Randomized Algorithms

Chernoff and Hoeffding Bounds

Joseph Chuang-Chieh Lin Dept. CSIE, Tamkang University

Moment Generating Functions

• <u>Definition</u>. The moment generating function of a random variable *X* is

 $M_X(t) = \mathbf{E}[e^{tX}].$

Moment Generating Functions

• <u>Definition</u>. The moment generating function of a random variable *X* is

$$M_X(t) = \mathbf{E}[e^{tX}].$$

 $\mathbf{E}[X^n] = M_X^{(n)}(0)$ The *n*th derivative of $M_X(t)$ at t = 0.

- Consider a geometric random variable *X* with parameter *p*.
- For $t < -\ln(1-p)$,

$$M_X(t) = \mathbf{E}[e^{tX}]$$

= $\sum_{k=1}^{\infty} (1-p)^{k-1} p e^{tk}$
= $\frac{p}{1-p} \sum_{k=1}^{\infty} (1-p)^k e^{tk}$
= $\frac{p}{1-p} ((1-(1-p)e^t)^{-1}-1).$

- Consider a geometric random variable *X* with parameter *p*.
- For $t < -\ln(1-p)$,

$$M_X(t) = \mathbf{E}[e^{tX}] \qquad \therefore M_X^{(1)}(t) = p(1 - (1 - p)e^t)^{-2}e^t,$$

$$= \sum_{k=1}^{\infty} (1 - p)^{k-1} p e^{tk} \qquad M_X^{(2)}(t) = 2p(1 - p)(1 - (1 - p)e^t)^{-3}e^{2t} + p(1 - (1 - p)e^t)^{-2}e^t.$$

$$= \frac{p}{1 - p} \sum_{k=1}^{\infty} (1 - p)^k e^{tk}$$

$$= \frac{p}{1 - p} ((1 - (1 - p)e^t)^{-1} - 1).$$

- Consider a geometric random variable *X* with parameter *p*.
- For $t < -\ln(1-p)$,

$$M_X(t) = \mathbf{E}[e^{tX}] \qquad \therefore M_X^{(1)}(t) = p(1 - (1 - p)e^t)^{-2}e^t,$$

$$= \sum_{k=1}^{\infty} (1 - p)^{k-1} p e^{tk} \qquad M_X^{(2)}(t) = 2p(1 - p)(1 - (1 - p)e^t)^{-3}e^{2t} + p(1 - (1 - p)e^t)^{-2}e^t.$$

$$= \frac{p}{1 - p} \sum_{k=1}^{\infty} (1 - p)^k e^{tk} \qquad \mathbf{E}[X] = M_X^{(1)}(0) = \frac{1}{p}, \quad \mathbf{E}[X^2] = M_X^{(2)}(0) = \frac{(2 - p)}{p^2},$$

$$= \frac{p}{1 - p} ((1 - (1 - p)e^t)^{-1} - 1).$$

Randomized Algorithms, CSIE, TKU, Taiwan

MGF for sum of independent r.v.'s

• <u>Theorem</u>. If *X* and *Y* are independent random variables, then

 $M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$

MGF for sum of independent r.v.'s

• <u>Theorem</u>. If *X* and *Y* are independent random variables, then

 $M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$

• Proof.

$$M_{X+Y}(t) = \mathbf{E}[e^{t(X+Y)}] = \mathbf{E}[e^{tX}e^{tY}] = \mathbf{E}[e^{tX}] \cdot \mathbf{E}[e^{tY}] = M_X(t) \cdot M_Y(t).$$

MGF for sum of independent r.v.'s

• <u>Theorem</u>. If *X* and *Y* are independent random variables, then

 $M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$

• *Generalization*:

$$M_{X_1+X_2+\dots+X_k}(t) = M_{X_1}(t) \cdot M_{X_2}(t) \cdots M_{X_k}(t).$$

Chernoff bounds: Applying Markov's inequality to e^{tX}

• From Markov's inequality,

Herman Chernoff https://en.wikipedia.org/wiki/Herman_Chernoff

For any t > 0,

$$\Pr[X \ge a] = \Pr[e^{tX} \ge e^{ta}] \le \frac{\mathbf{E}[e^{tX}]}{e^{ta}}.$$
$$\Pr[X \ge a] \le \min_{t>0} \frac{\mathbf{E}[e^{tX}]}{e^{ta}}.$$

For any t < 0,

$$\Pr[X \le a] = \Pr[e^{tX} \ge e^{ta}] \le \frac{\mathbf{E}[e^{tX}]}{e^{ta}}$$
$$\Pr[X \le a] \le \min_{t < 0} \frac{\mathbf{E}[e^{tX}]}{e^{ta}}.$$

Chernoff bounds: Applying Markov's inequality to e^{tX}

• From Markov's inequality,

 $\begin{array}{c} \mathbf{f} \\ \mathbf$

Herman Chernoff https://en.wikipedia.org/wiki/Herman_Chernoff

For any t > 0,

For any t < 0,

$$\Pr[X \ge a] = \Pr[e^{tX} \ge e^{ta}] \le \frac{\mathbf{E}[e^{tX}]}{e^{ta}}. \qquad \Pr[X \le a] = \Pr[e^{tX} \ge e^{ta}] \le \frac{\mathbf{E}[e^{tX}]}{e^{ta}}.$$
$$\Pr[X \ge a] \le \min_{t>0} \frac{\mathbf{E}[e^{tX}]}{e^{ta}}. \qquad \Pr[X \le a] \le \min_{t<0} \frac{\mathbf{E}[e^{tX}]}{e^{ta}}.$$

• Choose appropriate values for *t* for specific distributions.

- Poisson trials:
 - \approx Bernoulli trials
 - ➤ while the trials are **not necessarily identical**.
- X_1, \ldots, X_n : independent Poisson trials with $\Pr[X_i = 1] = p_i$.
- Let $X = \sum_{i=1}^{n} X_i$

- Poisson trials:
 - \approx Bernoulli trials
 - ➢ while the trials are **not necessarily identical**.
- X_1, \ldots, X_n : independent Poisson trials with $Pr[X_i = 1] = p_i$.
- Let $X = \sum_{i=1}^{n} X_i$ $\mu = \mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbf{E}[X_i] = \sum_{i=1}^{n} p_i.$

• For $\delta > 0$, we want to analyze the tail probabilities

 $\Pr[X \ge (1+\delta)\mu]$ and $\Pr[X \le (1-\delta)\mu]$

• For $\delta > 0$, we want to analyze the tail probabilities

 $\Pr[X \ge (1+\delta)\mu]$ and $\Pr[X \le (1-\delta)\mu]$

$$M_{X_{i}}(t) = \mathbf{E}[e^{tX_{i}}] \qquad \therefore M_{X}(t) = \prod_{i=1}^{n} M_{X_{i}}(t)$$
$$= p_{i}e^{t} + (1 - p_{i})e^{0} \qquad \leq \prod_{i=1}^{n} e^{p_{i}(e^{t} - 1)}$$
$$\leq e^{p_{i}(e^{t} - 1)}. \qquad \leq p_{i}e^{t} + 1 = \sum_{i=1}^{n} e^{p_{i}(e^{t} - 1)}$$
$$= \exp\left\{\sum_{i=1}^{n} p_{i}(e^{t} - 1)\right\}$$
$$= e^{(e^{t} - 1)\mu}.$$

n

• <u>Theorem</u>. Let $X_1, ..., X_n$ be independent Poisson trials with $\Pr[X_i = 1] = p_i$. Let $X = \sum_{i=1}^n X_i$ and $\mu = \mathbf{E}[X]$. Then the following Chernoff bounds hold:

1. For
$$\delta > 0$$
, $\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu};$

2. For
$$0 < \delta \le 1$$
,

$$\Pr[X \ge (1+\delta)\mu] \le e^{-\mu\delta^2/3};$$

3. For $R \ge 6\mu$,

$$\Pr[X \ge R] \le 2^{-R}.$$

• <u>Theorem</u>. Let $X_1, ..., X_n$ be independent Poisson trials with $\Pr[X_i = 1] = p_i$. Let $X = \sum_{i=1}^n X_i$ and $\mu = \mathbf{E}[X]$. Then the following Chernoff bounds hold:

1. For
$$\delta > 0$$
, $\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu};$

2. For
$$0 < \delta \leq 1$$
,

$$\Pr[X \ge (1+\delta)\mu] \le e^{-\mu\delta^2/3};$$

3. For $R \ge 6\mu$,

$$\Pr[X \ge R] \le 2^{-R}.$$

• Applying Markov's inequality for *t* > 0,

$$\Pr[X \ge (1+\delta)\mu] = \Pr[e^{tX} \ge e^{t(1+\delta)\mu}]$$
$$\le \frac{\mathbf{E}[e^{tX}]}{e^{t(1+\delta)\mu}}$$
$$\le \frac{e^{(e^t-1)\mu}}{e^{t(1+\delta)\mu}}$$

• Applying Markov's inequality for *t* > 0,

$$\Pr[X \ge (1+\delta)\mu] = \Pr[e^{tX} \ge e^{t(1+\delta)\mu}]$$
$$\le \frac{\mathbf{E}[e^{tX}]}{e^{t(1+\delta)\mu}}$$
$$\le \frac{e^{(e^t-1)\mu}}{e^{t(1+\delta)\mu}}$$

• For any $\delta > 0$, set $t = \ln(1+\delta) > 0$:

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.$$

• Applying Markov's inequality for *t* > 0,

$$\Pr[X \ge (1+\delta)\mu] = \Pr[e^{tX} \ge e^{t(1+\delta)\mu}]$$
$$\le \frac{\mathbf{E}[e^{tX}]}{e^{t(1+\delta)\mu}}$$
$$\le \frac{e^{(e^t-1)\mu}}{e^{t(1+\delta)\mu}}$$

• For
$$0 < \delta \le 1$$
, $\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \le e^{-\delta^2/3}$?

• Taking logarithm of both sides: $f(\delta) := \delta - (1 + \delta) \ln(1 + \delta) + \frac{\delta^2}{3} \le 0$

• For any $\delta > 0$, set $t = \ln(1+\delta) > 0$:

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.$$

• Applying Markov's inequality for *t* > 0,

$$\Pr[X \ge (1+\delta)\mu] = \Pr[e^{tX} \ge e^{t(1+\delta)\mu}]$$
$$\le \frac{\mathbf{E}[e^{tX}]}{e^{t(1+\delta)\mu}}$$
$$\le \frac{e^{(e^t-1)\mu}}{e^{t(1+\delta)\mu}}$$

• For
$$0 < \delta \le 1$$
, $\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \le e^{-\delta^2/3}$?

• Taking logarithm of both sides: $f(\delta) := \delta - (1+\delta) \ln(1+\delta) + \frac{\delta^2}{3} \le 0$ $f'(\delta) = -\ln(1+\delta) + \frac{2}{3}\delta,$ $f''(\delta) = -\frac{1}{1+\delta} + \frac{2}{3}.$

• For any $\delta > 0$, set $t = \ln(1+\delta) > 0$:

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.$$

Proof sketch

• Applying Markov's inequality for t > 0,

$$\Pr[X \ge (1+\delta)\mu] = \Pr[e^{tX} \ge e^{t(1+\delta)\mu}]$$
$$\le \frac{\mathbf{E}[e^{tX}]}{e^{t(1+\delta)\mu}}$$
$$\le \frac{e^{(e^t-1)\mu}}{e^{t(1+\delta)\mu}}$$

• For any $\delta > 0$, set $t = \ln(1+\delta) > 0$:

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.$$

• For
$$0 < \delta \le 1$$
, $\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \le e^{-\delta^2/3}$?

Taking logarithm of both sides: $f(\delta) := \delta - (1+\delta) \ln(1+\delta) + \frac{\delta^2}{3} \le 0$ $f'(\delta) = -\ln(1+\delta) + \frac{2}{3}\delta,$ $f''(\delta) = -\frac{1}{1+\delta} + \frac{2}{3}.$

• <u>Theorem</u>. Let $X_1, ..., X_n$ be independent Poisson trials with $\Pr[X_i = 1] = p_i$. Let $X = \sum_{i=1}^n X_i$ and $\mu = \mathbf{E}[X]$. Then the following Chernoff bounds hold:

For
$$0 < \delta < 1$$
,

$$\Pr[X \le (1 - \delta)\mu] \le \left(\frac{e^{\delta}}{(1 - \delta)^{(1 - \delta)}}\right)^{\mu}.$$

$$\Pr[X \le (1 - \delta)\mu] \le e^{-\mu\delta^2/2}.$$

✓ Therefore we have:

$$\Pr[|X - \mu| \ge \delta\mu] \le 2e^{-\mu\delta^2/3}.$$

$$X_{i} = \begin{cases} 1 & \text{if the } i\text{th coin flip is head} \\ 0 & \text{otherwise} \end{cases}$$
$$\mathbf{E}[X_{i}] = \Pr[X_{i} = 1] = \frac{1}{2} \qquad \mathbf{E}[X] = \sum_{i=1}^{n} \mathbf{E}[X_{i}] = \frac{n}{2}.$$

• $X_i = \begin{cases} 1 & \text{if the } i \text{th coin flip is head} \\ 0 & \text{otherwise} \end{cases}$

$$\mathbf{E}[X_i] = \Pr[X_i = 1] = \frac{1}{2}$$
 $\mathbf{E}[X] = \sum_{i=1}^n \mathbf{E}[X_i] = \frac{n}{2}.$

• Try to use Chernoff bound!

$$\Pr\left[\left|X - \frac{n}{2}\right| \ge \frac{n}{4}\right] \le 2\exp\left\{-\frac{1}{3}\frac{n}{2}\left(\frac{1}{2}\right)^2\right\}$$
$$\le 2e^{-n/24}.$$

•
$$X_i = \begin{cases} 1 & \text{if the } i \text{th coin flip is head} \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{E}[X_i] = \Pr[X_i = 1] = \frac{1}{2}$$
 $\mathbf{E}[X] = \sum_{i=1}^n \mathbf{E}[X_i] = \frac{n}{2}.$

• Try to use Chernoff bound!

$$\Pr\left[\left|X - \frac{n}{2}\right| \ge \frac{n}{4}\right] \le 2\exp\left\{-\frac{1}{3}\frac{n}{2}\left(\frac{1}{2}\right)^2\right\}$$
$$\le 2e^{-n/24}.$$

Previous bound using Chebyshev's inequality:

Example: 75% heads in fair coin flips

$$X_{i} = \begin{cases} 1 & \text{if the } i\text{th coin flip is head} \\ 0 & \text{otherwise} \end{cases}$$
$$\mathbf{E}[X_{i}] = \Pr[X_{i} = 1] = \frac{1}{2} \qquad \mathbf{E}[X] = \sum_{i=1}^{n} \mathbf{E}[X_{i}] = \frac{n}{2}.$$
$$\mathbf{Actually,} \qquad \mathbf{E}[X_{i}^{2}] = \mathbf{E}[X_{i}] = \frac{1}{2}.$$
$$\mathbf{Var}[X_{i}] = \mathbf{E}[X_{i}^{2}] - (\mathbf{E}[X_{i}])^{2} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}.$$
$$\mathbf{Var}[X] = \mathbf{Var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbf{Var}[X_{i}] = \frac{n}{4}.$$
$$\Pr[X \ge 3n/4] \le \Pr[|X - \mathbf{E}[X]| \ge n/4] \le \frac{\mathbf{Var}[X]}{(n/4)^{2}} = \frac{n/4}{(n/4)^{2}} = \frac{4}{n}.$$

Randomized Algorithms, CSIE, TKU, Taiwan

39

•
$$X_i = \begin{cases} 1 & \text{if the } i \text{th coin flip is head} \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{E}[X_i] = \Pr[X_i = 1] = \frac{1}{2}$$
 $\mathbf{E}[X] = \sum_{i=1}^n \mathbf{E}[X_i] = \frac{n}{2}.$

• Try to use Chernoff bound!

$$\Pr\left[\left|X - \frac{n}{2}\right| \ge \frac{n}{4}\right] \le 2\exp\left\{-\frac{1}{3}\frac{n}{2}\left(\frac{1}{2}\right)^2\right\}$$
$$\le 2e^{-n/24}.$$

Previous bound using Chebyshev's inequality:

Example: 75% heads in fair coin flips

$$X_{i} = \begin{cases} 1 & \text{if the } i\text{th coin flip is head} \\ 0 & \text{otherwise} \end{cases}$$
$$\mathbf{E}[X_{i}] = \Pr[X_{i} = 1] = \frac{1}{2} \qquad \mathbf{E}[X] = \sum_{i=1}^{n} \mathbf{E}[X_{i}] = \frac{n}{2}.$$

Actually,
$$\mathbf{E}[X_{i}^{2}] = \mathbf{E}[X_{i}] = \frac{1}{2}.$$
$$\mathbf{Var}[X_{i}] = \mathbf{E}[X_{i}^{2}] - (\mathbf{E}[X_{i}])^{2} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}.$$
$$\mathbf{Var}[X] = \mathbf{Var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbf{Var}[X_{i}] = \frac{n}{4}.$$
$$\Pr[X \ge 3n/4] \le \Pr[|X - \mathbf{E}[X]| \ge n/4] \le \frac{\mathbf{Var}[X]}{(n/4)^{2}} = \frac{n/4}{(n/4)^{2}} = \frac{4}{n}.$$
$$Randomized Algorithms, CSIE, TKU, Taiwan$$

	n=50	<i>n</i> =100	n=200
2/n	0.2	0.02	0.01
$e^{-n/24}$	0.125	0.016	0.00025

Randomized Algorithms, CSIE, TKU, Taiwan

39

Strengthen a weak classifier

- Suppose we have designed a device which can check in a very short time if a diamond is real or fake and the accuracy is around 66% for each examination.
- Such a device is somehow too weak to be used in practical.

Strengthen a weak classifier

- Suppose we have designed a device which can check in a very short time if a diamond is real or fake and the accuracy is around 66% for each examination.
- Such a device is somehow too weak to be used in practical.
- Let say we run the device for *n* = 201 times for each examination and output "True" if more than 101 of the results reveal that the diamond is real and output "False" otherwise.

Strengthen a weak classifier

- Suppose we have designed a device which can check in a very short time if a diamond is real or fake and the accuracy is around 66% for each examination.
- Such a device is somehow too weak to be used in practical.
- Let say we run the device for *n* = 201 times for each examination and output "True" if more than 101 of the results reveal that the diamond is real and output "False" otherwise. **(majority vote)**

$$\Pr[X \le n/2] = \Pr\left[X - \frac{2n}{3} \le -\frac{n}{6}\right] \le e^{-(2n/3) \cdot (1/4)^2 \cdot (1/2)} = e^{-n/48} < 0.016.$$

 $X_i: 1$ if *i*th test is correct and 0 otherwise

Randomized Algorithms, CSIE, TKU, Taiwan

- **Goal:** evaluating the probability that a particular gene mutation occurs in the population.
- A lab test can determine if a DNA sample carries the mutation.
- However, the test is very **expensive**, so we want to obtain a relatively reliable estimate from a **small** number of samples.

https://tinyurl.com/8fwxsnab

- *p*: be the unknown value we try to estimate.
- *n*: the number of samples we have
- $X = \tilde{p}n$: number of samples having the mutation

- *p*: be the unknown value we try to estimate.
- *n*: the number of samples we have
- $X = \tilde{p}n$: number of samples having the mutation

• <u>Definition</u>. A 1–*y* **confidence interval** for a parameter *p* is an interval

 $[\tilde{p} - \delta, \ \tilde{p} + \delta]$ $\Pr[p \in [\tilde{p} - \delta, \ \tilde{p} + \delta]] \ge 1 - \gamma.$

 $\tilde{p} - \delta$

 \tilde{p}

We need to find values of δ and γ such that

such that

$$\Pr[p \in [\tilde{p} - \delta, \ \tilde{p} + \delta]] = \Pr[np \in [n(\tilde{p} - \delta), \ n(\tilde{p} + \delta)]] \ge 1 - \gamma.$$

 $\tilde{p} + \delta$

• Apply the Chernoff bound:

$$\Pr[p \notin [\tilde{p} - \delta, \ \tilde{p} + \delta]] = \Pr\left[X < np\left(1 - \frac{\delta}{p}\right)\right] + \Pr\left[X > np\left(1 + \frac{\delta}{p}\right)\right]$$
$$< e^{-np(\delta/p)^2/2} + e^{-np(\delta/p)^2/3}$$
$$= e^{-n\delta^2/2p} + e^{-n\delta^2/3p}.$$

• Apply the Chernoff bound:

$$\Pr[p \notin [\tilde{p} - \delta, \ \tilde{p} + \delta]] = \Pr\left[X < np\left(1 - \frac{\delta}{p}\right)\right] + \Pr\left[X > np\left(1 + \frac{\delta}{p}\right)\right]$$
$$< e^{-np(\delta/p)^2/2} + e^{-np(\delta/p)^2/3}$$
$$= e^{-n\delta^2/2p} + e^{-n\delta^2/3p}.$$

- But we do not know the value of *p*, so it's not useful...
- Take $p \le 1$, $\Pr[p \notin [\tilde{p} - \delta, \ \tilde{p} + \delta]] < e^{-n\delta^2/2} + e^{-n\delta^2/3}.$

• Apply the Chernoff bound:

$$\Pr[p \notin [\tilde{p} - \delta, \ \tilde{p} + \delta]] = \Pr\left[X < np\left(1 - \frac{\delta}{p}\right)\right] + \Pr\left[X > np\left(1 + \frac{\delta}{p}\right)\right]$$
$$< e^{-np(\delta/p)^2/2} + e^{-np(\delta/p)^2/3}$$
$$= e^{-n\delta^2/2p} + e^{-n\delta^2/3p}.$$

• But we do not know the value of *p*, so it's not useful...

• Take
$$p \le 1$$
,

$$\Pr[p \notin [\tilde{p} - \delta, \ \tilde{p} + \delta]] < e^{-n\delta^2/2} + e^{-n\delta^2/3}$$

Setting $\gamma = e^{-n\delta^2/2} + e^{-n\delta^2/3}$, we obtain a trade-off between δ and n.

Randomized Algorithms, CSIE, TKU, Taiwan

• Set $\gamma = 0.05, \, \delta = 0.03.$

$$e^{-n(0.03)^2/2} + e^{-n(0.03)^2/3} < 2e^{-n(0.03)^2/3} < 0.05$$

$$\Rightarrow e^{-n(0.03)^2/3} < 0.025$$

$$\Rightarrow -n(0.03)^2/3 < \ln(0.025) \approx -3.6889$$

$$\Rightarrow n > 3.6889 \cdot 3/(0.03)^2 \approx 12296.33.$$

refer to https://tinyurl.com/mzz7x8pb

• Extending the Chernoff bound to general random variables with a **bounded range**.

The Hoeffding Bound

refer to https://tinyurl.com/mzz7x8pb

Wassily Hoeffding (1914–1991)

• Extending the Chernoff bound to general random variables with a **bounded range**.

Hoeffding's Lemma: Let *X* be a random such that $\Pr[X \in [a, b]] = 1$ and $\mathbf{E}[X] = 0$. Then for every $\lambda > 0$, $\mathbf{E}[e^{\lambda X}] \le e^{\lambda^2 (b-a)^2/8}$.

Hoeffding's Bound: Let X_1 , ..., X_n be independent random variables such that for all $1 \le i \le n$, Then for every $\lambda > 0$, $\mathbf{E}[X_i] = \mu$ and $\Pr[a \le X_i \le b] = 1$. Then

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \epsilon\right] \leq 2e^{-2n\epsilon^{2}/(b-a)^{2}}.$$

The Hoeffding Bound Wassily Hoeffding (1914–1991)

refer to https://tinyurl.com/mzz7x8pb

• Extending the Chernoff bound to general random variables with a **bounded range**.

Theorem: Let X_1 , ..., X_n be independent random variables such that $\mathbf{E}[X_i] = \mu_i$ and $\Pr[\mathbf{a}_i \leq X_i \leq \mathbf{b}_i] = 1$ for constant a_i and b_i . Then, $\Pr\left[\left|\sum_{i=1}^n X_i - \sum_{i=1}^n \mu_i\right| \geq \epsilon\right] \leq 2e^{-2\epsilon^2 / \sum_{i=1}^n (\mathbf{b}_i - \mathbf{a}_i)^2}.$

Proofs

- We assume a < 0 and b > 0. (Why?)
- $f(x) = e^{\lambda x}$ is a convex function.

- We assume *a* < 0 and *b* > 0. (Why?)
- $f(x) = e^{\lambda x}$ is a convex function.
 - For any $\alpha \in (0,1)$,

$$f(\alpha a + (1 - \alpha)b) \le \alpha e^{\lambda a} + (1 - \alpha)e^{\lambda b}$$

- We assume *a* < 0 and *b* > 0. (Why?)
- $f(x) = e^{\lambda x}$ is a convex function.
 - For any $\alpha \in (0,1)$,

$$f(\alpha a + (1 - \alpha)b) \le \alpha e^{\lambda a} + (1 - \alpha)e^{\lambda b}.$$

For $x \in [a, b]$, let $\alpha = \frac{b - x}{b - a}$, then $x = \alpha a + (1 - \alpha)b$

- We assume *a* < 0 and *b* > 0. (Why?)
- $f(x) = e^{\lambda x}$ is a convex function.
 - For any $\alpha \in (0,1)$,

$$f(\alpha a + (1 - \alpha)b) \le \alpha e^{\lambda a} + (1 - \alpha)e^{\lambda b}$$

For
$$x \in [a, b]$$
, let $\alpha = \frac{b - x}{b - a}$, then $x = \alpha a + (1 - \alpha)b$

$$\therefore e^{\lambda x} \le \frac{b-x}{b-a}e^{\lambda a} + \frac{x-a}{b-a}e^{\lambda b}.$$

$$\begin{split} \mathbf{E}[e^{\lambda X}] &\leq \mathbf{E}\left[\frac{b-X}{b-a}e^{\lambda a}\right] + \mathbf{E}\left[\frac{X-a}{b-a}e^{\lambda b}\right] \\ &= \frac{b}{b-a}e^{\lambda a} - \frac{\mathbf{E}[X]}{b-a}e^{\lambda a} - \frac{a}{b-a}e^{\lambda b} + \frac{\mathbf{E}[X]}{b-a}e^{\lambda b} \\ &= \frac{b}{b-a}e^{\lambda a} + \frac{a}{b-a}e^{\lambda b}. \end{split}$$

$$\begin{split} \mathbf{E}[e^{\lambda X}] &\leq \mathbf{E}\left[\frac{b-X}{b-a}e^{\lambda a}\right] + \mathbf{E}\left[\frac{X-a}{b-a}e^{\lambda b}\right] \\ &= \frac{b}{b-a}e^{\lambda a} - \frac{\mathbf{E}[X]}{b-a}e^{\lambda a} - \frac{a}{b-a}e^{\lambda b} + \frac{\mathbf{E}[X]}{b-a}e^{\lambda b} \\ &= \frac{b}{b-a}e^{\lambda a} + \frac{a}{b-a}e^{\lambda b} \\ &= e^{\lambda a}\left(\frac{b}{b-a} - \frac{a}{b-a}e^{\lambda(b-a)}\right). \end{split}$$

$$\begin{split} \mathbf{E}[e^{\lambda X}] &\leq \mathbf{E}\left[\frac{b-X}{b-a}e^{\lambda a}\right] + \mathbf{E}\left[\frac{X-a}{b-a}e^{\lambda b}\right] \\ &= \frac{b}{b-a}e^{\lambda a} - \frac{\mathbf{E}[X]}{b-a}e^{\lambda a} - \frac{a}{b-a}e^{\lambda b} + \frac{\mathbf{E}[X]}{b-a}e^{\lambda b} \\ &= \frac{b}{b-a}e^{\lambda a} + \frac{a}{b-a}e^{\lambda b} \\ &= e^{\lambda a}\left(\frac{b}{b-a} - \frac{a}{b-a}e^{\lambda(b-a)}\right) \qquad \text{let } \theta = \frac{-a}{b-a} \\ &= e^{\lambda a}(1-\theta+\theta e^{\lambda(b-a)}) \\ &= e^{-\theta\lambda(b-a)}(1-\theta+\theta e^{\lambda(b-a)}). \end{split}$$

Hoeffding's Lemma: Let *X* be a random such that $\Pr[X \in [a, b]] = 1$ and $\mathbf{E}[X] = 0$. Then for every $\lambda > 0$, $\mathbf{E}[e^{\lambda X}] \le e^{\lambda^2 (b-a)^2/8}$.

Randomized Algorithms, CSIE, TKU, Taiwan

$$\mathbf{E}[e^{\lambda X}] \le e^{\phi(\lambda(b-a))}. \quad \text{Let } \phi(t) = -\theta t + \ln(1 - \theta + \theta e^t).$$

Hoeffding's Lemma: Let *X* be a random such that $\Pr[X \in [a, b]] = 1$ and $\mathbf{E}[X] = 0$. Then for every $\lambda > 0$, $\mathbf{E}[e^{\lambda X}] \le e^{\lambda^2 (b-a)^2/8}$.

$$\mathbf{E}[e^{\lambda X}] \le e^{\phi(\lambda(b-a))}. \quad \text{Let } \phi(t) = -\theta t + \ln(1 - \theta + \theta e^t).$$

 $\phi(0) = 0, \phi'(0) = 0$, and $\phi''(t) \le 1/4$ for all t.

$$\mathbf{E}[e^{\lambda X}] \le e^{\phi(\lambda(b-a))}. \quad \text{Let } \phi(t) = -\theta t + \ln(1-\theta + \theta e^t).$$

$$\phi(0) = 0, \phi'(0) = 0, \text{ and } \phi''(t) \le 1/4 \text{ for all } t.$$

 $\phi(t) = \phi(0) + t\phi'(0) + \frac{1}{2}t^2\phi''(t') \le \frac{1}{8}t^2.$ Taylor's theorem, $\forall t > 0, \exists t' \in [0, t]$

Hoeffding's Lemma: Let *X* be a random such that $\Pr[X \in [a, b]] = 1$ and $\mathbf{E}[X] = 0$. Then for every $\lambda > 0$, $\mathbf{E}[e^{\lambda X}] \le e^{\lambda^2 (b-a)^2/8}$.

$$\mathbf{E}[e^{\lambda X}] \le e^{\phi(\lambda(b-a))}. \quad \text{Let } \phi(t) = -\theta t + \ln(1-\theta+\theta e^t).$$

$$\phi(0) = 0, \phi'(0) = 0, \text{ and } \phi''(t) \le 1/4 \text{ for all } t.$$

$$\phi(t) = \phi(0) + t\phi'(0) + \frac{1}{2}t^2\phi''(t') \le \frac{1}{8}t^2.$$

For $t = \lambda(b-a)$, $\phi(\lambda(b-a)) \le \frac{\lambda^2(b-a)^2}{8}$.

Thus, $\mathbf{E}[e^{\lambda X}] \le e^{\phi(\lambda(b-a))} \le e^{\lambda^2(b-a)^2/8}$.

Hoeffding's Bound: Let X_1 , ..., X_n be independent random variables such that for all $1 \le i \le n$, Then for every $\lambda > 0$, $\mathbf{E}[X_i] = \mu$ and $\Pr[a \le X_i \le b] = 1$. Then

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \epsilon\right] \leq 2e^{-2n\epsilon^{2}/(b-a)^{2}}.$$

~~

Let
$$Z_i = X_i - \mathbf{E}[X_i]$$
 and $Z = \frac{1}{n} \sum_{i=1}^n Z_i$.

For any $\lambda > 0$, by Markov's inequality:

Hoeffding's Bound: Let X_1 , ..., X_n be independent random variables such that for all $1 \le i \le n$, Then for every $\lambda > 0$, $\mathbf{E}[X_i] = \mu$ and $\Pr[a \le X_i \le b] = 1$. Then

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \epsilon\right] \leq 2e^{-2n\epsilon^{2}/(b-a)^{2}}$$

Let
$$Z_i = X_i - \mathbf{E}[X_i]$$
 and $Z = \frac{1}{n} \sum_{i=1}^n Z_i$.

For any $\lambda > 0$, by Markov's inequality:

$$\Pr[Z \ge \epsilon] = \Pr[e^{\lambda Z} \ge e^{\lambda \epsilon}] \le \frac{\mathbf{E}[e^{\lambda Z}]}{e^{\lambda \epsilon}} = \frac{\prod_{i=1}^{n} \mathbf{E}[e^{\lambda Z_{i}/n}]}{e^{\lambda \epsilon}}$$
$$\le \frac{\prod_{i=1}^{n} e^{\lambda^{2}(b-a)^{2}/(8n^{2})}}{e^{\lambda \epsilon}}$$
$$\le \frac{e^{\lambda^{2}(b-a)^{2}/8n}}{e^{\lambda \epsilon}}.$$

~~

Randomized Algorithms, CSIE, TKU, Taiwan

Hoeffding's Bound: Let X_1 , ..., X_n be independent random variables such that for all $1 \le i \le n$, Then for every $\lambda > 0$, $\mathbf{E}[X_i] = \mu$ and $\Pr[a \le X_i \le b] = 1$. Then

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \epsilon\right] \leq 2e^{-2n\epsilon^{2}/(b-a)^{2}}$$

Let
$$Z_i = X_i - \mathbf{E}[X_i]$$
 and $Z = \frac{1}{n} \sum_{i=1}^n Z_i$.

For any $\lambda > 0$, by Markov's inequality:

 $\Pr[Z \ge \epsilon] \le \frac{e^{\lambda^2 (b-a)^2/8n}}{e^{\lambda \epsilon}}$

Note:
$$Z_i/n \in [(a - \mu)/n, (b - \mu)/n].$$

Setting
$$\lambda = \frac{4n\epsilon}{(b-a)^2}$$
,

Hoeffding's Bound: Let X_1 , ..., X_n be independent random variables such that for all $1 \le i \le n$, Then for every $\lambda > 0$, $\mathbf{E}[X_i] = \mu$ and $\Pr[a \le X_i \le b] = 1$. Then

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \epsilon\right] \leq 2e^{-2n\epsilon^{2}/(b-a)^{2}}.$$

Let
$$Z_i = X_i - \mathbf{E}[X_i]$$
 and $Z = \frac{1}{n} \sum_{i=1}^n Z_i$.

For any $\lambda > 0$, by Markov's inequality:

$$\Pr[Z \ge \epsilon] \le \frac{e^{\lambda^2 (b-a)^2/8n}}{e^{\lambda \epsilon}}$$
$$\Pr\left[\frac{1}{n} \sum_{i=1}^n X_i - \mu \ge \epsilon\right] = \Pr[Z \ge \epsilon] \le e^{-2n\epsilon^2/(b-a)^2}$$

Hoeffding's Bound: Let X_1 , ..., X_n be independent random variables such that for all $1 \le i \le n$, Then for every $\lambda > 0$, $\mathbf{E}[X_i] = \mu$ and $\Pr[a \le X_i \le b] = 1$. Then

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \epsilon\right] \leq 2e^{-2n\epsilon^{2}/(b-a)^{2}}$$

Let
$$Z_i = X_i - \mathbf{E}[X_i]$$
 and $Z = \frac{1}{n} \sum_{i=1}^n Z_i$.
 $\Pr\left[\frac{1}{n} \sum_{i=1}^n X_i - \mu \ge \epsilon\right] = \Pr[Z \ge \epsilon] \le e^{-2n\epsilon^2/(b-a)^2}$.
For $\Pr[Z \le -\epsilon]$ with $\lambda = -\frac{4n\epsilon}{(b-a)^2}$
 $\Pr\left[\frac{1}{n} \sum_{i=1}^n X_i - \mu \le -\epsilon\right] = \Pr[Z \le -\epsilon] \le e^{-2n\epsilon^2/(b-a)^2}$.
Randomized Algorithms, CSIE, TKU, Taiwan

Exercise

Consider a collection X_1, \ldots, X_n of *n* independent integers chosen uniformly from the set $\{0, 1, 2\}$.

Let
$$X = \sum_{i=1} X_i$$
 and $0 < \delta < 1$.

n

Derive a Chernoff bound for $\Pr[X \ge (1+\delta)n]$ and $\Pr[X \ge (1-\delta)n]$.

Exercise

In an election with two candidates using paper ballots, each vote is independently misreported with probability p = 0.02.

Use a Chernoff bound to give an upper bound on the probability that more than 4% of the votes are misreported in an election of 1,000,000 ballots.