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Outline

● Continuous Random Variables
● The Uniform Distribution
● The Exponential Distribution
● The Poisson Process
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Recall: Probability function

● Pr(Ω) = 1 
● For any event E, 0 ≤ Pr(E) ≤ 1.
● For any finite or enumerable collection B of disjoint events,  
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k distinct points in [0, 1)

● p: the probability of any given point is in [0, 1).
● S(k): a set of k distinct points in [0, 1).
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Continuous distribution

● Probabilities are assigned to intervals rather than to individual 
values. 

●   
– X is continuous if F(x) is a continuous function.
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Continuous distribution
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Exercise

● Lemma. Let X ≥ 0 be a continuous random variable. Then 
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Exercise
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Joint Distribution

● The joint distribution function of X and Y: 

● X and Y have joint density function f if for all x, y, 
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Marginal Distribution Function

● Given a joint distribution function F(x, y) over X and Y, we have the 
marginal distribution functions:

The corresponding marginal density functions: 



Randomized Algorithms, CSIE, TKU, Taiwan 16

Independence

● The random variables X and Y are independent if, for all x and y, 
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Example

● For a, b > 0, consider the joint distribution function of two random 
variables X and Y: 
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Conditional Probability

Why?
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Conditional Probability
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Conditional Probability

● For example, 
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Conditional Density Function

● Assume that fY(y) ≠ 0 (resp., fX(x) ≠ 0),  
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Uniform Distribution
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Exponential Distribution

● Definition. An exponential distribution with parameter λ is given by 
the following probability distribution function: 

wikipedia
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Exponential Distribution

(Integration by parts)
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Exponential Distribution (memoryless)

● For an exponential random variable X with parameter λ, 
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Min (exponential random variables)

● Lemma. If X1, X2, …, Xn are independent exponential random variables 
with parameters λ1, λ2, …, λn, respectively, then min(X1, X2, …, Xn) is 
exponential random variable with parameter 
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Scenario

● An airline ticket counter with n service 
agents.

● The time agent i takes per customer: 

– Exponential distribution, parameter λi

● You are at the head of the line and wondering how 
long, in average, you wait for an agent to serve 
you... 
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Scenario

● An airline ticket counter with n service 
agents.

● The time agent i takes per customer: 

– Exponential distribution, parameter λi

● You are at the head of the line and wondering how 
long, in average, you wait for an agent to serve 
you... 

The time until the first agent is free
● Exponential distribution with parameter 

● Expected waiting time: 
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The Poisson Process

● Counting process.
– E.g., arrivals of customers to a queue, emissions of radioactive particles, price 

surges in the stock markets, etc.

● N(t): the number of events in the interval (say [0, t]).
● A stochastic counting process: {N(t):  t ≥ 0}

Siméon Poisson 
(1781−1840)

Wikipedia
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The Poisson Process

● A Poisson process {N(t):  t ≥ 0} with parameter λ is a stochastic counting process 
such that the following conditions hold. 

1.  N(0) = 0.

2. (Independent & stationary increments) For any t, s > 0, 

• the distribution of N(t+s) – N(s) is identical to the distribution of N(t);
• for disjoint intervals [t1, t2] and [t3, t4], the distribution of N(t2) – N(t1) is 

independent of the distribution of N(t4) – N(t3).

3.

 

4.  

Siméon Poisson 
(1781−1840)

Wikipedia
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3.

 

4.  

Siméon Poisson 
(1781−1840)

Wikipedia

The number of events in a given time interval 
follows the Poisson distribution!



Randomized Algorithms, CSIE, TKU, Taiwan 37

Poisson Process → Poisson Distribution

● Theorem. Let {N(t):  t ≥ 0} be a Poisson process with with parameter λ. 
For any t, s ≥ 0 and any integer n ≥ 0, 
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Poisson Process → Poisson Distribution

● Theorem. Let {N(t):  t ≥ 0} be a Poisson process with with parameter λ. 
For any t, s ≥ 0 and any integer n ≥ 0, 

●  The probability that n events happen during time interval of length t.
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Stochastic Process + Poisson = ?

● Theorem. Let {N(t):  t ≥ 0} be a stochastic process such that  

1.  N(0) = 0.

2. (Independent increments) For disjoint intervals [t1, t2] and [t3, t4], the 
distribution of N(t2) – N(t1) is independent of the distribution of N(t4) – N(t3).

3. For any t, s ≥ 0, N(t+s) – N(s) has a Poisson distribution with mean λt.

Then {N(t):  t ≥ 0} is a Poisson process with rate λ.
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An Intuitive Idea

● Balls: events, bins: time slots

● A lot of balls into a lot of (infinitely small) bins...

…...

…...
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Another Viewpoint: Interarrival

● Surprising fact:  All of the Xn have the same distribution and this distribution 
is exponential!

(n – 1)th 
event nth event

Xn: the interval time

:  events of Poisson process
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Interarrival times

● Theorem. X1 has an exponential distribution with parameter λ.
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Interarrival times

● Theorem. Xi , i = 1, 2, …, are i.i.d exponential random variables with 
parameter parameter λ.
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So, why the Poisson process makes Pn(t) Poisson distributed?
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P0(t)

● The number of events in [0, t] and (t, t+h] are independent. 
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Pn(t), n ≥ 1
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Pn(t), n ≥ 1
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Pn(t), n ≥ 1
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Pn(t), n ≥ 1

● Look back at what we want to have: 

● We already have P0(t) and P1(t).

● Induction hypothesis: 



Randomized Algorithms, CSIE, TKU, Taiwan 56

Pn(t), n ≥ 1

● Look back at what we want to have: 

● We already have P0(t) and P1(t).

● Induction hypothesis: 



Randomized Algorithms, CSIE, TKU, Taiwan 57

Pn(t), n ≥ 1

● Look back at what we want to have: 

● We already have P0(t) and P1(t).

● Induction hypothesis: 



Randomized Algorithms, CSIE, TKU, Taiwan 58

Pn(t), n ≥ 1

● Look back at what we want to have: 

● We already have P0(t) and P1(t).

● Induction hypothesis: 



Randomized Algorithms, CSIE, TKU, Taiwan 59

Further related topics

● Stochastic counting process: point processes
● Hawkes (self-exciting) processes.

– Earthquake modeling, financial analysis.
– A reference: https://arxiv.org/pdf/1507.02822.pdf

https://arxiv.org/pdf/1507.02822.pdf

