Randomized Algorithms

Coupon Collector's Problem

 and
Conditional Expectation

Joseph Chuang-Chieh Lin

Dept. CSIE, Tamkang University

Review

- Expectation of discrete random variables
- Linearity of expectation.
- Bernoulli and Binomial random variable

Expectation

- The expectation of a discrete random variable X, denoted by $\mathbf{E}[X]$, is

$$
\mathbf{E}[X]=\sum_{i} i \cdot \operatorname{Pr}[X=i]
$$

- Example: Let X denote the sum of of dices:

$$
\mathbf{E}[X]=\frac{1}{36} \cdot 2+\frac{2}{36} \cdot 3+\frac{3}{36} \cdot 4+\cdots+\frac{1}{36} \cdot 12=7 .
$$

Linearity of Expectation

- For any finite collection of discrete random variables $X_{1}, X_{2}, \ldots, X_{n}$ with finite expectations,

$$
\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]
$$

- For any constant c and discrete random variable X,

$$
\mathbf{E}[c X]=c \cdot \mathbf{E}[X] .
$$

- Why is it useful?

Example

- Consider the dice-throwing example again.
- X_{1} : the outcome of die 1
- X_{2} : the outcome of die 2

$$
\begin{aligned}
& \mathbf{E}\left[X_{1}\right]=\mathbf{E}\left[X_{2}\right]=\frac{1}{6} \cdot \sum_{j=1}^{6} j=\frac{7}{2} \\
& \mathbf{E}[X]=\mathbf{E}\left[X_{1}+X_{2}\right]=7 .
\end{aligned}
$$

Bernoulli random variable

- Suppose we run an experiment that succeeds with probability p and fails with probability $1-p$.

$$
Y= \begin{cases}1 & \text { if the experiment succeeds }, \\ 0 & \text { otherwise }\end{cases}
$$

- Y: Bernoulli random variable.

- or indicator random variable.
$\mathbf{E}[Y]=1 \cdot \operatorname{Pr}[Y=1]+0 \cdot \operatorname{Pr}[Y=0]=\operatorname{Pr}[Y=1]=p$.

Binomial random variable

- A binomial random variable X with parameters n and p, denoted by $B(n, p)$, is defined as

$$
\operatorname{Pr}[X=j]=\binom{n}{j} p^{j}(1-p)^{n-j} .
$$

for $j=0,1,2, \ldots, n$.

- Exercise: Show that $\sum_{j=0}^{n} \operatorname{Pr}[X=j]=1$.

Binomial random variable

- A binomial random variable X with parameters n and p, denoted by $B(n, p)$, is defined as

$$
\operatorname{Pr}[X=j]=\binom{n}{j} p^{j}(1-p)^{n-j} .
$$

for $j=0,1,2, \ldots, n$.

- Exercise: Show that $\sum_{j=0}^{n} \operatorname{Pr}[X=j]=1$.

Binomial random variable (expectation)

- $\mathbf{E}[X]=\sum_{j=0}^{n} j\binom{n}{j} p^{j}(1-p)^{n-j}$
$=\sum_{j=0}^{n} j \frac{n!}{j!(n-j)!} p^{j}(1-p)^{n-j}$
$=\sum_{j=1}^{n} \frac{n!}{(j-1)!(n-j)!} p^{j}(1-p)^{n-j}$
$=n p \sum_{j=1}^{n} \frac{(n-1)!}{(j-1)!((n-1)-(j-1))!} p^{j-1}(1-p)^{(n-1)-(j-1)}$
$=n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!((n-1)-k)!} p^{k}(1-p)^{(n-1)-k}$
$=n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}$
$=n p$.

Binomial random variable (expectation)

- $\mathbf{E}[X]=\sum_{j=0}^{n} j\binom{n}{j} p^{j}(1-p)^{n-j}$
$=\sum_{j=0}^{n} j \frac{n!}{j!(n-j)!} p^{j}(1-p)^{n-j}$
$=\sum_{j=1}^{n} \frac{n!}{(j-1)!(n-j)!} p^{j}(1-p)^{n-j}$
$=n p \sum_{j=1}^{n} \frac{(n-1)!}{(j-1)!((n-1)-(j-1))!} p^{j-1}(1-p)^{(n-1)-(j-1)}$
$=n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!((n-1)-k)!} p^{k}(1-p)^{(n-1)-k}$
$=n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}$
$=n p$.

Let's make it simpler!

- Denote a set of n Bernoulli random variables $X_{1}, X_{2}, \ldots, X_{n}$.
- $X_{i}=1$ if the i th trial is successful and 0 otherwise.
$-X=X_{1}+X_{2}+\ldots+X_{n}$

Let's make it simpler!

- Denote a set of n Bernoulli random variables $X_{1}, X_{2}, \ldots, X_{n}$.
- $X_{i}=1$ if the i th trial is successful and 0 otherwise.
$-X=X_{1}+X_{2}+\ldots+X_{n}$
- Compute $\mathbf{E}[X]$ using linearity of expectation:

Let's make it simpler!

- Denote a set of n Bernoulli random variables $X_{1}, X_{2}, \ldots, X_{n}$.
- $X_{i}=1$ if the i th trial is successful and 0 otherwise.
$-X=X_{1}+X_{2}+\ldots+X_{n}$
- Compute $\mathbf{E}[X]$ using linearity of expectation:

$$
\mathbf{E}[X]=\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]=n p .
$$

Geometric Distribution

- Imagine: flip a coin until it lands on a head.
- What's the distribution of the number of flips?

Geometric Distribution

- Imagine: flip a coin until it lands on a head.
- What's the distribution of the number of flips?
- Definition. A geometric random variable X with parameter p is

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p
$$

for $n=1,2, \ldots$

- Exercise. Show that $\sum_{n \geq 1} \operatorname{Pr}[X=n]=1$.

Memoryless

- Let X be a geometric random variable X with parameter $p>0$.
- For any $n, k>0, \operatorname{Pr}[X=n+k \mid X>k]=\operatorname{Pr}[X=n]$.

Memoryless

- Let X be a geometric random variable X with parameter $p>0$.
- For any $n, k>0, \operatorname{Pr}[X=n+k \mid X>k]=\operatorname{Pr}[X=n]$.
- Proof.

$$
\begin{aligned}
\operatorname{Pr}[X=n+k \mid X>k] & =\frac{\operatorname{Pr}[(X=n+k) \cap(X>k)]}{\operatorname{Pr}[X>k]} \\
& =\frac{\operatorname{Pr}[X=n+k]}{\operatorname{Pr}[X>k]} \\
& =\frac{(1-p)^{n+k-1} p}{\sum_{i=k}^{\infty}(1-p)^{i} p} \\
& =\frac{(1-p)^{n+k-1} p}{(1-p)^{k}} \\
& =(1-p)^{n-1} p=\operatorname{Pr}[X=n] .
\end{aligned}
$$

The mean of a geometric r.v. $X(p)$

$$
\begin{aligned}
& \mathbf{E}[X]=\sum_{j=1}^{\infty} j \operatorname{Pr}[X=j] \quad \mathbf{E}[X]=\sum_{i=1}^{\infty}(1-p)^{i-1}=\frac{1}{1-(1-p)}=\frac{1}{p} . \\
&=\sum_{j=1}^{\infty} \sum_{i=1}^{j} 1 \operatorname{Pr}[X=j] \\
&=\sum_{i=1}^{\infty} \sum_{j \geq i} \operatorname{Pr}[X=j] \\
&=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] . \\
& \operatorname{Pr}[X \geq i]=\sum_{k=i}^{\infty}(1-p)^{k-1} p=(1-p)^{i-1} \\
& \quad \text { Randomized Aloorithms, CSIE, Tamkang University, Taiwan }
\end{aligned}
$$

Coupon Collector＇s Problem

- 一名網友在臉書社團「爆廢公社公開版」表示，多年前為了收集連鎖便利商店 7－11 的
- 款贈品，花了不少金額，還拿到許多重複的款式，貼文引發 3 千多名網友共鳴。（圖／翻攝自爆廢公社公開版）

Coupon Collector's Problem

- Have you already got all of them (totally n types)?
- Have you ever thought about how much you should pay for them?

- Each bag is chosen independently and uniformly at random from the n possibilities.

Coupon Collector's Problem

- Let X be the number of bags bought until every type of coupon is obtained.
- Let X_{i} be the number of bags bought while you had already got exactly $i-1$ different coupons.

Coupon Collector's Problem

- Let X be the number of bags bought until every type of coupon is obtained.
- Let X_{i} be the number of bags bought while you had already got exactly $i-1$ different coupons.
- Geometric random variables?!

Coupon Collector's Problem

- Let X be the number of bags bought until every type of coupon is obtained.
- Let X_{i} be the number of bags bought while you had already got exactly $i-1$ different coupons.
- Geometric random variables?!
- What about $X=\sum_{i=1} X_{i}$?

Coupon Collector's Problem

- When exactly $i-1$ coupons have been collected, the probability of obtaining a new one is

$$
p_{i}=1-\frac{i-1}{n}
$$

- X_{i} is a geometric random variable, so

$$
\mathbf{E}\left[X_{i}\right]=\frac{1}{p_{i}}=\frac{n}{n-i+1} .
$$

Coupon Collector's Problem (contd.)

$$
=\sum_{i=1}^{n} \frac{n}{n-i+1}
$$

$=n \cdot \sum_{i=1}^{n} \frac{n}{i}$

$$
\sum_{k=1}^{n} \frac{1}{k} \geq \int_{x=1}^{n} \frac{1}{x} d x=\ln n \quad \sum_{k=2}^{n} \frac{1}{k} \leq \int_{x=1}^{n} \frac{1}{x} d x=\ln n
$$

$$
\rightarrow H(n)=\sum_{i=1}^{n} \frac{1}{i}=\ln n+\Theta(1)
$$

Coupon Collector’s Problem (contd.)

- So, you are about to buy $n \ln n+\Theta(n)$ bags for collecting all the coupons (stickers)!

On conditional expectation

- There are terminologies which may confusing you.

Conditional Expectation

- Definition.

$$
\mathbf{E}[Y \mid Z=z]=\sum_{y} y \operatorname{Pr}[Y=y \mid Z=z] .
$$

- Example of two dices.
- $\quad X_{1}$: the number showing on the first die
- $\quad X_{2}$: the number showing on the second die
- $\quad X=X_{1}+X_{\text {, }}$

$$
\mathbf{E}\left[X \mid X_{1}=2\right]=\sum_{x=3}^{8} x \cdot \frac{1}{6}=\frac{11}{2}
$$

Conditional Expectation (contd.)

- Lemma. For any random variables X and Y,

$$
\mathbf{E}[X]=\sum_{y} \operatorname{Pr}[Y=y] \mathbf{E}[X \mid Y=y] .
$$

- Proof. $\quad \sum_{y} \operatorname{Pr}[Y=y] \cdot \mathbf{E}[X \mid Y=y]=\sum_{y} \operatorname{Pr}[Y=y] \cdot \sum_{x} x \operatorname{Pr}[X=x \mid Y=y]$

$$
\begin{aligned}
& =\sum_{x} \sum_{y} x \operatorname{Pr}[X=x \mid Y=y] \cdot \operatorname{Pr}[Y=y] \\
& =\sum_{x} \sum_{y} x \operatorname{Pr}[X=x \cap Y=y] \\
& =\sum_{x} x \operatorname{Pr}[X=x] \\
& =\mathbf{E}[X] .
\end{aligned}
$$

Conditional Expectation

- Lemma. For any finite collection of discrete random variables X_{1}, X_{2}, \ldots, X_{n} with finite expectations and for any random variable Y,

$$
\mathbf{E}\left[\sum_{i=1}^{n} X_{i} \mid Y=y\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i} \mid Y=y\right] .
$$

Conditional Expectation (contd.)

- A weird definition.
- $\mathbf{E}[Y \mid Z]$: regarded as a random variable $f(Z)$.
- It takes on the value $\mathbf{E}[Y \mid Z=z]$ when $Z=z$.
- In the previous example,

$$
\mathbf{E}\left[X \mid X_{1}\right]=\sum_{x} x \cdot \operatorname{Pr}\left[X=x \mid X_{1}\right]=\sum_{X_{1}+1}^{X_{1}+6} x \cdot \frac{1}{6}=X_{1}+\frac{7}{2} .
$$

- So it makes sense that

$$
\mathbf{E}\left[\mathbf{E}\left[X \mid X_{1}\right]\right]=\mathbf{E}\left[X_{1}+\frac{7}{2}\right]=\frac{7}{2}+\frac{7}{2}=7
$$

Conditional Expectation (contd.)

- Theorem. $\mathbf{E}[Y]=\mathbf{E}[\mathbf{E}[Y \mid Z]]$.
- Proof.

$$
\mathbf{E}[\mathbf{E}[Y \mid Z]]=\sum_{z} \mathbf{E}[Y \mid Z=z] \cdot \operatorname{Pr}[Z=z]=\mathbf{E}[Y] .
$$

