Randomized Algorithms

Continuous Distributions and the Poisson Process

Joseph Chuang-Chieh Lin
Dept. CSIE, Tamkang University

Outline

- Continuous Random Variables
- The Uniform Distribution
- The Exponential Distribution
- The Poisson Process

Recall: Probability function

- $\operatorname{Pr}(\Omega)=1$
- For any event $E, 0 \leq \operatorname{Pr}(E) \leq 1$.
- For any finite or enumerable collection \mathbf{B} of disjoint events,

$$
\operatorname{Pr}\left(\bigcup_{E \in \mathbf{B}} E\right)=\sum_{E \in \mathbf{B}} \operatorname{Pr}[E] .
$$

k distinct points in $[0,1)$

- p : the probability of any given point is in $[0,1)$.
- $S(k)$: a set of k distinct points in $[0,1)$.

k distinct points in $[0,1)$

- p : the probability of any given point is in $[0,1)$.
- $S(k)$: a set of k distinct points in $[0,1)$.

$$
\operatorname{Pr}[x \in S(k)]=k p \leq 1
$$

k distinct points in $[0,1)$

- p : the probability of any given point is in $[0,1)$.
- $S(k)$: a set of k distinct points in $[0,1)$.

$$
\operatorname{Pr}[x \in S(k)]=k p \leq 1
$$

- k can be any number!

k distinct points in $[0,1)$

- p : the probability of any given point is in $[0,1)$.
- $S(k)$: a set of k distinct points in $[0,1)$.

$$
\operatorname{Pr}[x \in S(k)]=k p \leq 1
$$

- k can be any number!

$$
\therefore p=0
$$

Continuous distribution

- Probabilities are assigned to intervals rather than to individual values.
- For any $x \in \mathbf{R}, \quad F(x)=\operatorname{Pr}[X \leq x]=\operatorname{Pr}[X<x]$.
- X is continuous if $F(x)$ is a continuous function.

Continuous distribution

- Probabilities are assigned to intervals rather than to individual values.
- For any $x \in \mathbf{R}, \quad F(x)=\operatorname{Pr}[X \leq x]=\operatorname{Pr}[X<x]$.
- X is continuous if $F(x)$ is a continuous function.
- For all $-\infty<a<\infty$,

$$
\begin{aligned}
& F(a)=\int_{-\infty}^{a} f(t) d t \\
& f(x)=F^{\prime}(x)
\end{aligned}
$$

Continuous distribution

- Probabilities are assigned to intervals rather than to individual values.
- For any $x \in \mathbf{R}, \quad F(x)=\operatorname{Pr}[X \leq x]=\operatorname{Pr}[X<x]$.
- X is continuous if $F(x)$ is a continuous function.
- For all $-\infty<a<\infty$,

$$
\begin{aligned}
& F(a)=\int_{-\infty}^{a} f(t) d t \\
& \begin{aligned}
& \operatorname{Pr}[x<X \leq x+d x] \\
& f(x)=F(x+d x)-F(x) \\
& \approx f(x) d x
\end{aligned}
\end{aligned}
$$

Continuous distribution

$$
\begin{aligned}
& \operatorname{Pr}[a \leq X \leq b]=\int_{a}^{b} f(x) d x \\
& \mathbf{E}\left[X^{i}\right]=\int_{-\infty}^{\infty} x^{i} f(x) d x \\
& \mathbf{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right] \\
& =\int_{-\infty}^{\infty}(x-\mathbf{E}[x])^{2} f(x) d x \\
& =\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}
\end{aligned}
$$

Exercise

- Lemma. Let $X \geq 0$ be a continuous random variable. Then

$$
\mathbf{E}[X]=\int_{0}^{\infty} \operatorname{Pr}[X \geq x] d x
$$

Exercise

$$
\begin{aligned}
\mathbf{E}[X] & =\int_{0}^{\infty} y \cdot f(y) d y \\
& =\int_{y=0}^{\infty} f(y) \int_{x=0}^{y} d x d y \\
& =\int_{x=0}^{\infty} \int_{y=x}^{\infty} f(y) d y d x \\
& =\int_{x=0}^{\infty}(1-F(x)) d x \\
& =\int_{x=0}^{\infty} \operatorname{Pr}[X \geq x] d x .
\end{aligned}
$$

Joint Distribution

- The joint distribution function of X and Y :

$$
F(x, y)=\operatorname{Pr}[X \leq x, Y \leq y] .
$$

- X and Y have joint density function f if for all x, y,

$$
F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) d u d v
$$

We denote that $f(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)$.

Marginal Distribution Function

- Given a joint distribution function $F(x, y)$ over X and Y, we have the marginal distribution functions:

$$
F_{X}(x)=\operatorname{Pr}[X \leq x], \quad F_{Y}(y)=\operatorname{Pr}[Y \leq y] .
$$

The corresponding marginal density functions:

$$
f_{X}(x) \text { and } f_{Y}(y)
$$

Independence

- The random variables X and Y are independent if, for all x and y,

$$
\operatorname{Pr}[(X \leq x) \cap(Y \leq y)]=\operatorname{Pr}[X \leq x] \operatorname{Pr}[Y \leq y] .
$$

$$
\begin{gathered}
F(x, y)=F_{X}(x) F_{Y}(y) . \\
\\
f(x, y)=f_{X}(x) f_{Y}(y) .
\end{gathered}
$$

Example

- For $a, b>0$, consider the joint distribution function of two random variables X and Y :

$$
F(x, y)=1-e^{-a x}-e^{-b y}+e^{-(a x+b y)}, \text { over } x, y \geq 0
$$

Example

- For $a, b>0$, consider the joint distribution function of two random variables X and Y :

$$
\begin{gathered}
F(x, y)=1-e^{-a x}-e^{-b y}+e^{-(a x+b y)}, \text { over } x, y \geq 0 \\
F_{X}(x)=F(x, \infty)=1-e^{-a x}, F_{Y}(y)=F(\infty, y)=1-e^{-b y}
\end{gathered}
$$

Example

- For $a, b>0$, consider the joint distribution function of two random variables X and Y :

$$
\begin{aligned}
& F(x, y)=1-e^{-a x}-e^{-b y}+e^{-(a x+b y)}, \text { over } x, y \geq 0 \\
& F_{X}(x)=F(x, \infty)=1-e^{-a x}, F_{Y}(y)=F(\infty, y)=1-e^{-b y} \\
& f(x, y)=a b e^{-(a x+b y)}
\end{aligned}
$$

Example

- For $a, b>0$, consider the joint distribution function of two random variables X and Y :

$$
\begin{aligned}
& F(x, y)=1-e^{-a x}-e^{-b y}+e^{-(a x+b y)}, \text { over } x, y \geq 0 \\
& F_{X}(x)=F(x, \infty)=1-e^{-a x}, F_{Y}(y)=F(\infty, y)=1-e^{-b y} \\
& f(x, y)=a b e^{-(a x+b y)} \\
& \quad F(x, y)=\left(1-e^{-a x}\right)\left(1-e^{-b y}\right)=F_{X}(x) F_{Y}(y) \\
& f_{X}(x)=a e^{-a x}, f_{Y}(y)=b e^{-b y}, \therefore f(x, y)=f_{X}(x) f_{Y}(y)
\end{aligned}
$$

Conditional Probability

$$
\operatorname{Pr}[X \leq x \mid Y=y]=\lim _{\delta \rightarrow 0} \operatorname{Pr}[X \leq x \mid y \leq Y \leq y+\delta]
$$

Why?

Conditional Probability

$$
\begin{aligned}
\operatorname{Pr}[X \leq x \mid Y=y] & =\lim _{\delta \rightarrow 0} \operatorname{Pr}[X \leq x \mid y \leq Y \leq y+\delta] \\
& =\lim _{\delta \rightarrow 0} \frac{\operatorname{Pr}[(X \leq x) \cap(y \leq Y \leq y+\delta)]}{\operatorname{Pr}[y \leq Y \leq y+\delta]} \\
& =\lim _{\delta \rightarrow 0} \frac{F(x, y+\delta)-F(x, y)}{F_{Y}(y+\delta)-F_{Y}(y)} \\
& =\lim _{\delta \rightarrow 0} \int_{u=-\infty}^{x} \frac{\partial F(u, y+\delta) / \partial x-\partial F(u, y) / \partial x}{F_{Y}(y+\delta)-F_{Y}(y)} d u \\
& =\int_{u=-\infty}^{x} \lim _{\delta \rightarrow 0} \frac{(\partial F(u, y+\delta) / \partial x-\partial F(u, y) / \partial x) / \delta}{\left(F_{Y}(y+\delta)-F_{Y}(y)\right) / \delta} d u \\
& =\int_{u=-\infty}^{x} \frac{f(u, y)}{f_{Y}(y)} d u .
\end{aligned}
$$

Conditional Probability

- For example,

$$
F(x, y)=1-e^{-a x}-e^{-b y}+e^{-(a x+b y)}
$$

$$
\begin{aligned}
& \operatorname{Pr}[X \leq 3 \mid Y=4] \\
= & \int_{u=0}^{3} \frac{a b e^{-a u+4 b}}{b e^{-4 b}} d u=1-e^{-3 a}
\end{aligned}
$$

For $a, b>0$, consider the joint distribution function of two random variables X and Y :

$$
\begin{aligned}
& F(x, y)=1-e^{-a x}-e^{-b y}+e^{-(a x+b y)}, \text { over } x, y \geq 0 . \\
& F_{X}(x)=F(x, \infty)=1-e^{-a x}, F_{Y}(y)=F(\infty, y)=1-e^{-b y} . \\
& f(x, y)=a b e^{-(a x+b y)} . \\
& \quad F(x, y)=\left(1-e^{-a x}\right)\left(1-e^{-b y}\right)=F_{X}(x) F_{Y}(y) . \\
& f_{X}(x)=a e^{-a x}, f_{Y}(y)=b e^{-b y}, \therefore f(x, y)=f_{X}(x) f_{Y}(y) .
\end{aligned}
$$

Conditional Density Function

- Assume that $f_{Y}(y) \neq 0$ (resp., $\left.f_{X}(x) \neq 0\right)$,

$$
\begin{aligned}
& f_{X \mid Y}(x, y)=\frac{f(x, y)}{f_{Y}(y)} \\
& f_{Y \mid X}(x, y)=\frac{f(x, y)}{f_{X}(x)} \\
& \mathbf{E}[X \mid Y=y]=\int_{x=-\infty}^{\infty} x \cdot f_{X \mid Y}(x, y) d x
\end{aligned}
$$

Uniform Distribution

$$
\begin{gathered}
f(x)= \begin{cases}0 & \text { if } x \leq a \\
\frac{1}{b-a} & \text { if } a \leq x \leq b \\
0 & \text { if } x \geq b\end{cases} \\
\mathbf{E}[X]=\int_{a}^{b} \frac{x}{b-a} d x=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{b+a}{2}
\end{gathered}
$$

$$
F(x)= \begin{cases}0 & \text { if } x \leq a \\ \frac{x-a}{b-a} & \text { if } a \leq x \leq b \\ 1 & \text { if } x \geq b\end{cases}
$$

$$
\mathbf{E}\left[X^{2}\right]=\int_{a}^{b} \frac{x^{2}}{b-a} d x=\frac{b^{3}-a^{3}}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
$$

$$
\operatorname{Var}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\frac{(b-a)^{2}}{12}
$$

Exponential Distribution

- Definition. An exponential distribution with parameter λ is given by the following probability distribution function:

$$
F(x)= \begin{cases}1-e^{-\lambda x} & \text { for } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Exponential Distribution

Note: $\operatorname{Pr}[X>t]=1-F(t)=e^{-\lambda t}$.

$$
\begin{aligned}
& \mathbf{E}[X]=\int_{0}^{\infty} t \lambda e^{-\lambda t} d t=\frac{1}{\lambda} . \quad \text { (Integration by parts) } \\
& \mathbf{E}\left[X^{2}\right]=\int_{0}^{\infty} t^{2} \lambda e^{-\lambda t} d t=\frac{2}{\lambda^{2}} . \\
& \operatorname{Var}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\frac{1}{\lambda^{2}} .
\end{aligned}
$$

Exponential Distribution (memoryless)

- For an exponential random variable X with parameter λ,

$$
\operatorname{Pr}[X>s+t \mid X>t]=\operatorname{Pr}[X>s] .
$$

Exponential Distribution (memoryless)

- For an exponential random variable X with parameter λ,

$$
\begin{aligned}
& \operatorname{Pr}[X>s+t \mid X>t]=\operatorname{Pr}[X>s] \\
& \begin{aligned}
\operatorname{Pr}[X>s+t \mid X>t] & =\frac{\operatorname{Pr}[X>s+t]}{\operatorname{Pr}[X>t]} \\
& =\frac{1-\operatorname{Pr}[X \leq s+t]}{1-\operatorname{Pr}[X \leq t]} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda t}} \\
& =e^{-\lambda s}=\operatorname{Pr}[X>s]
\end{aligned} \\
&
\end{aligned}
$$

Min (exponential random variables)

- Lemma. If $X_{1}, X_{2}, \ldots, X_{n}$ are independent exponential random variables with parameters $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, respectively, then $\min \left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{n}\right)$ is exponential random variable with parameter $\sum_{i=1}^{n} \lambda_{i}$

Min (exponential random variables)

- Lemma. If $X_{1}, X_{2}, \ldots, X_{n}$ are independent exponential random variables with parameters $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, respectively, then $\min \left(\boldsymbol{X}_{\mathbf{1}}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}\right)$ is exponential random variable with parameter $\sum_{i=1}^{n} \lambda_{i}$

$$
\begin{aligned}
\operatorname{Pr}\left[\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)>x\right] & =\operatorname{Pr}\left[\left(X_{1}>x\right) \cap\left(X_{2}>x\right) \cap \cdots \cap\left(X_{n}>x\right)\right] \\
& =\operatorname{Pr}\left[X_{1}>x\right] \cdot \operatorname{Pr}\left[X_{2}>x\right] \cdots \operatorname{Pr}\left[X_{n}>x\right] \\
& =e^{-\lambda_{1} x} \cdot e^{-\lambda_{2} x} \cdots e^{-\lambda_{n} x} \\
& =e^{-\sum_{i=1}^{n} \lambda_{i}} .
\end{aligned}
$$

Scenario

- An airline ticket counter with n service agents.
- The time agent i takes per customer:
- Exponential distribution, parameter λ_{i}
- You are at the head of the line and wondering how long, in average, you wait for an agent to serve you...

Scenario

- An airline ticket counter with n service agents.
- The time agent i takes per customer:

ำำ

- Exponential distribution, parameter λ_{i}

- You are at the head of the line and wondering how long, in average, you wait for an agent to serve you...

The time until the first agent is free

- Exponential distribution with parameter $\sum_{i=1}^{n} \lambda_{i}$
- Expected waiting time: $1 / \sum_{i=1}^{n} \lambda_{i}$

The Poisson Process

- Counting process.
- E.g., arrivals of customers to a queue, emissions of radioactive particles, price surges in the stock markets, etc.
- $N(t)$: the number of events in the interval (say $[0, t]$).
- A stochastic counting process: $\{N(t): t \geq 0\}$

The Poisson Process

- A Poisson process $\{N(t): t \geq 0\}$ with parameter λ is a stochastic counting process such that the following conditions hold.

1. $N(0)=0$.
2. (Independent \& stationary increments) For any $t, s>0$,

- the distribution of $N(t+s)-N(s)$ is identical to the distribution of $N(t)$;
- for disjoint intervals [t_{1}, t_{2}] and $\left[t_{3}, t_{4}\right]$, the distribution of $N\left(t_{2}\right)-N\left(t_{1}\right)$ is independent of the distribution of $N\left(t_{4}\right)-N\left(t_{3}\right)$.

3. $\lim _{t \rightarrow 0} \frac{\operatorname{Pr}[N(t)=1]}{t}=\lambda$.
4. $\lim _{t \rightarrow 0} \frac{\operatorname{Pr}[N(t) \geq 2]}{t}=0$.

The Poisson Process

- A Poisson process $\{N(t): t \geq 0\}$ with parameter λ is a stochastic counting process such that the following conditions hold.

1. $N(0)=0$.
2. (Independent \& stationary increments) For any $t, s>0$,

- the distribution of $N(t+s)-N(s)$ is identical to the distribution of $N(t)$;
- for disjoint intervals $\left[t_{1}, t_{2}\right]$ and $\left[t_{3}, t_{4}\right]$, the distribution of $N\left(t_{2}\right)-N\left(t_{1}\right)$ is independent of the distribution of $N\left(t_{4}\right)-N\left(t_{3}\right)$.

3. $\lim _{t \rightarrow 0} \frac{\operatorname{Pr}[N(t)=1]}{t}=\lambda$.

The number of events in a given time interval follows the Poisson distribution!
4. $\lim _{t \rightarrow 0} \frac{\operatorname{Pr}[N(t) \geq 2]}{t}=0$.

Poisson Process \rightarrow Poisson Distribution

- Theorem. Let $\{N(t): t \geq 0\}$ be a Poisson process with with parameter λ. For any $t, s \geq 0$ and any integer $n \geq 0$,

$$
P_{n}(t):=\operatorname{Pr}[N(t+s)-N(s)=n]=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} .
$$

Poisson Process \rightarrow Poisson Distribution

- Theorem. Let $\{N(t): t \geq 0\}$ be a Poisson process with with parameter λ. For any $t, s \geq 0$ and any integer $n \geq 0$,

$$
\begin{aligned}
P_{n}(t):= & \operatorname{Pr}[N(t+s)-N(s)=n]=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \\
& =\operatorname{Pr}[N(t)-N(0)]=\operatorname{Pr}[N(t)-0]
\end{aligned}
$$

- The probability that n events happen during time interval of length t.

Stochastic Process + Poisson = ?

- Theorem. Let $\{N(t): t \geq 0\}$ be a stochastic process such that

1. $N(0)=0$.
2. (Independent increments) For disjoint intervals $\left[t_{1}, t_{2}\right]$ and $\left[t_{3}, t_{4}\right]$, the distribution of $N\left(t_{2}\right)-N\left(t_{1}\right)$ is independent of the distribution of $N\left(t_{4}\right)-N\left(t_{3}\right)$.
3. For any $t, s \geq 0, N(t+s)-N(s)$ has a Poisson distribution with mean λt. Then $\{N(t): t \geq 0\}$ is a Poisson process with rate λ.

Stochastic Process + Poisson = ?

- Theorem. Let $\{N(t): t \geq 0\}$ be a stochastic process such that

1. $N(0)=0$.
2. (Independent increments) For disjoint intervals $\left[t_{1}, t_{2}\right]$ and $\left[t_{3}, t_{4}\right]$, the distribution of $N\left(t_{2}\right)-N\left(t_{1}\right)$ is independent of the distribution of $N\left(t_{4}\right)-N\left(t_{3}\right)$.
3. For any $t, s \geq 0, N(t+s)-N(s)$ has a Poisson distribution with mean λt.

Then $\{N(t): t \geq 0\}$ is a Poisson process with rate λ.

$$
\lim _{t \rightarrow 0} \frac{\operatorname{Pr}[N(t)=1]}{t}=\lim _{t \rightarrow 0} \frac{e^{-\lambda t} \lambda t}{t}=\lambda . \quad \lim _{t \rightarrow 0} \frac{\operatorname{Pr}[N(t) \geq 2]}{t}=\lim _{t \rightarrow 0} \sum_{k \geq 2} \frac{e^{-\lambda t}(\lambda t)^{k}}{k!t}=0
$$

An Intuitive Idea

- Balls: events, bins: time slots

- A lot of balls into a lot of (infinitely small) bins...

Another Viewpoint: Interarrival

- Surprising fact: All of the X_{n} have the same distribution and this distribution is exponential!

O: events of Poisson process

Interarrival times

- Theorem. X_{1} has an exponential distribution with parameter λ.

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{1}>t\right]=\operatorname{Pr}[N(t)=0]=e^{\lambda t} . \\
& F\left(X_{1}\right)=1-\operatorname{Pr}\left[X_{1}>t\right]=1-e^{\lambda t} .
\end{aligned}
$$

Interarrival times

- Theorem. $X_{i}, \mathrm{i}=1,2, \ldots$, are i.i.d exponential random variables with parameter parameter λ.

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{i}>t_{i} \mid\left(X_{0}=t_{0}\right) \cap\left(X_{1}=t_{1}\right) \cap \cdots \cap\left(X_{i-1}=t_{i-1}\right)\right] \\
= & \operatorname{Pr}\left[N\left(\sum_{k=0}^{i} t_{k}\right)-N\left(\sum_{k=0}^{i-1} t_{k}\right)=0\right] \\
= & e^{-\lambda t_{i}} .
\end{aligned}
$$

Interarrival times

- Theorem. $X_{i}, \mathrm{i}=1,2, \ldots$, are i.i.d exponential random variables with parameter parameter λ.

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{i}>t_{i} \perp\left(X_{0} \equiv t_{0}\right) \cap\left(X_{1}=t_{1}\right) \cap \cdots \cap\left(X_{i-1}=t_{i-1}\right)\right] \\
= & \operatorname{Pr}\left[\begin{array}{l}
N \\
=
\end{array} e^{-\lambda t_{i}} .\right.
\end{aligned}
$$

$$
\text { Poisson process } \& \sim \text { distribution of } N\left(t_{i}\right)-N(0)=N\left(t_{i}\right)
$$

So, why the Poisson process makes $P_{n}(t)$ Poisson distributed?

The Poisson Process

- A Poisson process $\{N(t): t \geq 0\}$ with parameter λ is a stochastic counting process such that the following conditions hold.

1. $N(0)=0$.
2. (Independent \& stationary increments) For any $t, s>0$,

- the distribution of $N(t+s)-N(s)$ is identical to the distribution of $N(t)$;
- for disjoint intervals $\left[t_{1}, t_{2}\right]$ and $\left[t_{3}, t_{4}\right]$, the distribution of $N\left(t_{2}\right)-N\left(t_{1}\right)$ is independent of the distribution of $N\left(t_{4}\right)-N\left(t_{3}\right)$.

3. $\lim _{t \rightarrow 0} \frac{\operatorname{Pr}[N(t)=1]}{t}=\lambda$.

The number of events in a given time interval follows the Poisson distribution!

Poisson Process \rightarrow Poisson Distribution

- Theorem. Let $\{N(t): t \geq 0\}$ be a Poisson process with with parameter λ. For any $t, s \geq 0$ and any integer $n \geq 0$,

$$
P_{n}(t):=\operatorname{Pr}[N(t+s)-N(s)=n]=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

$P_{0}(t)$

- The number of events in $[0, t]$ and $(t, t+h]$ are independent.

$$
P_{0}(t+h)=P_{0}(t) \cdot P_{0}(h) .
$$

$P_{0}(t)$

- The number of events in $[0, t]$ and $(t, t+h]$ are independent.

$$
P_{0}(t+h)=P_{0}(t) \cdot P_{0}(h) .
$$

$$
\begin{aligned}
& \therefore \frac{P_{0}(t+h)-P_{0}(t)}{h} \\
= & \frac{P_{0}(t) P_{0}(h)-P_{0}(t)}{h} \\
= & P_{0}(t) \frac{P_{0}(h)-1}{h} \\
= & P_{0}(t) \frac{1-\operatorname{Pr}[N(h)=1]-\operatorname{Pr}[N(h) \geq 2]-1}{h} \\
= & P_{0}(t) \frac{-\operatorname{Pr}[N(h)=1]-\operatorname{Pr}[N(h) \geq 2]}{h} .
\end{aligned}
$$

$P_{0}(t)$

- The number of events in $[0, t]$ and $(t, t+h]$ are independent.

$$
\begin{array}{rlrl}
& \quad P_{0}(t+h)=P_{0}(t) \cdot P_{0}(h) . & \\
& \therefore \frac{P_{0}(t+h)-P_{0}(t)}{h} & \therefore P_{0}^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{P_{0}(t+h)-P_{0}(t)}{h} \\
= & \frac{P_{0}(t) P_{0}(h)-P_{0}(t)}{h} & & =\lim _{h \rightarrow 0} P_{0}(t) \frac{-\operatorname{Pr}[N(h)=1]-\operatorname{Pr}[N(h) \geq 2]}{h} \\
= & & =-\lambda P_{0}(t) . \\
= & P_{0}(t) \frac{P_{0}(h)-1}{h} & & \\
= & P_{0}(t) \frac{1-\operatorname{Pr}[N(h)=1]-\operatorname{Pr}[N(h) \geq 2]-1}{h} & \text { Solve } P_{0}^{\prime}(t)=-\lambda P_{0}(t) \\
& &
\end{array}
$$

$P_{0}(t)$

- The number of events in $[0, t]$ and $(t, t+h]$ are independent.

$$
\begin{aligned}
& P_{0}(t+h)=P_{0}(t) \cdot P_{0}(h) . \\
& \therefore \frac{P_{0}(t+h)-P_{0}(t)}{h} \\
& =\frac{P_{0}(t) P_{0}(h)-P_{0}(t)}{h} \\
& \therefore P_{0}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{P_{0}(t+h)-P_{0}(t)}{h} \\
& =\lim _{h \rightarrow 0} P_{0}(t) \frac{-\operatorname{Pr}[N(h)=1]-\operatorname{Pr}[N(h) \geq 2]}{h} \\
& =-\lambda P_{0}(t) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{P_{0}(t+h)-P_{0}(t)}{h} \\
= & \frac{P_{0}(t) P_{0}(h)-P_{0}(t)}{h} \\
= & P_{0}(t) \frac{P_{0}(h)-1}{h} \\
= & P_{0}(t) \frac{1-\operatorname{Pr}[N(h)=1]-\operatorname{Pr}[N(h) \geq 2]-1}{h} \\
= & P_{0}(t) \frac{-\operatorname{Pr}[N(h)=1]-\operatorname{Pr}[N(h) \geq 2]}{h} .
\end{aligned}
$$

Solve $P_{0}^{\prime}(t)=-\lambda P_{0}(t)$

$$
\begin{aligned}
& \frac{P_{0}^{\prime}(t)}{P_{0}(t)}=-\lambda . \Rightarrow \int \frac{P_{0}^{\prime}(t)}{P_{0}(t)} d t=\int-\lambda d t \\
& \ln P_{0}(t)=-\lambda t+C \quad \therefore P_{0}(t)=e^{-\lambda t}\left(\because P_{0}(0)=1\right)
\end{aligned}
$$

$P_{n}(t), n \geq 1$

$$
\begin{aligned}
P_{n}(t+h) & =\sum_{k=0}^{n} P_{n-k}(t) P_{k}(h) \\
& =P_{n}(t) P_{0}(h)+P_{n-1}(t) P_{1}(h)+\sum_{k=2}^{n} P_{n-k}(t) \cdot \operatorname{Pr}[N(h)=k] \\
P_{n}^{\prime}(t)= & \lim _{h \rightarrow 0} \frac{P_{n}(t+h)-P_{n}(t)}{h} \\
= & \lim _{h \rightarrow 0} \frac{1}{h}\left(P_{n}(t)\left(P_{0}(h)-1\right)+P_{n-1}(t) P_{1}(h)+\sum_{k=2}^{n} P_{n-k}(t) \operatorname{Pr}[N(h)=k]\right) \\
& =-\lambda P_{n}(t)+\lambda P_{n-1}(t) .
\end{aligned}
$$

$P_{n}(t), n \geq 1$

$$
\begin{aligned}
P_{n}(t+h) & =\sum_{k=0}^{n} P_{n-k}(t) P_{k}(h) \\
& =P_{n}(t) P_{0}(h)+P_{n-1}(t) P_{1}(h)+\sum_{k=2}^{n} P_{n-k}(t) \cdot \operatorname{Pr}[N(h)=k] \\
P_{n}^{\prime}(t)= & \lim _{h \rightarrow 0} \frac{P_{n}(t+h)-P_{n}(t)}{h} \\
= & \lim _{h \rightarrow 0} \frac{1}{h}\left(P_{n}(t)\left(P_{0}(h)-1\right)+P_{n-1}(t) P_{1}(h)+\sum_{k=2}^{n} P_{n-k}(t) \operatorname{Pr}[N(h)=k]\right) \\
= & -\lambda P_{n}(t)+\lambda P_{n-1}(t) .
\end{aligned}
$$

Solve $P_{n}^{\prime}(t)=-\lambda P_{n}(t)+\lambda P_{n-1}(t) . \Rightarrow e^{\lambda t}\left(P_{n}^{\prime}(t)+\lambda P_{n}(t)\right)=e^{\lambda t}\left(\lambda P_{n-1}(t).\right)$

$P_{n}(t), n \geq 1$

Solve $\quad P_{n}^{\prime}(t)=-\lambda P_{n}(t)+\lambda P_{n-1}(t) . \quad \Rightarrow \quad e^{\lambda t}\left(P_{n}^{\prime}(t)+\lambda P_{n}(t)\right)=e^{\lambda t}\left(\lambda P_{n-1}(t)\right)$.

$$
\Rightarrow \quad \frac{d}{d t}\left(e^{\lambda t} P_{n}(t)\right)=\lambda e^{\lambda t} P_{n-1}(t) .
$$

$P_{n}(t), n \geq 1$

$$
\begin{array}{ll}
\text { Solve } P_{n}^{\prime}(t)=-\lambda P_{n}(t)+\lambda P_{n-1}(t) . & \Rightarrow \quad e^{\lambda t}\left(P_{n}^{\prime}(t)+\lambda P_{n}(t)\right)=e^{\lambda t}\left(\lambda P_{n-1}(t)\right) \\
& \Rightarrow \quad \frac{d}{d t}\left(e^{\lambda t} P_{n}(t)\right)=\lambda e^{\lambda t} P_{n-1}(t) \\
& \therefore \frac{d}{d t}\left(e^{\lambda t} P_{1}(t)\right)=\lambda e^{\lambda t} P_{0}(t)=\lambda .
\end{array} \quad\left(P_{0}(t)=e^{-\lambda t}\right) .
$$

$P_{n}(t), n \geq 1$

- Look back at what we want to have:

$$
P_{n}(t)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

- We already have $P_{0}(t)$ and $P_{1}(t)$.

$$
\left(P_{0}(t)=e^{-\lambda t}\right)
$$

- Induction hypothesis:

$$
\left(P_{1}(t)=t \lambda e^{-\lambda t}\right)
$$

$$
P_{n-1}(t)=e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}
$$

$P_{n}(t), n \geq 1$

- Look back at what we want to have:

$$
P_{n}(t)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

- We already have $P_{0}(t)$ and $P_{1}(t)$.
- Induction hypothesis:

$$
P_{n-1}(t)=e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}
$$

Use $\frac{d}{d t}\left(e^{\lambda t} P_{n}(t)\right)=\lambda e^{\lambda t} P_{n-1}(t)$.

$P_{n}(t), n \geq 1$

- Look back at what we want to have:

$$
P_{n}(t)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

- We already have $P_{0}(t)$ and $P_{1}(t)$.
- Induction hypothesis:

$$
P_{n-1}(t)=e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}
$$

Use $\frac{d}{d t}\left(e^{\lambda t} P_{n}(t)\right)=\lambda e^{\lambda t} P_{n-1}(t)=\frac{\lambda^{n} t^{n-1}}{(n-1)!}$.

$P_{n}(t), n \geq 1$

- Look back at what we want to have:

$$
P_{n}(t)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

- We already have $P_{0}(t)$ and $P_{1}(t)$.
- Induction hypothesis:

$$
P_{n-1}(t)=e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}
$$

$$
\begin{aligned}
& \Rightarrow \quad \int d\left(e^{\lambda t} P_{n}(t)\right)=\int \frac{\lambda^{n} t^{n-1}}{(n-1)!} d t \\
& \Rightarrow \quad e^{\lambda t} P_{n}(t)=\frac{\lambda^{n} t^{n-1}}{(n-1)!} \cdot \frac{t^{n}}{n}+C \\
& \Rightarrow \quad P_{n}(t)=e^{-\lambda t} \frac{\lambda^{n} t^{n}}{n!} .\left(\text { use } P_{n}(0)=0\right)
\end{aligned}
$$

Use $\frac{d}{d t}\left(e^{\lambda t} P_{n}(t)\right)=\lambda e^{\lambda t} P_{n-1}(t)=\frac{\lambda^{n} t^{n-1}}{(n-1)!}$.

Further related topics

- Stochastic counting process: point processes
- Hawkes (self-exciting) processes.
- Earthquake modeling, financial analysis.
- A reference: https://arxiv.org/pdf/1507.02822.pdf

