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Moment Generating Functions

● Definition. The moment generating function of a random variable X is 
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Moment Generating Functions

● Definition. The moment generating function of a random variable X is 
 

The nth derivative of MX(t) at t = 0.



Randomized Algorithms, CSIE, TKU, Taiwan 4

Example

● Consider a geometric random variable X with parameter p. 
● For t < − ln(1−p), 
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MGF for sum of independent r.v.’s

● Theorem. If X and Y are independent random variables, then 
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MGF for sum of independent r.v.’s

● Theorem. If X and Y are independent random variables, then 

● Proof.
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MGF for sum of independent r.v.’s

● Theorem. If X and Y are independent random variables, then 

● Generalization:
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Chernoff bounds: 
Applying Markov’s inequality to etX

● From Markov’s inequality,

For any t > 0, For any t < 0, 
Herman Chernoff
https://en.wikipedia.org/wiki/Herman_Chernoff
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Chernoff bounds: 
Applying Markov’s inequality to etX

● From Markov’s inequality,

● Choose appropriate values for t for specific distributions.  

For any t > 0, For any t < 0, 
Herman Chernoff
https://en.wikipedia.org/wiki/Herman_Chernoff
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Chernoff bounds for sum of Poisson trials

● Poisson trials: 

≈ Bernoulli trials 
➢ while the trials are not necessarily identical.

● X1, …, Xn: independent Poisson trials with Pr[Xi = 1] = pi.

● Let 
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Chernoff bounds for sum of Poisson trials

● For δ > 0, we want to analyze the tail probabilities 
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● For δ > 0, we want to analyze the tail probabilities 
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Chernoff bounds for sum of Poisson trials

● Theorem. Let X1, …, Xn be independent Poisson trials with Pr[Xi = 1] = pi. 

 Then the following Chernoff bounds hold: 

1. For δ > 0, 

2. For 0 < δ ≤ 1, 

3. For R ≥ 6μ, 
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Chernoff bounds for sum of Poisson trials

● Applying Markov’s inequality for t > 0, 



Randomized Algorithms, CSIE, TKU, Taiwan 19

Chernoff bounds for sum of Poisson trials

● Applying Markov’s inequality for t > 0, 

● For any δ > 0, set t = ln(1+δ) > 0:
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Chernoff bounds for sum of Poisson trials

● Applying Markov’s inequality for t > 0, 

● For any δ > 0, set t = ln(1+δ) > 0:

● For 0 < δ ≤ 1, 

● Taking logarithm of both sides:  
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Proof sketch

● Applying Markov’s inequality for t > 0, 

● For any δ > 0, set t = ln(1+δ) > 0:

● For 0 < δ ≤ 1, 

● Taking logarithm of both sides:  
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Chernoff bounds for sum of Poisson trials

● Theorem. Let X1, …, Xn be independent Poisson trials with Pr[Xi = 1] = pi. 

 Then the following Chernoff bounds hold: 

For 0 < δ < 1, 

✔ Therefore we have: 
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Example: 75% heads in fair coin flips

●  
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Example: 75% heads in fair coin flips

●  

● Try to use Chernoff bound! 
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Example: 75% heads in fair coin flips

●  

● Try to use Chernoff bound! 

Previous bound using Chebyshev’s inequality:
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Example: 75% heads in fair coin flips

●  

● Try to use Chernoff bound! 

Previous bound using Chebyshev’s inequality:

n=50 n=100 n=200

2/n 0.2 0.02 0.01

0.125 0.016 0.00025
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Strengthen a weak classifier

● Suppose we have designed a device which can check in a very short 
time if a diamond is real or fake and the accuracy is around 66% for 
each examination. 

● Such a device is somehow too weak to be used in practical. 
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Strengthen a weak classifier

● Suppose we have designed a device which can check in a very short 
time if a diamond is real or fake and the accuracy is around 66% for 
each examination. 

● Such a device is somehow too weak to be used in practical. 

● Let say we run the device for n = 201 times for each examination and 
output “True” if more than 101 of the results reveal that the diamond 
is real and output “False” otherwise. 
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Strengthen a weak classifier

● Suppose we have designed a device which can check in a very short 
time if a diamond is real or fake and the accuracy is around 66% for 
each examination. 

● Such a device is somehow too weak to be used in practical. 

● Let say we run the device for n = 201 times for each examination and 
output “True” if more than 101 of the results reveal that the diamond 
is real and output “False” otherwise. (majority vote)
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An application: Parameter Estimation

● Goal: evaluating the probability that a particular gene mutation occurs 
in the population.

● A lab test can determine if a DNA sample carries the mutation.

● However, the test is very expensive, so we want to obtain a relatively 
reliable estimate from a small number of samples.

https://tinyurl.com/8fwxsnab
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An application: Parameter Estimation

● p: be the unknown value we try to estimate.

● n: the number of samples we have

●            : number of samples having the mutation 

Large number of  samples
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An application: Parameter Estimation

● p: be the unknown value we try to estimate.

● n: the number of samples we have

●            : number of samples having the mutation 

Large number of  samples

We expect the value p to be close to 
the sampled value  
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An application: Parameter Estimation

● Definition. A 1−γ confidence interval for a parameter p is an interval

such that 

We need to find values of δ and γ such that 
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An application: Parameter Estimation

● Apply the Chernoff bound: 
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An application: Parameter Estimation

● Apply the Chernoff bound: 

● But we do not know the value of p, so it’s not useful…

● Take p ≤ 1, 
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● Apply the Chernoff bound: 
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● Take p ≤ 1, 
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Example

●  
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The Hoeffding Bound
Wassily Hoeffding (1914−1991)

Hoeffding’s Lemma: Let X be a random such that 
Then for every λ > 0, 

refer to https://tinyurl.com/mzz7x8pb

● Extending the Chernoff bound to general random variables with a bounded range.
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The Hoeffding Bound

● Extending the Chernoff bound to general random variables with a bounded range.

Wassily Hoeffding (1914−1991)

Hoeffding’s Lemma: Let X be a random such that 
Then for every λ > 0, 

refer to https://tinyurl.com/mzz7x8pb

Hoeffding’s Bound: Let X1, ..., Xn be independent random variables such that 
for all 1 ≤ i ≤ n, Then for every λ > 0, 
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The Hoeffding Bound

● Extending the Chernoff bound to general random variables with a bounded range.

Wassily Hoeffding (1914−1991)
refer to https://tinyurl.com/mzz7x8pb

Theorem: Let X1, ..., Xn be independent random variables such that 
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Proofs
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Proof of Hoeffding’s Lemma

● We assume a < 0 and b > 0. (Why?)

● f(x) = eλx is a convex function.
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Proof of Hoeffding’s Lemma
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Proof of Hoeffding’s Lemma
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Proof of Hoeffding’s Lemma
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Proof of Hoeffding’s Lemma
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Proof of Hoeffding’s Lemma
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Proof of Hoeffding’s Lemma
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Proof of Hoeffding’s Lemma
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Proof of The Hoeffding’s Bound
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Proof of The Hoeffding’s Bound
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Proof of The Hoeffding’s Bound
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Proof of The Hoeffding’s Bound
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Proof of The Hoeffding’s Bound
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Exercise
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Exercise

In an election with two candidates using paper ballots, each vote  
is independently misreported with probability p = 0.02. 

Use a Chernoff bound to give an upper bound on the probability 
that more than 4% of the votes are misreported in an election of 
1,000,000 ballots.


