## Randomized Algorithms

## Balls and Bins: Some basics

Joseph Chuang-Chieh Lin
Dept. CSIE, Tamkang University

## Outline

- The Birthday Paradox - Revisited
- Balls into Bins
- Poisson Distribution


## Exponential function - revisited

- By definition of $e^{x}$ :

$$
\begin{aligned}
& e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\cdots \\
\Rightarrow & e=\sum_{k=0}^{\infty} \frac{1}{k!}=1+x+\frac{1}{2}+\frac{1}{6}+\frac{1}{24} \cdots
\end{aligned}
$$

## Exponential function - revisited

- By the Binomial Theorem:

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n} & =\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{n}\right)^{k} \\
& =\sum_{k=0}^{n} \frac{n(n-1)(n-2) \cdots(n-k+1)}{k!} \cdot \frac{1}{n^{k}} \\
& =\sum_{k=0}^{n}\left(\frac{n}{n}\right) \cdot\left(\frac{n-1}{n}\right) \cdots\left(\frac{n-k+1}{n}\right) \cdot \frac{1}{k!} .
\end{aligned}
$$

## Exponential function - revisited

- By the Binomial Theorem:

$$
\begin{aligned}
& \left(1+\frac{1}{n}\right)^{n}= \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{n}\right)^{k} \\
& =\sum_{k=0}^{n} \frac{n(n-1)(n-2) \cdots(n-k+1)}{k!} \cdot \frac{1}{n^{k}} \\
& =\sum_{k=0}^{n}\left(\frac{n}{n}\right) \cdot\left(\frac{n-1}{n}\right) \cdots\left(\frac{n-k+1}{n}\right) \cdot \frac{1}{k!} . \\
& \therefore \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{\infty} \frac{1}{k!}
\end{aligned}
$$

## Exponential function - revisited

- Useful approaches:

$$
\begin{aligned}
& \left(1+\frac{1}{n}\right)^{-m}=\left(\left(1+\frac{1}{n}\right)^{n}\right)^{-m / n} \approx e^{-m / n} \\
& \frac{k^{k}}{k!}<\sum_{i=0}^{\infty} \frac{k^{i}}{i!}=e^{k} \\
& \therefore k!>\left(\frac{k}{e}\right)^{k}
\end{aligned}
$$

## Exercise

- Show that for $|x| \leq 1, e^{x}\left(1-x^{2}\right) \leq 1+x \leq e^{x}$.
- Let $\left(1-\left(1-\frac{1}{n}\right)^{k m}\right)^{k} \approx\left(1-e^{\square}\right)^{k}$.

Find $\square=$ ?

## $m$ balls into $n$ bins

$\bigcirc$ - • ..... ○○

-. . . . -


## $m$ balls into $n$ bins



- . . . - -



## $m$ balls into $n$ bins

- Example. balls: people, bins: birthdays (mm/dd).



## $m$ balls into $n$ bins

- Example. balls: people, bins: birthdays (mm/dd).
- Let's say there are 30 people in a room. What's the probability that no two people in the room share the same birthday?



## $m$ balls into $n$ bins

- Example. balls: people, bins: birthdays (mm/dd).
- Let's say there are 30 people in a room. What's the probability that no two people in the room share the same birthday?


$$
\frac{\binom{365}{30} 30!}{365^{30}}
$$

## $m$ balls into $n$ bins

- Example. balls: people, bins: birthdays (mm/dd).
- Let's say there are 30 people in a room. What's the probability that no two people in the room share the same birthday?


$$
\left(1-\frac{1}{365}\right) \cdot\left(1-\frac{2}{365}\right) \cdots\left(1-\frac{29}{365}\right)
$$

## $m$ balls into $n$ bins

- Example. balls: people, bins: birthdays (mm/dd).
- In general, for $m$ people in a room and $n$ possible birthdays, what's the probability that no two people in the room share the same birthday?

$\left(1-\frac{1}{n}\right) \cdot\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{m-1}{n}\right)=\prod_{j=1}^{m-1}\left(1-\frac{j}{n}\right)$.


## $m$ balls into $n$ bins

- Example. balls: people, bins: birthdays (mm/dd).
- In general, for $m$ people in a room and $n$ possible birthdays, what's the probability that no two people in the room share the same birthday?

$\left(1-\frac{1}{n}\right) \cdot\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{m-1}{n}\right)=\prod_{j=1}^{m-1}\left(1-\frac{j}{n}\right) \approx \prod_{j=1}^{m-1} e^{-j / n}=\exp \left\{-\sum_{j=1}^{m-1} \frac{j}{n}\right\}=e^{-m(m-1) / 2 n} \approx e^{-m^{2} / 2 n}$


## $m$ balls into $n$ bins

- Example. balls: people, bins: birthdays (mm/dd).
- In general, for $m$ people in a room and $n$ possible birthdays, what's the probability that no two people in the room share the same birthday?

- Set the probability threshold to be $1 / 2$ :

$$
\frac{m^{2}}{2 n}=\ln 2 \Rightarrow m=\sqrt{2 n \ln 2} \approx 22.49 .
$$

## $m$ balls into $n$ bins

- Example. balls: people, bins: birthdays (mm/dd).
- In general, for $m$ people in a room and $n$ possible birthdays, what's the probability that no two people in the room share the same birthday?

- Set the probability threshold to be $1 / 2$ :

$$
\frac{m^{2}}{2 n}=\ln 2 \Rightarrow m=\sqrt{2 n \ln 2} \approx 22.49 . \quad \text { observation? }
$$

## $n$ balls into $n$ bins: maximum load

- $\boldsymbol{n}$ balls are thrown independently and uniformly at random into $n$ bins.
- What's the probability that the maximum "load" is more than $L$ ?
- Maximum number of balls in one bin.


## $n$ balls into $n$ bins: maximum load

- $\boldsymbol{n}$ balls are thrown independently and uniformly at random into $n$ bins.
- What's the probability that the maximum "load" is more than $L$ ?
- Maximum number of balls in one bin.
- The average load is $n / n=1$ ?!


## $n$ balls into $n$ bins: maximum load

- $\boldsymbol{n}$ balls are thrown independently and uniformly at random into $n$ bins.
- What's the probability that the maximum "load" is more than $L$ ?
- Maximum number of balls in one bin.
- The probability that bin 1 receives at least $M$ balls is at most

$$
\binom{n}{M}\left(\frac{1}{n}\right)^{M}
$$

## $n$ balls into $n$ bins: maximum load

- $\boldsymbol{n}$ balls are thrown independently and uniformly at random into $n$ bins.
- What's the probability that the maximum "load" is more than $L$ ?
- Maximum number of balls in one bin.
- The probability that bin 1 receives at least $M$ balls is at most

$$
\binom{n}{M}\left(\frac{1}{n}\right)^{M} \quad \text { union bound }
$$

## $n$ balls into $n$ bins: maximum load

- $\boldsymbol{n}$ balls are thrown independently and uniformly at random into $n$ bins.
- What's the probability that the maximum "load" is more than $L$ ?
- Maximum number of balls in one bin.
- The probability that bin 1 receives at least $M$ balls is at most

$$
\binom{n}{M}\left(\frac{1}{n}\right)^{M}=\frac{n(n-1) \cdots(n-M+1)}{M!}\left(\frac{1}{n}\right)^{M} \leq \frac{1}{M!} \leq\left(\frac{e}{M}\right)^{M} .
$$

## $n$ balls into $n$ bins: maximum load

- The probability that bin 1 receives at least $M$ balls is at most

$$
\binom{n}{M}\left(\frac{1}{n}\right)^{M}=\frac{n(n-1) \cdots(n-M+1)}{M!}\left(\frac{1}{n}\right)^{M} \leq \frac{1}{M!} \leq\left(\frac{e}{M}\right)^{M}
$$

- Applying the union bound again:


## $n$ balls into $n$ bins: maximum load

- The probability that bin 1 receives at least $M$ balls is at most

$$
\binom{n}{M}\left(\frac{1}{n}\right)^{M}=\frac{n(n-1) \cdots(n-M+1)}{M!}\left(\frac{1}{n}\right)^{M} \leq \frac{1}{M!} \leq\left(\frac{e}{M}\right)^{M}
$$

- Applying the union bound again:

$$
n\left(\frac{e}{M}\right)^{M} \leq n\left(\frac{e \ln \ln n}{3 \ln n}\right)^{3 \ln n / \ln \ln n}
$$

## $n$ balls into $n$ bins: maximum load

- The probability that bin 1 receives at least $M$ balls is at most

$$
\binom{n}{M}\left(\frac{1}{n}\right)^{M}=\frac{n(n-1) \cdots(n-M+1)}{M!}\left(\frac{1}{n}\right)^{M} \leq \frac{1}{M!} \leq\left(\frac{e}{M}\right)^{M}
$$

- Applying the union bound again:

$$
\begin{aligned}
n\left(\frac{e}{M}\right)^{M} & \leq n\left(\frac{e \ln \ln n}{3 \ln n}\right)^{3 \ln n / \ln \ln n} \\
& \leq n\left(\frac{\ln \ln n}{\ln n}\right)^{3 \ln n / \ln \ln n}=e^{\ln n}\left(\frac{e^{\ln \ln \ln n}}{e^{\ln \ln n}}\right)^{3 \ln n / \ln \ln n} \\
& =e^{\ln n}\left(e^{\ln \ln \ln n-\ln \ln n}\right)^{3 \ln n / \ln \ln n} \\
& =e^{-2 \ln n+3(\ln n)(\ln \ln n) / \ln \ln n} \\
& \leq \frac{1}{n} .
\end{aligned}
$$

## Application: Bucket Sort

- A set of $n=2^{m}$ numbers chosen uniformly at random in $\left[0,2^{k}\right), k \geq m$.


## Bucket Sort:

- Stage 1: place the elements into $n$ buckets.
- $j^{\text {th }}$ bucket: holds all elements whose first $m$ binary digits corresponds to $j$.
- e.g., $n=2^{10}$, bucket 3 contains all elements whose first 10 digits are 0000000011.
- Stage 2: sort each bucket using any standard sorting algorithm.


## Application: Bucket Sort

- A set of $n=2^{m}$ numbers chosen uniformly at random in $\left[0,2^{k}\right), k \geq m$.

Bucket Sort: Expected $O(n)$ time?!

- Stage 1: place the elements into $n$ buckets.
- $j^{\text {th }}$ bucket: holds all elements whose first $m$ binary digits corresponds to $j$.
- e.g., $n=2^{10}$, bucket 3 contains all elements whose first 10 digits are 0000000011.
- Stage 2: sort each bucket using any standard sorting algorithm.


## Application: Bucket Sort

- A set of $n=2^{m}$ numbers chosen uniformly at random in $\left[0,2^{k}\right), k \geq m$.


## Bucket Sort:

- Stage 1: place the elements into $n$ buckets.
- $j^{\text {th }}$ bucket: holds all elements whose first $m$ binary digits corresponds to $j$.
- e.g., $n=2^{10}$, bucket 3 contains all elements whose first 10 digits are 0000000011.
- The number of elements landing in a specific bucket: Binomial( $n, 1 / n$ ).
- Stage 2: sort each bucket using any standard sorting algorithm.


## Application: Bucket Sort

- $X_{j}$ : the number of elements landing in bucket $j$.
- The time to sort bucket $j: c\left(X_{j}\right)^{2}$, for some constant $c$.
- The expected time for sorting in Stage 2:
$\mathbf{E}\left[\sum_{j=1}^{n} c\left(X_{j}\right)^{2}\right]=c \sum_{j=1}^{n} \mathbf{E}\left[X_{j}^{2}\right]=c n \mathbf{E}\left[X_{1}^{2}\right]$.


## Application: Bucket Sort

- $X_{j}$ : the number of elements landing in bucket $j$.
- The time to sort bucket $j: c\left(X_{j}\right)^{2}$, for some constant $c$.
- The expected time for sorting in Stage 2:
$\mathbf{E}\left[\sum_{j=1}^{n} c\left(X_{j}\right)^{2}\right]=c \sum_{j=1}^{n} \xrightarrow[{\mathbf{E}\left[X_{j}^{2}\right]=c n \mathbf{E}\left[X_{1}^{2}\right]} .]{ }$ The same for all buckets.


## Application: Bucket Sort

- $X_{j}$ : the number of elements landing in bucket $j$.
- The time to sort bucket $j: c\left(X_{j}\right)^{2}$, for some constant $c$.
- The expected time for sorting in Stage 2:

$$
\left.\mathbf{E}\left[\sum_{j=1}^{n} c\left(X_{j}\right)^{2}\right]=c \sum_{j=1}^{n} \mathbf{E}\left[X_{j}^{2}\right]=c n \mathbf{E}\left[X_{1}^{2}\right] . \quad \mathbf{E}\left[X_{1}^{2}\right] \quad=\operatorname{Var}\left[X_{1}\right]+\left(\mathbf{E}\left[X_{1}\right]\right)^{2}, \quad n \cdot \frac{1}{n}\left(1-\frac{1}{n}\right)+\left(n \cdot \frac{1}{n}\right)^{2}\right) \quad \begin{aligned}
& =2-\frac{1}{n} \\
& =2
\end{aligned}
$$

## Assignment 05

- Suppose that $n$ balls are thrown independently and uniformly at random into $n$ bins.
- Find the conditional probability that bin 1 has one ball given that exactly one ball fell into the first three bins.
- Find the conditional expectation of the number of balls in bin 1 under the condition that bin 2 received no balls.


## Questions

- What is the probability that a given bin is empty?
- What is the expected number of empty bins?


## - The probability that the ith bin remains empty is

$$
\left(1-\frac{1}{n}\right)^{m} \approx e^{-m / n}
$$

- The probability that the ith bin remains empty is

$$
\left(1-\frac{1}{n}\right)^{m} \approx e^{-m / n}
$$

- The expected number of empty bins:

$$
n \cdot\left(1-\frac{1}{n}\right)^{m} \approx n e^{-m / n}
$$

- The probability that the ith bin remains empty is

$$
\left(1-\frac{1}{n}\right)^{m} \approx e^{-m / n}
$$

- The expected number of empty bins:

The expected "fraction"

$$
n \cdot\left(1-\frac{1}{n}\right)^{m} \approx n e^{-m / n}
$$

## - Generalization:

The probability that a given bin has $\boldsymbol{r}$ balls is

## - Generalization:

The probability that a given bin has $\boldsymbol{r}$ balls is

$$
\begin{aligned}
p_{r} & =\binom{m}{r}\left(\frac{1}{n}\right)^{r}\left(1-\frac{1}{n}\right)^{m-r} \\
& =\frac{1}{r!} \frac{m(m-1) \cdots(m-r+1)}{n^{r}}\left(1-\frac{1}{n}\right)^{m-r} \\
& \approx \frac{e^{-m / n}(m / n)^{r}}{r!} \cdot \quad \begin{array}{l}
\text { Expected number of bins with exactly } r \text { balls } \\
\approx n p_{r} .
\end{array}
\end{aligned}
$$

## The Poisson Distribution

- A discrete Poisson random variable $X$ with parameter $\mu$ is given by the following probability distribution on $j=0,1,2, \ldots$ :

$$
\operatorname{Pr}[X=j]=\frac{e^{-\mu} \mu^{j}}{j!}
$$

## The Poisson Distribution

- A discrete Poisson random variable $X$ with parameter $\mu$ is given by the following probability distribution on $j=0,1,2, \ldots$ :

$$
\begin{aligned}
\operatorname{Pr}[X=j] & =\frac{e^{-\mu} \mu^{j}}{j!} \\
& \frac{e^{-m / n}(m / n)^{r}}{r!} .
\end{aligned}
$$

## The Poisson Distribution

- Try to verify if it’s proper:

$$
\begin{aligned}
\sum_{j=0}^{\infty} \operatorname{Pr}[X=j] & =\sum_{j=0}^{\infty} \frac{e^{-\mu} \mu^{j}}{j!} \\
& =e^{-\mu} \sum_{j=0}^{\infty} \frac{\mu^{j}}{j!} \\
& =1
\end{aligned}
$$

## The Poisson Distribution

- The expectation:

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{j=0}^{\infty} j \operatorname{Pr}[X=j]=\sum_{j=1}^{\infty} j \frac{e^{-\mu} \mu^{j}}{j!} \\
& =\mu \cdot \sum_{j=1}^{\infty} \frac{e^{-\mu} \mu^{j-1}}{(j-1)!} \\
& =\mu \cdot \sum_{j=0}^{\infty} \frac{e^{-\mu} \mu^{j}}{j!} \\
& =\mu .
\end{aligned}
$$

## The Poisson Distribution

$$
\operatorname{Pr}[X+Y=j]=\sum_{k=0}^{j} \operatorname{Pr}[(X=k) \cap(Y=j-k)]
$$

- The sum of finite number of independent Poisson random variables is a Poisson random variable.

$$
=\sum_{k=0}^{j} \frac{e^{-\mu_{1}} \mu_{1}^{k}}{k!} \frac{e^{-\mu_{2}} \mu_{2}^{(j-k)}}{(j-k)!}
$$

$$
=\frac{e^{-\left(\mu_{1}+\mu_{2}\right)}}{j!} \sum_{k=0}^{j} \frac{j!}{k!(j-k)!} \mu_{1}^{k} \mu_{2}^{(j-k)}
$$

$$
=\frac{e^{-\left(\mu_{1}+\mu_{2}\right)}}{j!} \sum_{k=0}^{j}\binom{j}{k} \mu_{1}^{k} \mu_{2}^{(j-k)}
$$

$$
=\frac{\left.e^{-\left(\mu_{1}+\mu_{2}\right)}\left(\mu_{1}+\mu_{2}\right)^{j}\right)}{j!}
$$

## The Poisson Distribution

- The moment generating function of a Poisson random variable with parameter $\mu$ is

$$
M_{X}(t)=e^{\mu\left(e^{t}-1\right)}
$$

## The Poisson Distribution

- The moment generating function of a Poisson random variable with parameter $\mu$ is

$$
M_{X}(t)=e^{\mu\left(e^{t}-1\right)}
$$

For any $t$,

$$
\begin{aligned}
& \mathbf{E}\left[e^{t X}\right]=\sum_{k=0}^{\infty} \frac{e^{-\mu} \mu^{k}}{k!} e^{t k}=e^{\mu\left(e^{t}-1\right)} \sum_{k=0}^{\infty} \frac{e^{-\mu e^{t}}\left(\mu e^{t}\right)^{k}}{k!} \\
= & e^{\mu\left(e^{t}-1\right)} .
\end{aligned}
$$

## The Poisson Distribution

- The moment generating function of a Poisson random variable with parameter $\mu$ is

$$
M_{X}(t)=e^{\mu\left(e^{t}-1\right)}
$$

For any $t$,

$$
\begin{aligned}
& \quad \mathbf{E}\left[e^{t X}\right]=\sum_{k=0}^{\infty} \frac{e^{-\mu} \mu^{k}}{k!} e^{t k}=e^{\mu\left(e^{t}-1\right)} \sum_{k=0}^{\infty} \frac{e^{-\mu e^{t}}\left(\mu e^{t}\right)^{k}}{k!} \\
& =e^{\mu\left(e^{t}-1\right)} \cdot \\
& M_{X+Y}(t)=M_{X}(t) \cdot M_{Y}(t)=e^{\left(\mu_{1}+\mu_{2}\right)\left(e^{t}-1\right)} .
\end{aligned}
$$

## Limit of the Binomial Distribution

- Theorem. Let $X_{n} \sim \operatorname{Binomial}(n, p)$ be a binomial random variable
- $p$ : a function of $n$
- $\lim _{n \rightarrow \infty} n p=\lambda$ is a constant, independent of $n$.

Then for any fixed $k$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[X_{n}=k\right]=\frac{e^{-\lambda} \lambda^{k}}{k!}
$$

## Scenario

- $m$ balls into $n$ bins.
- $m=f(n)$;
- $\lim _{m \rightarrow \infty} m / n=\lambda$;
- $X_{m}$ : the number of balls in a specific bin.
- $\operatorname{Binomial}(m, 1 / n)$.
- From the theorem:

$$
\lim _{m \rightarrow \infty} \operatorname{Pr}\left[X_{m}=r\right]=\frac{e^{-m / n}(m / n)^{r}}{r!} .
$$

