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Review

* Expectation of discrete random variables
* Linearity of expectation.

e Bernoulli and Binomial random variable
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Expectation

* The expectation of a discrete random variable X, denoted by
E[X], is
E[X]=) i Pr[X =i

1

* Example: Let X denote the sum of of dices:

1 2 3 1
EX] = — .24+ —. = 44 —.12="T.
X 36 +36 3+36 i +36
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Linearity of Expectation

« For any finite collection of discrete random variables X, X,, ..., X, with finite expectations,

E

Z Xi] = Z E[X;].

* For any constant c and discrete random variable X,

ElcX] =c-E[X].
* Why is it useful?
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Example

* Consider the dice-throwing example again.

- X, the outcome of die 1

- X, the outcome of die 2

SPEE

E[X]|=E[X; + X5] =T.

E[X,] =

OBI}—\
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Bernoulli random variable

* Suppose we run an experiment that succeeds with
probability p and fails with probability 1—p.

1  if the experiment succeeds,
Y = .
0 otherwise.

e Y: Bernoulli random variable.

JAC. BERNOULLI, MATH.PP

— or indicator random variable.
EY|=1-Pr[Y =140 -Pr[Y =0] =Pr]Y = 1]
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Binomial random variable

* A binomial random variable X with parameters n and p, denoted
by B(n, p), is defined as

forj=0,1, 2, ..., n.

e Exercise: Show that ZPI‘[X =jl=1
=0
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Binomial random variable

* A binomial random variable X with parameters n and p, denoted
by B(n, p), is defined as

forj=0,1,2,..n. T

e Exercise: Show that ZPI‘[X =jl=1
=0
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Binomial random variable (expectation)
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Binomial random variable (expectation)
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Let’s make it simpler!

« Denote a set of n Bernoulli random variables X, X,, ..., X,

- X.=1 if the ith trial is successful and O otherwise.

- X=X+ X+ ...+ X,
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Let’s make it simpler!

« Denote a set of n Bernoulli random variables X, X,, ..., X,

- X.=1 if the ith trial is successful and O otherwise.
- X=X+X,+...+X,

— Compute E[X] using linearity of expectation:
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Let’s make it simpler!

 Denote a set of n Bernoulli random variables X, X, ...

- X.=1 if the ith trial is successful and O otherwise.

- X=X+X,+...+X,
— Compute E[X] using linearity of expectation:

Z Xi] = Z E[X;] = np.

E[X]|=E
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Geometric Distribution

* Imagine: flip a coin until it lands on a head.

— What’s the distribution of the number of flips?
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Geometric Distribution

* Imagine: flip a coin until it lands on a head.

— What’s the distribution of the number of flips?

* Definition. A geometric random variable X with parameter p is

Pr[X =n]=(1—-p)" " 'p.

forn=1, 2, ...
e Exercise. Show that » Pr[X =n]=1.

n>1
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Memoryless

* Let X be a geometric random variable X with parameter p > 0.
 Foranyn, k>0, PrliX =n+k| X > k| =Pr[X =n|.
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Memoryless

* Let X be a geometric random variable X with parameter p > 0.
 Foranyn, k>0, PrliX =n+k| X > k| =Pr[X =n|.
* Proof. Pr(X =n+k)N (X > k)]

PriX=n+k| X >k = PrX > ]

Pr[X =n + k]
Pr|X > k]
(1—p)"*1p
Zfok;( —D)'p
(1—p)" " p
(1—p)*
= (1—-p)" 'p="Pr[X =n].
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The mean of a geometric r.v. X(p)
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Coupon Collector’s Problem
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Coupon Collector’s Problem

* Have you already got all of them (totally n types)?

* Have you ever thought about how much you should pay for them?

- S e ——. -

P ——— - p— -

. — . / — _— B
Concealed Concealed Concealed Concealed Concealed
bag bag bag bag bag

- : / < , -

5 1 1 1
c o o O

* Each bag is chosen independently and uniformly at random from the n possibilities.

\_/
2 ‘j

O
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Coupon Collector’s Problem

* Let X be the number of bags bought until every type of coupon is
obtained.

« Let X. be the number of bags bought while you had already got
exactly i—1 different coupons.

--------------------

~ -
------------------------------------------------------------------------
~ -
~ -
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Coupon Collector’s Problem

* Let X be the number of bags bought until every type of coupon is
obtained.

 Let X. be the number of bags bought while you had already got
exactly i—1 different coupons.

— Geometric random variables?!
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Coupon Collector’s Problem

* Let X be the number of bags bought until every type of coupon is
obtained.

 Let X. be the number of bags bought while you had already got
exactly i—1 different coupons.

— Geometric randon;ll variables?!
— What about X =) _X,?
1=1
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Coupon Collector’s Problem

* When exactly i—1 coupons have been collected, the probability of
obtaining a new one is

1 —1
n

pi=1

e X.is a geometric random variable, so

1 n
pi n—1+1
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Coupon Collector’s Problem (contd.)

(A
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Coupon Collector’s Problem (contd.)

* So, you are about to buy nInn + ©(n) bags for collecting all
the coupons (stickers)!
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On conditional expectation

* There are terminologies which may confusing you.
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Conditional Expectation

e Definition.

* Example of two dices.
- X,: the number showing on the first die
- X, the number showing on the second die
- X=X+X,
8
E[X | X; =2] = Z
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Conditional Expectation (contd.)

* Lemma. For any random variables X and Y,

=) PrlY =yE[X | Y =y].

* Proof. d Prly =y E[X |V =y] = ZPI‘
= ZZxPr
= ZZLUPI‘
= ZxPr

- E[X].

ZajPr =z |Y =y]
=z | Y =y] - PrlY =y

=zNY =y|
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Conditional Expectation

« Lemma. For any finite collection of discrete random variables X,
X5, ..., X, with finite expectations and for any random variable Y,

>x,
i=1

ZZE[Xz' Y =y].

E Y =y
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Conditional Expectation (contd.)

e A weird definition.

* E|Y | Z] : regarded as a random variable {(Z).
— It takes on the value E|Y | Z = z] when Z =z.

* In the previous example,

X1+6 1 -
EX | X)) =) e PrX=a|Xi]= ) o - =X+
T X1+1
e So it makes sense that
7 7T 7
E[E[X!Xl]]zE[X1+5] =5 +5="
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Conditional Expectation (contd.)

e Theorem. E|Y|=EE[Y | Z]].

* Proof.

EE]Y | Z]|=) E[Y |Z=2]-Pr[Z=z]=
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