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RAMs & Turing Machines

RAM (Random Access Machine)

RAM is a model of computation used when describing and analyzing
algorithms.

A machine can perform operations involving registers and main
memory.

The unit-cost RAM: each instruction can be performed in one time
step.

Too powerful; no known polynomial time simulation of this type of
model by Turing machines.

The log-cost RAM: each instruction requires time proportional to the
logarithm of the size of its operands.
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RAMs & Turing Machines

Turing Machine

A physical Turing machine (with finite amount of tape).

Deterministic Turing Machine

A deterministic Turing machine is a quadruple M = (S ,Σ, δ, s).

S : a finite set of states (s: the initial state)

Σ: A finite set of symbols (including special symbols BLANK and
FIRST).

δ: the transition function.

S × Σ 7→ (S ∪ {HALT, YES, NO})× Σ× {←,→,STAY}.
HALT, YES, NO: The three halting states not in S .
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RAMs & Turing Machines

Turing Machine (Input & Tape)

The input to the TM: written on a tape.

The TM, as an algorithm, may read from and write on this tape.

Assume that HALT, YES, NO as well as the symbols ←,→, and
STAY are not in S ∪ Σ.

The TM begins in the initial state s with its cursor at the first symbol
FIRST of input x .

The input is a string of (Σ \ {BLANK, FIRST})∗.
The left-most BLANK on the tape: the end of the input string.
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RAMs & Turing Machines

Turing Machine (Transition)

The transition function δ: can be thought as a program.

In each step, the TM reads the symbol α pointed by the cursor;

Based on α and the current state, choose:

a next state;
a symbol β to be overwritten on α;
a cursor motion direction from {←,→,STAY}.

The cursor never falls off the left end of the input: FIRST.

The BLANK symbol can be overwritten.
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RAMs & Turing Machines

Turing Machine (Acceptance & Reject)

The TM has accepted the input x : if the TM halts in the YES state.

The TM has rejected the input x : if the TM halts in the NO state.

State HALT: for the computation of functions whose range is not
Boolean (output of the function is written on the tape).
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RAMs & Turing Machines

Probabilistic Turing Machine

A probabilistic Turing machine is a Turing machine augmented with the
ability to generate an unbiased coin flip in one step.

This corresponds to a randomized algorithm.
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Complexity Classes

Deterministic Classes

SAT

An instance of satisfiability (SAT):

(x1 ∧ ¬x2 ∧ x4) ∨ (¬x3 ∧ ¬x4 ∧ x5) ∨ (¬x1 ∧ x2 ∧ x4 ∧ ¬x5)

x1, x2, . . .: variables

¬x1, x2: literals
(· · · ): clauses
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Complexity Classes

Deterministic Classes

Language Recognition Problems

Language Recognition Problems

Any decision problem can be treated as a language recognition problem.

Σ∗: the set of all possible strings over Σ.

|S |: length of string s.

A language L ⊆ Σ∗ is any collection of strings over Σ.

A Language Recognition Problem

Decide whether a given string x ∈ Σ∗ belongs to L.

Complexity Class

A collection of languages all of whose recognition problems can be solved
under prescribed bounds on the computational resources.
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Complexity Classes

Deterministic Classes

P & NP

P

The class P consists of all languages L which has a polynomial time
algorithm A s.t. for any input x ∈ Σ∗,

x ∈ L⇒ A(x) accepts;

x /∈ L⇒ A(x) rejects.

NP

The class NP consists of all languages L which has a polynomial time
algorithm A s.t. for any input x ∈ Σ∗,

x ∈ L⇒ ∃y ∈ Σ∗, A(x , y) accepts for |y | ≤ poly(|x |);
x /∈ L⇒ ∀y ∈ Σ∗, A(x , y) rejects.
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Complexity Classes

Deterministic Classes

For example, given an instance of satisfiability (SAT):

x = (x1 ∧ ¬x2 ∧ x4) ∨ (¬x3 ∧ ¬x4 ∧ x5) ∨ (¬x1 ∧ x2 ∧ x4 ∧ ¬x5)

Suppose we have the “proof” y as

x1 = True, x2 = False, x3 = True, x4 = True, x5 = True

We can check that (x, y) ∈ L (encoded as string of O(log n) space in the

tape) in polynomial time, where L denote the set of all satisfiable formula.
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Complexity Classes

Deterministic Classes

A Useful, Alternative Viewpoint

The class P consists of all language L such that for any x ∈ L, a proof of
x ∈ L (represented by the string y) can be found and verified in
polynomial time.

The class NP consists of all language L such that for any x ∈ L, a proof
of x ∈ L (represented by the string y) can be verified in polynomial time.

Obviously,
P

⊆

NP.
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Complexity Classes

Deterministic Classes

Complementary Classes

For any complexity class C, the complementary class co-C is the set of
languages whose complement is in C. That is,

co-C = {L | L̄ ∈ C}.
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Complexity Classes

Deterministic Classes

Examples: co-P & co-NP

co-P
The class co-P consists of all languages L which has a polynomial time
algorithm A s.t. for any input x ∈ Σ∗,

x /∈ L⇒ A(x) accepts;

x ∈ L⇒ A(x) rejects.

co-NP
The class co-NP consists of all languages L which has a polynomial time
algorithm A s.t. for any input x ∈ Σ∗,

x /∈ L⇒ ∃y ∈ Σ∗, A(x , y) accepts for |y | ≤ poly(|x |);
x ∈ L⇒ ∀y ∈ Σ∗, A(x , y) rejects..

Open Questions: P = NP ∩ co-NP? NP = co-NP?
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Complexity Classes

Deterministic Classes

Similarly, . . .
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Complexity Classes

Deterministic Classes

EXP & NEXP

EXP

The class EXP consists of all languages L which has an exponential time
algorithm A s.t. for any input x ∈ Σ∗,

x ∈ L⇒ A(x) accepts;

x /∈ L⇒ A(x) rejects.

NEXP

The class NEXP consists of all languages L which has an exponential time
algorithm A s.t. for any input x ∈ Σ∗,

x ∈ L⇒ ∃y ∈ Σ∗, A(x , y) accepts for |y | ≤ poly(|x |);
x /∈ L⇒ ∀y ∈ Σ∗, A(x , y) rejects..

Joseph C. C. Lin (CSIE, TKU, TW) Randomized Algorithm - Complexities Fall 2023 19 / 39



Randomized Algorithm - Complexities

Complexity Classes

Deterministic Classes

A Useful, Alternative Viewpoint

The class EXP consists of all language L such that for any x ∈ L, a proof
of x ∈ L (represented by the string y) can be found and verified in
exponential time.

The class NEXP consists of all language L such that for any x ∈ L, a proof
of x ∈ L (represented by the string y) can be verified in exponential time.

Obviously,
EXP ⊆ NEXP.

Joseph C. C. Lin (CSIE, TKU, TW) Randomized Algorithm - Complexities Fall 2023 20 / 39



Randomized Algorithm - Complexities

Complexity Classes

Space Complexity Classes

Outline

1 RAMs & Turing Machines

2 Complexity Classes
Deterministic Classes
Space Complexity Classes
Reduction & Completeness
Randomized Complexity Classes

3 Transformation of Probability Distributions

Joseph C. C. Lin (CSIE, TKU, TW) Randomized Algorithm - Complexities Fall 2023 21 / 39



Randomized Algorithm - Complexities

Complexity Classes

Space Complexity Classes

Space

The space used by a TM: the number of distinct positions on the
tape that are scanned during an execution.

For RAMs, its the number of words of memory required by an
algorithm.

PSPACE and NPSPACE : resembles the settings of P and NP but
requiring polynomial space.

A PSPACE algorithm may run for super-polynomial time (e.g.,
2poly(n)).

Known results: PSPACE = NPSPACE , PSPACE = co-PSPACE .

Savitch’s theorem: a deterministic Turing machine can simulate a
nondeterministic Turing machine without needing much more space.
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Complexity Classes

Reduction & Completeness

Reduction

Polynomial Reduction

A polynomial reduction from a language L1 ⊆ Σ∗ to a language L2 ⊆ Σ∗ is
a function f : Σ∗ 7→ Σ∗ such that

∃ a polynomial time algorithm that computes f

∀x ∈ Σ∗, x1 ∈ L1 if and only if f (x) ∈ L2.
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Complexity Classes

Reduction & Completeness

Completeness

NP-hard

A language L is NP-hard if, for all L′ ∈ NP, there is a polynomial
reduction from L′ to L.

NP-complete

A language L is NP-complete if it is in NP and is NP-hard.

The first NP-complete problem: SAT (Cook-Levin Theorem (1971)).
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Complexity Classes

Randomized Complexity Classes

RP

RP
The class RP (i.e., Randomized Polynomial time) consists of all languages
L that have a randomized algorithm A which runs in worst-case polynomial
time such that for any input x ∈ Σ∗:

x ∈ L ⇒ Pr[A(x) accepts] ≥ 1
2 .

x /∈ L ⇒ Pr[A(x) accepts] = 0.

Err only when x ∈ L. ⇒ one-sided error.
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Complexity Classes

Randomized Complexity Classes

co-RP

co-RP
The class co-RP (i.e., complement Randomized Polynomial time) consists
of all languages L that have a randomized algorithm A which runs in
worst-case polynomial time such that for any input x ∈ Σ∗:

x /∈ L ⇒ Pr[A(x) accepts] ≥ 1
2 .

x ∈ L ⇒ Pr[A(x) accepts] = 0.

Err only when x /∈ L. ⇒ one-sided error.
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Complexity Classes

Randomized Complexity Classes

Exercise (3%)

Assume that we have the following class:

RP ′

The class RP ′ consists of all languages L that have a randomized
algorithm A which runs in worst-case polynomial time such that for any
input x ∈ Σ∗:

x ∈ L ⇒ Pr[A(x) accepts] ≥ 1
n2
.

x /∈ L ⇒ Pr[A(x) accepts] = 0.

Prove that RP ′ = RP.
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Complexity Classes

Randomized Complexity Classes

RP ∩ co-RP

ZPP (Zero-error Probabilistic Polynomial time

The class ZPP is the class of languages that have Las Vegas algorithms
running in expected polynomial time.
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Complexity Classes

Randomized Complexity Classes

Why ZPP?

Suppose we have a language L ∈ RP ∩ co-RP.

L can be recognized by an RP algorithm A and a co-RP algorithm B.

A Las Vegas algorithm

Given the input x , perform the following procedure in iterations.

1 If A(x) accepts, then x must be a YES-instance;

2 Otherwise, if B(x) rejects, then x must be a NO-instance.

3 If neither of above occurs, continue to next iteration.

The expected number of iterations is bounded!
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Complexity Classes

Randomized Complexity Classes

PP

PP
The class PP (i.e., Probabilistic Polynomial time) consists of all languages
L that have a randomized algorithm A running in worst-case polynomial
time such that for any input x ∈ Σ∗:

x ∈ L ⇒ Pr[A(x) accepts] > 1
2 .

x /∈ L ⇒ Pr[A(x) accepts]< 1
2 .

To reduce the error probability of a two-sided error algorithm, we can
perform several independent iterations on the same input.

Output the majority answer of these iterations.
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Complexity Classes

Randomized Complexity Classes

BPP

BPP
The class BPP (i.e., Bounded-error Probabilistic Polynomial time)
consists of all languages L that have a randomized algorithm A running in
worst-case polynomial time such that for any input x ∈ Σ∗:

x ∈ L ⇒ Pr[A(x) accepts] ≥ 3
4 .

x /∈ L ⇒ Pr[A(x) accepts] ≤ 1
4 .

To reduce the error probability of a two-sided error algorithm, we can
perform several independent iterations on the same input.

Output the majority answer of these iterations.
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Randomized Complexity Classes

Source: Wikipedia
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Transformation of Probability Distributions

p-coin & Transforming a Probability Distribution

p-coin

A coin is called a p-coin if it shows HEAD after one coin-flipping with
probability p.

Probability Distribution Transformations

A function that transforms a p-coin to get a q-coin, for 0 < p, q < 1, is
called a p-to-q transformation.

Easy cases:

p-to-0 and p-to-1..

p-to-(1− p)

p-to-p2.

p-to-(
(n
k

)
pk(1− p)n−k), for n ∈ N and k ∈ {0, 1, . . . , n}.
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Transformation of Probability Distributions

Exercise (2%)

Given a p-coin, where 0 < p < 1.

Repeat the following steps until it returns YES or NO.
1 flip the p-coin twice.
2 if the results are HEAD-TAIL, return YES;
3 else if the results are TAIL-HEAD, return NO;
4 otherwise, continue to next iteration

Please prove that the above procedure is a p-to-12 transformation
(i.e., deriving a fair coin).

Please compute the expected number of coin-flips of the above
procedure.
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Transformation of Probability Distributions

Concatenation Rule

Concatenation Rule

Given a p-coin and a q-coin, we can derive a pq-coin as follows.

1 First, simulate the p-coin. If it is TAIL, output TAIL

2 Otherwise, simulate the q-coin and output the outcome.

By the Concatenation Rule & the exercise, we can derive a p/2-coin
when we are given a p-coin.
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