Randomized Algorithms

Introduction

Joseph Chuang-Chieh Lin
Dept. CSIE, Tamkang University

Self Introduction

- Ph.D.: CSIE, National Chung Cheng University, 2011.
- DAAD-NSC Sandwich Program (2007-2008).
- Dissertation supervisors: Maw-Shang Chang \& Peter Rossmanith (RWTH Aachen)
- Postdoc in Genomics Research Center, Academia Sinica (2011-2014).
- Postdoc in Institute of Information Science, Academia Sinica (2014-2018).
- Quantitative Analyst (intern) of Point72/Cubist Systematic Strategies (2018-2019).
- Quantitative Analyst of Seth Technologies Inc. (2020-2021/01).

Textbooks and Materials

- Textbooks:

- Randomized Algorithms. Motwani, R. and Raghavan, P., 1995. Cambridge University Press.

- Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis. Second Edition. M. Mitzenmacher and E. Upfal, Cambridge University Press, 2017.

Prerequisites

- Basic undergraduate courses in
- Algorithms
- Data structures
- Probability theory
- Discrete mathematics
- Linear Algebra
- Motivation.
- Curiosity.

Topics

- Introduction \& the Min-Cut Problem
- Examples of Probability Paradoxes
- Probability Prerequisites
- Coupon Collector's Problem
- The Secretary Problem
- Randomized Quicksort
- Moments and Deviations
- Chernoff Bounds and Hoeffding Bounds
- Balls and Bins
- Continuous Distributions and the Poisson Process
- Markov Chains and Random Walks
- Monte Chains Monte Carlo (MCMC)

Grading Policy

- Attendance (10\%)
- Assignments (x 6, 30\%)
- Midterm Presentation (30\%)
- Final Presentation (30\%)

Traditional deterministic algorithms

Randomized algorithms

Why?

- Randomized algorithms are
- often much simpler than the best known deterministic ones.
- often much more efficient (faster or using less space) than the best known deterministic ones.
- Sometimes ideas from the randomized algorithms lead to good deterministic algorithms.

Comparisons

- It's different from the average-case analysis of deterministic algorithms.
- e.g., expected running time of a deterministic algorithm on input sampled from a distribution.
- In most scenarios, it's NOT a heuristic algorithm.
- The accuracy is guaranteed, or
- The running time is guaranteed.

An illustrating example:

- Problem: find a grade-‘ A ' student in a class of n students where half of them get 'A'.
- What is the time complexity for the best deterministic algorithm?
- I mean, in the "worst case".

A randomized algorithm (from Wikipedia)

findingA_LV(array L, n)
 begin
 repeat
 Randomly select one element out of n elements.
 until ' A ' is found
 end

Assignment: Prove that the expected number of iterations is $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{2^{i}} \leq 2$.

A randomized algorithm (from Wikipedia)

findingA_MC(array L, n, k)
begin
$i \leftarrow 0$
repeat
Randomly select one element out of n elements. $i \leftarrow i+1$
until $i=k$ or ' A ' is found end

After k iterations, $\operatorname{Pr}[$ find $A]=1-(1 / 2)^{k}$.

Birthday problem (paradox)

- There are n randomly chosen people in a room.
- How large should n be such that there is at least one pair of them having the same birthday ($\mathrm{mm} / \mathrm{dd}$)?
- By the pigeonhole principle, $n=367$? or 366 ?
- Let us consider this problem in the other way around. How large should n be such that there is at least one pair of them having the same birthday ($\mathrm{mm} / \mathrm{dd} \mathrm{)} \mathrm{with} \mathrm{probability} \mathrm{\geq 0.5} \mathrm{?}$

Birthday problem (paradox)

- n people: $x_{1}, x_{2}, \ldots, x_{n}$
- Event i : some pair of $x_{1}, x_{2}, \ldots, x_{i}$ have the same birthday.
- $\operatorname{Pr}[$ Event 2$]=1-\frac{364}{365}$
- $\operatorname{Pr}[$ Event 3$]=1-\frac{364}{365} \cdot \frac{363}{365}$
- $\operatorname{Pr}[$ Event23 $]=1-\frac{364}{365} \cdot \frac{363}{365} \cdots \frac{343}{365} \approx 0.507297$.
- 23 is much less than 366 or 367 .

Birthday problem (paradox)

- Assignment: Compute n such that there is at least one pair of them having the same birthday with probability ≥ 0.9.

Min-Cut

- A graph $G=(V, E)$ and its two "cuts".

$|V|=n,|E|=m$
- Cut: a partition of the vertices in V into two non-empty, disjoint sets S and T such that
- $\quad S \cup T=V$
- The cutset of a cut:
- $\quad\{u v \in E \mid u \in S, v \in T\}$.
- The size of the cut:
- the cardinality of its cutset.

Edge contraction

Karger's edge-contraction algorithm (1993)

Procedure contract $(G=(V, E))$:
while $|V|>2$:
choose $e \in E$ uniformly at random

$$
G \leftarrow G / e
$$

return the only cut in G

By Thore Husfeldt - Created in python using the networkx library for graph manipulation, neato for layout, and TikZ for drawing., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=21103489

Analysis

- C : a specific cut of G.
- k : the size of the cut C.
- The minimum degree of G must be $\geq k$. (WHY?)
- So, $|E| \geq n k / 2$.
- The probability that the algorithm picks an edge from C to contract is

$$
\frac{k}{|E|} \leq \frac{k}{n k / 2}=\frac{2}{n}
$$

Analysis (contd.)

- Let p_{n} be the probability that the algorithm on an n-vertex graph avoids C.
- Then,

$$
p_{n} \geq\left(1-\frac{2}{n}\right) \cdot p_{n-1}
$$

- The recurrence can be expanded as

$$
p_{n} \geq \prod_{i=0}^{n-3}\left(1-\frac{2}{n-i}\right)=\frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdots \frac{2}{4} \cdot \frac{1}{3}=\frac{1}{\binom{n}{2}}
$$

Analysis (contd.)

- The probability of "success" is $\binom{n}{2}^{-1}$
- A bit too low, isn't it?
- How about repeating it for $T=\binom{n}{2} \ln n$ times, and then choose the
minimum of them?
- The probability of NOT finding a min-cut is $\left[1-\binom{n}{2}^{-1}\right]^{T} \leq \frac{1}{e^{\ln n}}=\frac{1}{n}$.
- Total running time: $O(T m)$ or $O\left(T n^{2}\right)$.

A bonus project (5\%)

- Implement Karger's edge-contraction algorithm.

Assignment 1 (5\%)

A randomized algorithm (from Wikipedia) (3\%)

```
findingA_LV(array L, n)
begin
    repeat
            Randomly select one element out of n elements.
        until 'A' is found
    end
```

 Assignment: Prove that the expected number of iterations is \(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{2^{i}} \leq 2\).

Birthday problem (paradox) (2\%)

- Assignment: Compute n such that there is at least one pair of them having the same birthday with probability ≥ 0.9.

