Randomized Algorithms

Discrete Random Variables and Expectation

Joseph Chuang-Chieh Lin
Dept. CSIE, Tamkang University

Review

- Why randomized algorithms?
- Types of randomized algorithms.

Randomized algorithms

figure freely downloaded from https://pixabay.com/illustrations/coin-flipping-coin-hand-flip-flick-5822271/

Why?

- Randomized algorithms are
- often much simpler than the best known deterministic ones.
- often much more efficient (faster or using less space) than the best known deterministic ones.

Two types of randomized algorithms

- The accuracy is guaranteed.
- Las Vegas algorithms.

Mike Boening@mbphotography

- The running time is guaranteed.
- Monte Carlo algorithms.

Pasquale Iovino@pask_07

Min-Cut

- A graph $G=(V, E)$ and its two "cuts".

$|V|=n,|E|=m$
- Cut: a partition of the vertices in V into two non-empty, disjoint sets S and T such that
- $\quad S \cup T=V$
- The cutset of a cut:
- $\quad\{u v \in E \mid u \in S, v \in T\}$.
- The size of the cut:
- the cardinality of its cutset.

Edge contraction

Karger's edge-contraction algorithm (1993)

Procedure contract $(G=(V, E))$:
while $|V|>2$:
choose $e \in E$ uniformly at random

$$
G \leftarrow G / e
$$

return the only cut in G

By Thore Husfeldt - Created in python using the networkx library for graph manipulation, neato for layout, and TikZ for drawing., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=21103489

Analysis

- C : a specific cut of G.
- k : the size of the cut C.
- The minimum degree of G must be $\geq k$. (WHY?)
- So, $|E| \geq n k / 2$.
- The probability that the algorithm picks an edge from C to contract is

$$
\frac{k}{|E|} \leq \frac{k}{n k / 2}=\frac{2}{n}
$$

Analysis (contd.)

- Let p_{n} be the probability that the algorithm on an n-vertex graph avoids C.
- Then,

$$
p_{n} \geq\left(1-\frac{2}{n}\right) \cdot p_{n-1}
$$

- The recurrence can be expanded as

$$
p_{n} \geq \prod_{i=0}^{n-3}\left(1-\frac{2}{n-i}\right)=\frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdots \frac{2}{4} \cdot \frac{1}{3}=\frac{1}{\binom{n}{2}}
$$

Analysis (contd.)

- Repeat the contract algorithm for $T=\binom{n}{2} \ln n$ times, and then choose the
minimum of them.
- The probability of NOT finding a min-cut is $\left[1-\binom{n}{2}^{-1}\right]^{T} \leq \frac{1}{e^{\ln n}}=\frac{1}{n}$.
- Let's take a look at the exponential function e^{x}.

Facts on e^{x}

$$
\begin{aligned}
e^{x} & :=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots \\
\therefore e & =\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
\end{aligned}
$$

$$
\left(1+\frac{1}{n}\right)^{n}=\binom{n}{0} 1+\binom{n}{1} \frac{1}{n}+\binom{n}{2} \frac{1}{n^{2}}+\binom{n}{3} \frac{1}{n^{3}}+\cdots+\binom{n}{n} \frac{1}{n^{n}}
$$

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

Probability basics

A random variable X on a sample space Ω is a real-valued function. That is,

$$
X: \Omega \mapsto \mathbf{R}
$$

A discrete random variable is a random variable that takes on only a finite or countably infinite number of values.

Kolmogorov axioms

- 1. For any event $A \subset S, P(A) \geq 0$.
- 2. $\operatorname{Pr}[S]=1$.
- 3. If A_{1}, A_{2}, \ldots are mutually exclusive events, then

$$
\operatorname{Pr}\left[A_{1} \cup A_{2} \cup \ldots\right]=\operatorname{Pr}\left[A_{1}\right]+\operatorname{Pr}\left[A_{2}\right]+\ldots
$$

Useful theorems

- $\operatorname{Pr}[\varnothing]=0$ for any experiment.
- For any event $A \subseteq S, \operatorname{Pr}[A]=1-\operatorname{Pr}[\bar{A}]$.
- If $A \subseteq S, B \subseteq S$ are any two events, then $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$.
- If $A \subset B$, then $\operatorname{Pr}[A] \leq \operatorname{Pr}[B]$.

Conditional probability

- In an experiment with sample space S, let B be any event such that $\operatorname{Pr}[B]>0$.
- Then the conditional probability of A occurring, given that B has occurred, is

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

for any $A \subset S$.

Example

- Suppose you are going to buy milk in a supermarket.
- There are a total of 40 boxes for you to choose from.
- 10 of them are corrupted (not visible on the outside).
> Then, you are asked to buy two boxes of milk.
What is the probability that both boxes are good?

Example (contd.)

- A: the event that the first box you choose is good. B : the event that the second box you choose is good. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=\frac{30}{40} \\
& \operatorname{Pr}[B \mid A]=\frac{29}{39} \\
& \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]=\frac{30}{40} \cdot \frac{29}{39}=\frac{87}{156} .
\end{aligned}
$$

Theorem of total probability

- If $A_{1}, A_{2}, \ldots, A_{n}$ is a partition of S, and B is any event, then

$$
\operatorname{Pr}[B]=\sum_{i=1}^{n} \operatorname{Pr}\left[B \mid A_{i}\right] \operatorname{Pr}\left[A_{i}\right] .
$$

Bayes' theorem

- From the theorem of total probability, and granted that $A_{1}, A_{2}, \ldots, A_{n}$ is a partition of S, we have

$$
\begin{aligned}
\operatorname{Pr}\left[A_{i} \mid B\right] & =\frac{\operatorname{Pr}\left[A_{i} \cap B\right]}{\operatorname{Pr}[B]} \\
& =\frac{\operatorname{Pr}\left[A_{i}\right] \cdot \operatorname{Pr}\left[B \mid A_{i}\right]}{\sum_{i=1}^{n} \operatorname{Pr}\left[A_{i}\right] \cdot \operatorname{Pr}\left[B \mid A_{i}\right]}
\end{aligned}
$$

- This result is known as Bayes'theorem.

Example

- Assuming a jury selected to participate in a criminal trial.
- Whether the defendant is guilty or not, there is a 95% chance of making the correct verdict.
- It is also assumed that the local police law enforcement is very strict, such that 99% of the people being tried are actually guilty.
- If a jury is known to sentence a defendant not guilty, what is the probability that the defendant is really not guilty?

Example (contd.)

- $A_{1:}$ the defendant is guilty
- $A_{2}=\bar{A}_{1}$: the defendant is not guilty.
- Let B be the event that the defendant is sentenced to unguilty.
- We want to know $\operatorname{Pr}\left[A_{2} \mid B\right]$.

Example (contd.)

$$
\begin{aligned}
\operatorname{Pr}\left[A_{2} \mid B\right] & =\frac{\operatorname{Pr}\left[A_{2}\right] \operatorname{Pr}\left[B \mid A_{2}\right]}{\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[B \mid A_{1}\right]+\operatorname{Pr}\left[A_{2}\right] \operatorname{Pr}\left[B \mid A_{2}\right]} \\
& =\frac{(0.01)(0.95)}{(0.99)(0.05)+(0.01)(0.95)} \\
& =0.161
\end{aligned}
$$

- Before the sentence, this defendant is supposed to be unguilty with probability 1%.
- After the sentence of unguilty, the probability is increased to be $\mathbf{1 6 . 1 \%}$.

Independent events

If $A \subset S$ and $B \subset S$ are any two events with nonzero probabilities, A and B are called independent if and only if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$

That is, $\operatorname{Pr}[A]=\operatorname{Pr}[A \mid B]$ and $\operatorname{Pr}[B]=\operatorname{Pr}[B \mid A]$.

Independent trials

- An experiment is said to consist of n independent trials if and only if
$-S=T_{1} \times T_{2} \times \cdots \times T_{n}$.
- For every $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in S$, $\operatorname{Pr}\left[\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}\right]=\operatorname{Pr}\left[\left\{x_{1}\right\}\right] \cdot \operatorname{Pr}\left[\left\{x_{2}\right\}\right] \cdots \operatorname{Pr}\left[\left\{x_{n}\right\}\right]$, where $\operatorname{Pr}\left[\left\{x_{i}\right\}\right]$ is the probability of $x_{i} \in T_{i}$ occurring on trial i.

Expectation

- The expectation of a discrete random variable X, denoted by $\mathbf{E}[X]$, is

$$
\mathbf{E}[X]=\sum_{i} i \cdot \operatorname{Pr}[X=i]
$$

- Example: Let X denote the sum of of dices:

$$
\mathbf{E}[X]=\frac{1}{36} \cdot 2+\frac{2}{36} \cdot 3+\frac{3}{36} \cdot 4+\cdots+\frac{1}{36} \cdot 12=7 .
$$

Linearity of Expectation

- For any finite collection of discrete random variables $X_{1}, X_{2}, \ldots, X_{n}$ with finite expectations,

$$
\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]
$$

- For any constant c and discrete random variable X,

$$
\mathbf{E}[c X]=c \cdot \mathbf{E}[X] .
$$

- Why is it useful?

Example

- Consider the dice-throwing example again.
- X_{1} : the outcome of die 1
- X_{2} : the outcome of die 2

$$
\begin{aligned}
& \mathbf{E}\left[X_{1}\right]=\mathbf{E}\left[X_{2}\right]=\frac{1}{6} \cdot \sum_{j=1}^{6} j=\frac{7}{2} \\
& \mathbf{E}[X]=\mathbf{E}\left[X_{1}+X_{2}\right]=7 .
\end{aligned}
$$

Bernoulli random variable

- Suppose we run an experiment that succeeds with probability p and fails with probability $1-p$.

$$
Y= \begin{cases}1 & \text { if the experiment succeeds }, \\ 0 & \text { otherwise }\end{cases}
$$

- Y: Bernoulli random variable.

- or indicator random variable.

Binomial random variable

- A binomial random variable X with parameters n and p, denoted by $B(n, p)$, is defined as

$$
\operatorname{Pr}[X=j]=\binom{n}{j} p^{j}(1-p)^{n-j} .
$$

for $j=0,1,2, \ldots, n$.

- Exercise: Show that $\sum_{j=0}^{n} \operatorname{Pr}[X=j]=1$.

Binomial random variable (contd.)

- $\mathbf{E}[X]=\sum_{j=0}^{n} j\binom{n}{j} p^{j}(1-p)^{n-j}$
$=\sum_{j=0}^{n} j \frac{n!}{j!(n-j)!} p^{j}(1-p)^{n-j}$
$=\sum_{j=1}^{n} \frac{n!}{(j-1)!(n-j)!} p^{j}(1-p)^{n-j}$
$=n p \sum_{j=1}^{n} \frac{(n-1)!}{(j-1)!((n-1)-(j-1))!} p^{j-1}(1-p)^{(n-1)-(j-1)}$
$=n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!((n-1)-k)!} p^{k}(1-p)^{(n-1)-k}$
$=n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}$
$=n p$.

Binomial random variable (contd.)

- $\mathbf{E}[X]=\sum_{j=0}^{n} j\binom{n}{j} p^{j}(1-p)^{n-j}$

$$
=\sum_{j=0}^{n} j \frac{n!}{j!(n-j)!} p^{j}(1-p)^{n-j}
$$

$$
=\sum_{j=1}^{n} \frac{n!}{(j-1)!(n-j)!} p^{j}(1-p)^{n-j}
$$

$$
=n p \sum_{j=1}^{n} \frac{(n-1)!}{(j-1)!((n-1)-(j-1))!} p^{j-1}(1-p)^{(n-1)-(j-1)}
$$

$$
\begin{aligned}
& =n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!((n-1)-k)!} p^{k}(1-p)^{(n-1)-k} \\
& =n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}
\end{aligned}
$$

$$
=n p
$$

Let's make it simpler!

- Denote a set of n Bernoulli random variables $X_{1}, X_{2}, \ldots, X_{n}$.
- $X_{i}=1$ if the i th trial is successful and 0 otherwise.

$$
\mathbf{E}[X]=\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]=n p .
$$

