathbf{y} = \mathbf{x} + \epsilon \frac{\mathbf{g}}{\|\mathbf{g}\|_2} \in \text{int dom}(f)$.
 - $\|\mathbf{x} \mathbf{y}\|_2 = \epsilon.$

- Assume that f is L-Lipschitz, then $|f(\mathbf{x}) f(\mathbf{y})| \le L ||\mathbf{x} \mathbf{y}||_2$, for each $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$.
- For small enough $\epsilon > 0$, let $\mathbf{y} = \mathbf{x} + \epsilon \frac{\mathbf{g}}{\|\mathbf{g}\|_2} \in \text{int dom}(f)$.
 - $\|\mathbf{x} \mathbf{y}\|_2 = \epsilon.$
- Then,

$$L\epsilon = L\|\mathbf{x} - \mathbf{y}\|_2 \geq |f(\mathbf{x}) - f(\mathbf{y})|$$

- Assume that f is L-Lipschitz, then $|f(\mathbf{x}) f(\mathbf{y})| \le L ||\mathbf{x} \mathbf{y}||_2$, for each $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$.
- For small enough $\epsilon > 0$, let $\mathbf{y} = \mathbf{x} + \epsilon \frac{\mathbf{g}}{\|\mathbf{g}\|_2} \in \text{int dom}(f)$.
 - $\|\mathbf{x} \mathbf{y}\|_2 = \epsilon.$
- Then,

$$L\epsilon = L\|\mathbf{x} - \mathbf{y}\|_2 \geq |f(\mathbf{x}) - f(\mathbf{y})| \geq f(\mathbf{y}) - f(\mathbf{x})$$

- Assume that f is L-Lipschitz, then $|f(\mathbf{x}) f(\mathbf{y})| \le L ||\mathbf{x} \mathbf{y}||_2$, for each $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$.
- For small enough $\epsilon > 0$, let $\mathbf{y} = \mathbf{x} + \epsilon \frac{\mathbf{g}}{\|\mathbf{g}\|_2} \in \operatorname{int} \operatorname{dom}(f)$.
 - $\|\mathbf{x} \mathbf{y}\|_2 = \epsilon.$
- Then,

$$L\epsilon = L\|\mathbf{x} - \mathbf{y}\|_2 \geq |f(\mathbf{x}) - f(\mathbf{y})| \geq f(\mathbf{y}) - f(\mathbf{x})$$

$$\geq \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$$

- Assume that f is L-Lipschitz, then $|f(\mathbf{x}) f(\mathbf{y})| \le L ||\mathbf{x} \mathbf{y}||_2$, for each $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$.
- For small enough $\epsilon > 0$, let $\mathbf{y} = \mathbf{x} + \epsilon \frac{\mathbf{g}}{\|\mathbf{g}\|_2} \in \text{int dom}(f)$.
 - $\|\mathbf{x} \mathbf{y}\|_2 = \epsilon.$
- Then,

$$L\epsilon = L \|\mathbf{x} - \mathbf{y}\|_{2} \geq |f(\mathbf{x}) - f(\mathbf{y})| \geq f(\mathbf{y}) - f(\mathbf{x})$$

$$\geq \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$$

$$= \langle \mathbf{g}, \epsilon \frac{\mathbf{g}}{\|\mathbf{g}\|_{2}} \rangle$$

- Assume that f is L-Lipschitz, then $|f(\mathbf{x}) f(\mathbf{y})| \le L ||\mathbf{x} \mathbf{y}||_2$, for each $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$.
- For small enough $\epsilon > 0$, let $\mathbf{y} = \mathbf{x} + \epsilon \frac{\mathbf{g}}{\|\mathbf{g}\|_2} \in \text{int dom}(f)$.
 - $\bullet \|\mathbf{x} \mathbf{y}\|_2 = \epsilon.$
- Then,

$$L\epsilon = L \|\mathbf{x} - \mathbf{y}\|_{2} \geq |f(\mathbf{x}) - f(\mathbf{y})| \geq f(\mathbf{y}) - f(\mathbf{x})$$

$$\geq \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$$

$$= \langle \mathbf{g}, \epsilon \frac{\mathbf{g}}{\|\mathbf{g}\|_{2}} \rangle = \epsilon \|\mathbf{g}\|_{2}.$$

Projected Online Subgradient Descent

- **1 Input:** convex set \mathcal{K} , \mathcal{T} , $\mathbf{x}_1 \in \mathcal{K}$, step size $\{\eta_t\}$.
- **2** for $t \leftarrow 1$ to T do:
 - Play \mathbf{x}_t and observe cost $f_t(\mathbf{x}_t)$.

 - 3 Update and Project:

$$\mathbf{y}_{t+1} = \mathbf{x}_t - \eta_t \mathbf{g}_t$$

 $\mathbf{x}_{t+1} = \Pi_{\mathcal{K}}(\mathbf{y}_{t+1})$

end for

Discussions