Randomized Algorithms — P, NP, RP, PP, ZPP, BPP, ...

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Joseph C. C. Lin (CSIE, TKU, TW)

Randomized Algorithm - Complexities

■ ► < ■ ► < ■ ►</p>
Fall 2023

Outline

2 Complexity Classes

- Deterministic Classes
- Space Complexity Classes
- Reduction & Completeness
- Randomized Complexity Classes

Transformation of Probability Distributions

Outline

Complexity Classes

- Deterministic Classes
- Space Complexity Classes
- Reduction & Completeness
- Randomized Complexity Classes

Transformation of Probability Distributions

RAM (Random Access Machine)

- RAM is a model of computation used when describing and analyzing algorithms.
- A machine can perform operations involving registers and main memory.
- The *unit-cost* RAM: each instruction can be performed in one time step.
 - Too powerful; no known polynomial time simulation of this type of model by Turing machines.
- The *log-cost* RAM: each instruction requires time proportional to the logarithm of the size of its operands.

イロト イヨト イヨト ・

Turing Machine

A physical Turing machine (with finite amount of tape).

Deterministic Turing Machine

A deterministic Turing machine is a quadruple $M = (S, \Sigma, \delta, s)$.

- S: a finite set of states (s: the initial state)
- Σ: A finite set of symbols (including special symbols BLANK and FIRST).
- δ : the transition function.
 - $S \times \Sigma \mapsto (S \cup \{\text{HALT, YES, NO}\}) \times \Sigma \times \{\leftarrow, \rightarrow, \text{STAY}\}.$
 - HALT, YES, NO: The three halting states not in S.

Turing Machine (Input & Tape)

- The input to the TM: written on a tape.
- The TM, as an algorithm, may read from and write on this tape.
- Assume that HALT, YES, NO as well as the symbols \leftarrow, \rightarrow , and STAY are not in $S \cup \Sigma$.
- The TM begins in the initial state *s* with its cursor at the first symbol FIRST of input *x*.
- The input is a string of $(\Sigma \setminus \{BLANK, FIRST\})^*$.
 - The left-most BLANK on the tape: the end of the input string.

イロト イヨト イヨト ・

Turing Machine (Transition)

- The transition function δ : can be thought as a *program*.
- In each step, the TM reads the symbol α pointed by the cursor;
- Based on α and the current state, choose:
 - a next state;
 - a symbol β to be overwritten on α ;
 - a cursor motion direction from $\{\leftarrow, \rightarrow, \mathsf{STAY}\}$.
- The cursor never falls off the left end of the input: FIRST.
- The BLANK symbol can be overwritten.

Turing Machine (Acceptance & Reject)

- The TM has accepted the input x: if the TM halts in the YES state.
- The TM has rejected the input *x*: if the TM halts in the NO state.
- State HALT: for the computation of functions whose range is not Boolean (output of the function is written on the tape).

RAMs & Turing Machines

Probabilistic Turing Machine

A probabilistic Turing machine is a Turing machine augmented with the ability to generate an unbiased coin flip in one step.

• This corresponds to a randomized algorithm.

Complexity Classes

Deterministic Classes

Outline

RAMs & Turing Machines

Complexity Classes

- Deterministic Classes
- Space Complexity Classes
- Reduction & Completeness
- Randomized Complexity Classes

Complexity Classes

Deterministic Classes

SAT

An instance of satisfiability (SAT):

 $(x_1 \land \neg x_2 \land x_4) \lor (\neg x_3 \land \neg x_4 \land x_5) \lor (\neg x_1 \land x_2 \land x_4 \land \neg x_5)$

- x_1, x_2, \ldots variables
- $\neg x_1, x_2$: literals
- (\cdots) : clauses

Joseph C. C. Lin (CSIE, TKU, TW)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの Fall 2023

11/39

Complexity Classes

Deterministic Classes

Language Recognition Problems

Language Recognition Problems

Any decision problem can be treated as a language recognition problem.

- Σ*: the set of all possible strings over Σ.
- |S|: length of string s.

A language $L \subseteq \Sigma^*$ is any collection of strings over Σ .

A Language Recognition Problem

Decide whether a given string $x \in \Sigma^*$ belongs to L.

Complexity Class

A collection of languages all of whose recognition problems can be solved under prescribed bounds on the computational resources.

Joseph C. C. Lin (CSIE, TKU, TW)

Randomized Algorithm - Complexities

Fall 2023

Complexity Classes

Deterministic Classes

P & NP

Ρ

The class P consists of all languages L which has a polynomial time algorithm A s.t. for any input $x \in \Sigma^*$,

- $x \in L \Rightarrow A(x)$ accepts;
- $x \notin L \Rightarrow A(x)$ rejects.

NP

The class *NP* consists of all languages *L* which has a polynomial time algorithm *A* s.t. for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \exists y \in \Sigma^*$$
, $A(x, y)$ accepts for $|y| \le poly(|x|)$;

• $x \notin L \Rightarrow \forall y \in \Sigma^*$, A(x, y) rejects.

イロン イヨン イヨン

For example, given an instance of satisfiability (SAT):

$$\mathbf{x} = (x_1 \land \neg x_2 \land x_4) \lor (\neg x_3 \land \neg x_4 \land x_5) \lor (\neg x_1 \land x_2 \land x_4 \land \neg x_5)$$

イロト イポト イヨト イヨト

э

Joseph C. C. Lin (CSIE, TKU, TW)

For example, given an instance of satisfiability (SAT):

$$\mathbf{x} = (x_1 \land \neg x_2 \land x_4) \lor (\neg x_3 \land \neg x_4 \land x_5) \lor (\neg x_1 \land x_2 \land x_4 \land \neg x_5)$$

Suppose we have the "proof" y as

$$x_1 = \mathsf{True}, x_2 = \mathsf{False}, x_3 = \mathsf{True}, x_4 = \mathsf{True}, x_5 = \mathsf{True}$$

э

イロト イポト イヨト イヨト

For example, given an instance of satisfiability (SAT):

$$\mathbf{x} = (x_1 \land \neg x_2 \land x_4) \lor (\neg x_3 \land \neg x_4 \land x_5) \lor (\neg x_1 \land x_2 \land x_4 \land \neg x_5)$$

Suppose we have the "proof" y as

$$x_1 = \mathsf{True}, x_2 = \mathsf{False}, x_3 = \mathsf{True}, x_4 = \mathsf{True}, x_5 = \mathsf{True}$$

We can check that $(\mathbf{x}, \mathbf{y}) \in L$ (encoded as string of $O(\log n)$ space in the tape) in polynomial time, where L denote the set of all satisfiable formula.

イロト イヨト イヨト ・

Randomized Algorithm - Complexities Complexity Classes Deterministic Classes

A Useful, Alternative Viewpoint

The class P consists of all language L such that for any $x \in L$, a proof of $x \in L$ (represented by the string y) can be found and verified in polynomial time.

The class **NP** consists of all language L such that for any $x \in L$, a proof of $x \in L$ (represented by the string y) can be verified in polynomial time.

Obviously,

P NP.

15 / 39

<日

<</p>

Randomized Algorithm - Complexities Complexity Classes Deterministic Classes

A Useful, Alternative Viewpoint

The class P consists of all language L such that for any $x \in L$, a proof of $x \in L$ (represented by the string y) can be found and verified in polynomial time.

The class **NP** consists of all language L such that for any $x \in L$, a proof of $x \in L$ (represented by the string y) can be verified in polynomial time.

Obviously,

$$P \subseteq NP$$
.

Joseph C. C. Lin (CSIE, TKU, TW) Rando

Complexity Classes

Deterministic Classes

Complementary Classes

For any complexity class C, the complementary class co-C is the set of languages whose complement is in C. That is,

$$\mathsf{co-}\mathcal{C} = \{L \mid \overline{L} \in \mathcal{C}\}.$$

Joseph C. C. Lin (CSIE, TKU, TW)

Complexity Classes

Deterministic Classes

Examples: co-*P* & co-*NP*

со-**Р**

The class co-P consists of all languages L which has a polynomial time algorithm A s.t. for any input $x \in \Sigma^*$,

- $x \notin L \Rightarrow A(x)$ accepts;
- $x \in L \Rightarrow A(x)$ rejects.

co-*NP*

The class co-**NP** consists of all languages *L* which has a polynomial time algorithm *A* s.t. for any input $x \in \Sigma^*$,

- $x \notin L \Rightarrow \exists y \in \Sigma^*$, A(x, y) accepts for $|y| \leq \text{poly}(|x|)$;
- $x \in L \Rightarrow \forall y \in \Sigma^*$, A(x, y) rejects..

Open Questions: $P = NP \cap \text{co-}NP$? NP = co-NP?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Complexity Classes

Deterministic Classes

Similarly, ...

Joseph C. C. Lin (CSIE, TKU, TW)

Randomized Algorithm - Complexities

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶
Fall 2023

3

Complexity Classes

Deterministic Classes

EXP & NEXP

EXP

The class **EXP** consists of all languages *L* which has an exponential time algorithm *A* s.t. for any input $x \in \Sigma^*$,

- $x \in L \Rightarrow A(x)$ accepts;
- $x \notin L \Rightarrow A(x)$ rejects.

NEXP

The class **NEXP** consists of all languages *L* which has an exponential time algorithm *A* s.t. for any input $x \in \Sigma^*$,

•
$$x \in L \Rightarrow \exists y \in \Sigma^*$$
, $A(x, y)$ accepts for $|y| \le poly(|x|)$;

• $x \notin L \Rightarrow \forall y \in \Sigma^*$, A(x, y) rejects..

イロン イヨン イヨン

Randomized Algorithm - Complexities Complexity Classes

Deterministic Classes

A Useful, Alternative Viewpoint

The class **EXP** consists of all language *L* such that for any $x \in L$, a proof of $x \in L$ (represented by the string *y*) can be found and verified in exponential time.

The class **NEXP** consists of all language L such that for any $x \in L$, a proof of $x \in L$ (represented by the string y) can be verified in exponential time.

Obviously,

 $EXP \subseteq NEXP.$

Joseph C. C. Lin (CSIE, TKU, TW)

Randomized Algorithm - Complexities

Fall 2023

イロト イヨト イヨト ・

20 / 39

Complexity Classes

Space Complexity Classes

Outline

RAMs & Turing Machines

Complexity Classes

- Deterministic Classes
- Space Complexity Classes
- Reduction & Completeness
- Randomized Complexity Classes

Randomized Algorithm - Complexities Complexity Classes Space Complexity Classes

Space

- The space used by a TM: the number of distinct positions on the tape that are scanned during an execution.
 - For RAMs, its the number of words of memory required by an algorithm.
- **PSPACE** and **NPSPACE**: resembles the settings of **P** and **NP** but requiring polynomial space.
- A **PSPACE** algorithm may run for super-polynomial time (e.g., $2^{\text{poly}(n)}$).
- Known results: **PSPACE** = **NPSPACE**, **PSPACE** = co-**PSPACE**.
 - Savitch's theorem: a deterministic Turing machine can simulate a nondeterministic Turing machine without needing much more space.

(日)

Complexity Classes

Reduction & Completeness

Outline

RAMs & Turing Machines

Complexity Classes

- Deterministic Classes
- Space Complexity Classes

• Reduction & Completeness

Randomized Complexity Classes

Transformation of Probability Distributions

Complexity Classes

Reduction & Completeness

Reduction

Polynomial Reduction

A polynomial reduction from a language $L_1 \subseteq \Sigma^*$ to a language $L_2 \subseteq \Sigma^*$ is a function $f : \Sigma^* \mapsto \Sigma^*$ such that

- \exists a polynomial time algorithm that computes f
- $\forall x \in \Sigma^*$, $x_1 \in L_1$ if and only if $f(x) \in L_2$.

イロト 不得 トイヨト イヨト

Complexity Classes

Reduction & Completeness

Completeness

NP-hard

A language *L* is *NP*-hard if, for all $L' \in NP$, there is a polynomial reduction from L' to *L*.

NP-complete

A language *L* is *NP*-complete if it is in *NP* and is *NP*-hard.

The first **NP**-complete problem: SAT (Cook-Levin Theorem (1971)).

イロト イヨト イヨト ・

Complexity Classes

Randomized Complexity Classes

Outline

RAMs & Turing Machines

Complexity Classes

- Deterministic Classes
- Space Complexity Classes
- Reduction & Completeness
- Randomized Complexity Classes

Complexity Classes

Randomized Complexity Classes

RP

RP

The class RP (i.e., Randomized Polynomial time) consists of all languages L that have a randomized algorithm A which runs in worst-case polynomial time such that for any input $x \in \Sigma^*$:

•
$$x \in L \Rightarrow \Pr[A(x) \text{ accepts}] \geq \frac{1}{2}$$

•
$$x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] = 0$$

• Err only when $x \in L$. \Rightarrow one-sided error.

イロト 不得 トイヨト イヨト

Complexity Classes

Randomized Complexity Classes

co-*RP*

co-*RP*

The class co-*RP* (i.e., complement Randomized Polynomial time) consists of all languages *L* that have a randomized algorithm *A* which runs in worst-case polynomial time such that for any input $x \in \Sigma^*$:

•
$$x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] \geq \frac{1}{2}$$

•
$$x \in L \Rightarrow \Pr[A(x) \text{ accepts}] = 0.$$

• Err only when $x \notin L$. \Rightarrow one-sided error.

イロト 不得 トイラト イラト 一日

28 / 39

Assume that we have the following class:

RP'

The class RP' consists of all languages L that have a randomized algorithm A which runs in worst-case polynomial time such that for any input $x \in \Sigma^*$:

•
$$x \in L \Rightarrow \Pr[A(x) \text{ accepts}] \geq \frac{1}{n^2}$$

•
$$x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] = 0.$$

Prove that $\mathbf{RP}' = \mathbf{RP}$.

イロト 不得 トイヨト イヨト

Complexity Classes

Randomized Complexity Classes

$RP \cap \text{co-}RP$

ZPP (Zero-error Probabilistic Polynomial time

The class **ZPP** is the class of languages that have Las Vegas algorithms running in expected polynomial time.

Joseph C. C. Lin (CSIE, TKU, TW)

(日)

Randomized Algorithm - Complexities Complexity Classes Randomized Complexity Classes

Why ZPP?

- Suppose we have a language $L \in \mathbf{RP} \cap \text{co-}\mathbf{RP}$.
- L can be recognized by an **RP** algorithm A and a co-**RP** algorithm B.

A Las Vegas algorithm

Given the input x, perform the following procedure in iterations.

- If A(x) accepts, then x must be a YES-instance;
- **②** Otherwise, if B(x) rejects, then x must be a NO-instance.
- If neither of above occurs, continue to next iteration.
 - The expected number of iterations is bounded!

イロト 不得 トイラト イラト 一日

Complexity Classes

Randomized Complexity Classes

PP

PP

The class **PP** (i.e., Probabilistic Polynomial time) consists of all languages L that have a randomized algorithm A running in worst-case polynomial time such that for any input $x \in \Sigma^*$:

•
$$x \in L \Rightarrow \Pr[A(x) \text{ accepts}] > \frac{1}{2}$$
.

•
$$x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] < \frac{1}{2}$$

(日)

Complexity Classes

Randomized Complexity Classes

PP

PP

The class **PP** (i.e., Probabilistic Polynomial time) consists of all languages L that have a randomized algorithm A running in worst-case polynomial time such that for any input $x \in \Sigma^*$:

• $x \in L \Rightarrow \Pr[A(x) \text{ accepts}] > \frac{1}{2}$.

• $x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] < \frac{1}{2}$.

- To reduce the error probability of a two-sided error algorithm, we can perform several independent iterations on the same input.
- Output the majority answer of these iterations.

イロト イヨト イヨト イヨト 三日

Complexity Classes

Randomized Complexity Classes

BPP

BPP

The class **BPP** (i.e., Bounded-error Probabilistic Polynomial time) consists of all languages L that have a randomized algorithm A running in worst-case polynomial time such that for any input $x \in \Sigma^*$:

•
$$x \in L \Rightarrow \Pr[A(x) \text{ accepts}] \geq \frac{3}{4}$$
.

•
$$x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] \leq \frac{1}{4}$$

(日)

Complexity Classes

Randomized Complexity Classes

BPP

BPP

The class **BPP** (i.e., Bounded-error Probabilistic Polynomial time) consists of all languages L that have a randomized algorithm A running in worst-case polynomial time such that for any input $x \in \Sigma^*$:

•
$$x \in L \Rightarrow \Pr[A(x) \text{ accepts}] \ge \frac{3}{4}$$
.
• $x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] \le \frac{1}{4}$.

• To reduce the error probability of a two-sided error algorithm, we can

- perform several independent iterations on the same input.
- Output the majority answer of these iterations.

イロト イヨト イヨト イヨト 三日

Complexity Classes

Randomized Complexity Classes

Randomized Complexity Classes

Source: Wikipedia

Joseph C. C. Lin (CSIE, TKU, TW)

3

Outline

RAMs & Turing Machines

Complexity Classes

- Deterministic Classes
- Space Complexity Classes
- Reduction & Completeness
- Randomized Complexity Classes

Transformation of Probability Distributions

p-coin & Transforming a Probability Distribution

p-coin

A coin is called a p-coin if it shows HEAD after one coin-flipping with probability p.

Probability Distribution Transformations

A function that transforms a *p*-coin to get a *q*-coin, for 0 < p, q < 1, is called a *p*-to-*q* transformation.

Joseph C. C. Lin (CSIE, TKU, TW)

通 ト イ ヨ ト イ ヨ ト

p-coin & Transforming a Probability Distribution

p-coin

A coin is called a p-coin if it shows HEAD after one coin-flipping with probability p.

Probability Distribution Transformations

A function that transforms a *p*-coin to get a *q*-coin, for 0 < p, q < 1, is called a *p*-to-*q* transformation.

Easy cases:

• *p*-to-0 and *p*-to-1..

伺 ト イ ヨ ト イ ヨ ト

p-coin & Transforming a Probability Distribution

p-coin

A coin is called a p-coin if it shows HEAD after one coin-flipping with probability p.

Probability Distribution Transformations

A function that transforms a *p*-coin to get a *q*-coin, for 0 < p, q < 1, is called a *p*-to-*q* transformation.

Easy cases:

- *p*-to-0 and *p*-to-1..
- *p*-to-(1 − *p*)

く 何 ト く ヨ ト く ヨ ト

p-coin & Transforming a Probability Distribution

p-coin

A coin is called a p-coin if it shows HEAD after one coin-flipping with probability p.

Probability Distribution Transformations

A function that transforms a *p*-coin to get a *q*-coin, for 0 < p, q < 1, is called a *p*-to-*q* transformation.

Easy cases:

- *p*-to-0 and *p*-to-1..
- *p*-to-(1 − *p*)
- *p*-to-*p*².

く 何 ト く ヨ ト く ヨ ト

p-coin & Transforming a Probability Distribution

p-coin

A coin is called a p-coin if it shows HEAD after one coin-flipping with probability p.

Probability Distribution Transformations

A function that transforms a *p*-coin to get a *q*-coin, for 0 < p, q < 1, is called a *p*-to-*q* transformation.

Easy cases:

- *p*-to-0 and *p*-to-1..
- *p*-to-(1 − *p*)
- *p*-to-*p*².

•
$$p$$
-to- $\binom{n}{k}p^k(1-p)^{n-k}$, for $n \in \mathbb{N}$ and $k \in \{0, 1, \dots, n\}$.

36 / 39

Exercise (2%)

Given a *p*-coin, where 0 .

- Repeat the following steps until it returns YES or NO.
 - I flip the p-coin twice.
 - If the results are HEAD-TAIL, return YES;
 - else if the results are TAIL-HEAD, return NO;
 - Otherwise, continue to next iteration
- Please prove that the above procedure is a *p*-to-¹/₂ transformation (i.e., deriving a fair coin).
- Please compute the expected number of coin-flips of the above procedure.

Transformation of Probability Distributions

Concatenation Rule

Concatenation Rule

Given a p-coin and a q-coin, we can derive a pq-coin as follows.

- **1** First, simulate the *p*-coin. If it is TAIL, output TAIL
- **②** Otherwise, simulate the *q*-coin and output the outcome.

Transformation of Probability Distributions

Concatenation Rule

Concatenation Rule

Given a p-coin and a q-coin, we can derive a pq-coin as follows.

- **1** First, simulate the *p*-coin. If it is TAIL, output TAIL
- Otherwise, simulate the q-coin and output the outcome.
- By the Concatenation Rule & the exercise, we can derive a *p*/2-coin when we are given a *p*-coin.

< 回 > < 三 > < 三 > -

Discussions

Joseph C. C. Lin (CSIE, TKU, TW)

Randomized Algorithm - Complexities

Fall 2023

イロト イポト イヨト イヨト

39 / 39

э