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Review

● Expectation of discrete random variables
● Linearity of expectation.
● Bernoulli and Binomial random variable
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Expectation

● The expectation of a discrete random variable X, denoted by 
E[X], is 

● Example: Let X denote the sum of of dices: 
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Linearity of Expectation

● For any finite collection of discrete random variables X1, X2, ..., Xn with finite expectations,

● For any constant c and discrete random variable X, 

● Why is it useful?
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Example

● Consider the dice-throwing example again. 

– X
1
 : the outcome of die 1

– X
2
 : the outcome of die 2

 

Adam Fejes@adamfjs
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Bernoulli random variable

● Suppose we run an experiment that succeeds with 
probability p and fails with probability 1−p.

● Y: Bernoulli random variable.

– or indicator random variable.

Wikipedia
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Binomial random variable

● A binomial random variable X with parameters n and p, denoted 
by B(n, p), is defined as 

for j = 0, 1, 2, ..., n.

● Exercise:  Show that 
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Binomial random variable

● A binomial random variable X with parameters n and p, denoted 
by B(n, p), is defined as 

for j = 0, 1, 2, ..., n.

● Exercise:  Show that 

X:  the number of successful trials in the n experiments.
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Binomial random variable (expectation)

●  
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Binomial random variable (expectation)

●  
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Let’s make it simpler!

● Denote a set of n Bernoulli random variables X1, X2, ..., Xn.

– Xi = 1 if the ith trial is successful and 0 otherwise.

– X = X1+ X2 + … + Xn



Randomized Algorithms, CSIE, Tamkang University, Taiwan 12

Let’s make it simpler!

● Denote a set of n Bernoulli random variables X1, X2, ..., Xn.

– Xi = 1 if the ith trial is successful and 0 otherwise.

– X = X1+ X2 + … + Xn

– Compute E[X] using linearity of expectation:  
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Let’s make it simpler!

● Denote a set of n Bernoulli random variables X1, X2, ..., Xn.

– Xi = 1 if the ith trial is successful and 0 otherwise.

– X = X1+ X2 + … + Xn

– Compute E[X] using linearity of expectation:  
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Geometric Distribution

● Imagine:  flip a coin until it lands on a head.
– What’s the distribution of the number of flips?
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Geometric Distribution

● Imagine:  flip a coin until it lands on a head.
– What’s the distribution of the number of flips?

● Definition. A geometric random variable X with parameter p is 

for n = 1, 2, …
● Exercise. Show that 
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Memoryless

● Let X be a geometric random variable X with parameter p > 0. 

● For any n, k > 0, 
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Memoryless

● Let X be a geometric random variable X with parameter p > 0. 

● For any n, k > 0, 

● Proof.
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The mean of a geometric r.v. X(p)
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Coupon Collector’s Problem
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Coupon Collector’s Problem

● Have you already got all of them (totally n types)? 
● Have you ever thought about how much you should pay for them?

Concealed
bag

Concealed
bag

Concealed
bag

Concealed
bag

Concealed
bag

● Each bag is chosen independently and uniformly at random from the n possibilities.
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Coupon Collector’s Problem

● Let X be the number of bags bought until every type of coupon is 
obtained.

● Let Xi be the number of bags bought while you had already got 
exactly i−1 different coupons.

X

X3
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Coupon Collector’s Problem

● Let X be the number of bags bought until every type of coupon is 
obtained.

● Let Xi be the number of bags bought while you had already got 
exactly i−1 different coupons.

– Geometric random variables?!
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Coupon Collector’s Problem

● Let X be the number of bags bought until every type of coupon is 
obtained.

● Let Xi be the number of bags bought while you had already got 
exactly i−1 different coupons.

– Geometric random variables?!
– What about 
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Coupon Collector’s Problem

● When exactly i−1 coupons have been collected, the probability of 
obtaining a new one is

● Xi is a geometric random variable, so 
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Coupon Collector’s Problem (contd.)

●  
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Coupon Collector’s Problem (contd.)

● So, you are about to buy                          bags for collecting all 
the coupons (stickers)!
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On conditional expectation

● There are terminologies which may confusing you. 



Randomized Algorithms, CSIE, Tamkang University, Taiwan 28

Conditional Expectation

● Definition.

● Example of two dices.
– X1: the number showing on the first die

– X2: the number showing on the second die

– X = X1+ X2
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Conditional Expectation (contd.)

● Lemma. For any random variables X and Y, 

● Proof.  



Randomized Algorithms, CSIE, Tamkang University, Taiwan 30

Conditional Expectation

● Lemma. For any finite collection of discrete random variables X1, 

X2, ..., Xn with finite expectations and for any random variable Y, 
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Conditional Expectation (contd.)

● A weird definition.
●                : regarded as a random variable f(Z).

– It takes on the value                        when Z = z.

● In the previous example, 

● So it makes sense that 
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Conditional Expectation (contd.)

● Theorem. 

● Proof.


