Randomized Algorithms

The Lovász Local Lemma

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Spring 2026

Outline

The Lovász Local Lemma

Explicit Constructions Using the Local Lemma

3 Lovász Local Lemma: The General Case

Outline

The Lovász Local Lemma

- 2 Explicit Constructions Using the Local Lemma
- 3 Lovász Local Lemma: The General Case

Introduction

- One of the most elegant and useful tools in applying the probabilistic method is the *Lovász Local Lemma* (LLL).
- Let E_1, E_2, \ldots, E_n be a set of **bad** events, we want to show that there is an event (or element in the sample space) that is NOT included in any of the bad events.

Mutually Independent (Recall)

Events E_1, E_2, \dots, E_n are mutually independent iff for any subset $I \subseteq [1, n]$,

$$\Pr\left[\bigcap_{i\in I}E_i\right]=\prod_{i\in I}\Pr[E_i].$$

• If E_1, \ldots, E_n are mutually independent then so are $\overline{E}_1, \ldots, \overline{E}_n$. (Exercise)

Mutually Independent (Recall)

Events E_1, E_2, \dots, E_n are mutually independent iff for any subset $I \subseteq [1, n]$,

$$\Pr\left[\bigcap_{i\in I}E_i\right]=\prod_{i\in I}\Pr[E_i].$$

- If E_1, \ldots, E_n are mutually independent then so are $\overline{E}_1, \ldots, \overline{E}_n$. (Exercise)
- If $Pr(E_i) < 1$ for all i, then

$$\Pr\left[\bigcap_{i=1}^{n} \overline{E}_{i}\right] = \prod_{i=1}^{n} \Pr(\overline{E}_{i}) > 0.$$

Mutually Independent (Recall)

Events E_1, E_2, \dots, E_n are mutually independent iff for any subset $I \subseteq [1, n]$,

$$\Pr\left[\bigcap_{i\in I}E_i\right]=\prod_{i\in I}\Pr[E_i].$$

- If E_1, \ldots, E_n are mutually independent then so are $\overline{E}_1, \ldots, \overline{E}_n$. (Exercise)
- If $Pr(E_i) < 1$ for all i, then

$$\Pr\left[\bigcap_{i=1}^{n} \overline{E}_{i}\right] = \prod_{i=1}^{n} \Pr(\overline{E}_{i}) > 0.$$

 However, mutual independence is too much to ask for in many arguments.

LLL Comes to the Rescue

• The Lovász local lemma generalizes to the case where the *n* events are not mutually independent but the dependency is **limited**.

LLL Comes to the Rescue

- The Lovász local lemma generalizes to the case where the *n* events are not mutually independent but the dependency is **limited**.
- Specifically, we say that an event E_{n+1} is mutually independent of the events E_1, E_2, \ldots, E_n if, for any subset $I \subseteq [1, n]$,

$$\Pr\Big[E_{n+1} \ \Big| \ \bigcap_{j \in I} E_j\Big] = \Pr[E_{n+1}]$$

Dependency graph

Dependency graph

A dependency graph for a set of events E_1, \ldots, E_n is a graph G = (V, E) such that $V = \{1, 2, \ldots, n\}$ and for $i = 1, 2, \ldots, n$, event E_i is mutually independent of the events $\{E_i \mid (i,j) \notin E\}$.

 We discuss first a special case, the symmetric version of the Lovász local lemma, which is more intuitive and sufficient for most algorithmic applications.

Lovász local lemma

Theorem [Lovász Local Lemma]

Let E_1, E_2, \ldots, E_n be a set of events, And assume that the following hold:

- for all i, $Pr[E_i] \leq p$;
- ② the degree of the dependency graph given by E_1, E_2, \ldots, E_n is bounded by d;
- **3** $4dp \le 1$.

Then

$$\Pr\left[\bigcap_{i=1}^{n} \overline{E}_{i}\right] > 0.$$

Lovász local lemma

Theorem [Lovász Local Lemma]

Let E_1, E_2, \ldots, E_n be a set of events, And assume that the following hold:

- for all i, $Pr[E_i] \leq p$;
- ② the degree of the dependency graph given by E_1, E_2, \ldots, E_n is bounded by d;
- **3** $4dp \le 1$.

Then

$$\Pr\left[\bigcap_{i=1}^{n} \overline{E}_{i}\right] > 0.$$

• Note that p < 1 for d > 0 (for d = 0 we refer to the mutually indepent case).

Proof of LLL (1/9)

• Let $S \subset \{1, 2, ..., n\}$. We prove by induction on s = 0, ..., n-1 that, if $|S| \le s$, then for all $k \notin S$ we have

$$\Pr\left(E_k \mid \bigcap_{j \in S} \overline{E}_j\right) \leq 2p.$$

Proof of LLL (1/9)

• Let $S \subset \{1, 2, ..., n\}$. We prove by induction on s = 0, ..., n-1 that, if $|S| \le s$, then for all $k \notin S$ we have

$$\Pr\left(E_k \mid \bigcap_{j \in S} \overline{E}_j\right) \leq 2p.$$

• For this expression to be well-defined when $S \neq \emptyset$, we need

$$\Pr\left[\bigcap_{j\in S}\overline{E}_{j}\right]>0.$$

Proof of LLL (1/9)

• Let $S \subset \{1, 2, ..., n\}$. We prove by induction on s = 0, ..., n-1 that, if $|S| \le s$, then for all $k \notin S$ we have

$$\Pr\left(E_k \mid \bigcap_{j \in S} \overline{E}_j\right) \leq 2p.$$

• For this expression to be well-defined when $S \neq \emptyset$, we need

$$\Pr\left[\bigcap_{j\in\mathcal{S}}\overline{E}_j\right]>0.$$

*Note that $Pr[A \mid B] = Pr[A \cap B] / Pr[B]$.

Proof of LLL (2/9)

- The base case s=0 follows from the assumption that $\Pr[E_k] \leq p$.
- The inductive step:
 - First, show that $\Pr\left|\bigcap_{j\in S}\overline{E}_{j}\right|>0$. This is true when s = 1, because $\Pr[\overline{E}_i] \ge 1 - p > 0$. For s > 1, WLOG, $S = \{1, 2, ..., s\}$. Then

$$\Pr\left[\bigcap_{i=1}^{s} \overline{E}_{i}\right] = \prod_{i=1}^{s} \Pr\left[\overline{E}_{i} \mid \bigcap_{j=1}^{i-1} \overline{E}_{j}\right]$$

$$= \prod_{i=1}^{s} \left(1 - \Pr\left[E_{i} \mid \bigcap_{j=1}^{i-1} \overline{E}_{j}\right]\right)$$

$$\geq \prod_{i=1}^{s} (1 - 2p) > 0.$$

Proof of LLL (2/9)

- The base case s = 0 follows from the assumption that $Pr[E_k] \leq p$.
- The inductive step:
 - First, show that $\Pr\left[\bigcap_{j\in S}\overline{E}_j\right]>0$. This is true when s=1, because $\Pr[\overline{E}_j]\geq 1-p>0$. For s>1, WLOG, $S=\{1,2,\ldots,s\}$. Then $(\because 4dp\leq 1)$

$$\Pr\left[\bigcap_{i=1}^{s} \overline{E}_{i}\right] = \prod_{i=1}^{s} \Pr\left[\overline{E}_{i} \mid \bigcap_{j=1}^{i-1} \overline{E}_{j}\right]$$

$$= \prod_{i=1}^{s} \left(1 - \Pr\left[E_{i} \mid \bigcap_{j=1}^{i-1} \overline{E}_{j}\right]\right)$$

$$\geq \prod_{i=1}^{s} (1 - 2p) > 0.$$

Proof of LLL (3/9)

- For the rest of the induction, let $S_1 = \{j \in S \mid (k,j) \in E\}$ and $S_2 = S \setminus S_1$.
 - If $S_2=S$ then E_k is mutually independent of the events $\overline{E}_i, i\in S$, and

$$\Pr\left[E_k \; \Big| \; \bigcap_{j \in S} \overline{E}_j \right] = \Pr[E_k] \leq p.$$

Proof of LLL (3/9)

- For the rest of the induction, let $S_1 = \{j \in S \mid (k,j) \in E\}$ and $S_2 = S \setminus S_1$.
 - If $S_2=S$ then E_k is mutually independent of the events $\overline{E}_i, i\in S$, and

$$\Pr\left[E_k \mid \bigcap_{j \in S} \overline{E}_j\right] = \Pr[E_k] \leq p.$$

• We continue with the case $|S_2| < s$.

Proof of LLL (4/9)

- It will be helpful to introduce the following notation.
- Let F_S be defined by

$$F_S = \bigcap_{j \in S} \overline{E_j},$$

And similarly define F_{S_1} and F_{S_2} . Notice that $F_S = F_{S_1} \cap F_{S_2}$.

Proof of LLL (4/9)

- It will be helpful to introduce the following notation.
- Let F_S be defined by

$$F_S = \bigcap_{j \in S} \overline{E_j},$$

And similarly define F_{S_1} and F_{S_2} . Notice that $F_S = F_{S_1} \cap F_{S_2}$.

• By the definition of conditional probability,

$$\Pr[E_k \mid F_S] = \frac{\Pr[E_k \cap F_S]}{\Pr[F_S]}. \quad (*)$$

Proof of LLL (6/9)

$$\Pr[E_k \mid F_S] = \frac{\Pr[E_k \cap F_S]}{\Pr[F_S]}. \quad (*)$$

• Applying the definition of conditional probability to (*), we obtain

$$\Pr[E_k \cap F_S] = \Pr[E_k \cap F_{S_1} \cap F_{S_2}] = \Pr[E_k \cap F_{S_1} \mid F_{S_2}] \Pr[F_{S_2}].$$

• The denominator can be written as

$$\Pr[F_S] = \Pr[F_{S_1} \cap F_{S_2}] = \Pr[F_{S_1} \mid F_{S_2}] \Pr[F_{S_2}].$$

Spring 2026

Proof of LLL (6/9)

$$\Pr[E_k \mid F_S] = \frac{\Pr[E_k \cap F_S]}{\Pr[F_S]}. \quad (*)$$

Applying the definition of conditional probability to (*), we obtain

$$\Pr[E_k \cap F_S] = \Pr[E_k \cap F_{S_1} \cap F_{S_2}] = \Pr[E_k \cap F_{S_1} \mid F_{S_2}] \Pr[F_{S_2}].$$

The denominator can be written as

$$\Pr[F_S] = \Pr[F_{S_1} \cap F_{S_2}] = \Pr[F_{S_1} \mid F_{S_2}] \Pr[F_{S_2}].$$

• Canceling the common factor (nonzero), yields

$$\Pr[E_k \mid F_S] = \frac{\Pr[E_k \cap F_{S_1} \mid F_{S_2}]}{\Pr[F_{S_1} \mid F_{S_2}]}. \quad (**)$$

Proof of LLL (7/9)

• Since the probability of an intersection of events is bounded by the probability of any one of the events and since E_k is independent of the events in S_2 , we can bound the numerator of (6.5) by

$$\Pr[E_k \cap F_{S_1} \mid F_{S_2}] \leq \Pr[E_k \mid F_{S_2}] = \Pr[E_k] \leq p.$$

Because $\left|S_{2}\right|<\left|S\right|=s$, we can apply the induction hypothesis to

$$\Pr[E_i \mid F_{S_2}] = \Pr\Big[E_i \mid \bigcap_{j \in S_2} \overline{E_j}\Big].$$

Spring 2026

Proof of LLL (8/9)

• Using also the fact that $|S_1| \le d$, we establish a lower bound on the denominator of (**) as follows:

$$\Pr[F_{S_1} \mid F_{S_2}] = \Pr\left[\bigcap_{i \in S_1} \bar{E}_i \mid \bigcap_{j \in S_2} \bar{E}_j\right]$$

$$\geq 1 - \sum_{i \in S_1} \Pr\left[E_j \mid \bigcap_{j \in S_2} \bar{E}_j\right]$$

$$\geq 1 - \sum_{i \in S_1} 2p$$

$$\geq 1 - 2pd$$

$$\geq \frac{1}{2}.$$

Proof of LLL (9/9)

 Using the upper bound for the numerator and the lower bound for the denominator, we prove the induciotn:

$$\Pr[E_k \mid F_S] = \frac{\Pr[E_k \cap F_{S_1} \mid F_{S_2}]}{\Pr[F_{S_1} \mid F_{S_2}]} \le \frac{p}{1/2} = 2p.$$

Proof of LLL (9/9)

 Using the upper bound for the numerator and the lower bound for the denominator, we prove the induciotn:

$$\Pr[E_k \mid F_S] = \frac{\Pr[E_k \cap F_{S_1} \mid F_{S_2}]}{\Pr[F_{S_1} \mid F_{S_2}]} \le \frac{p}{1/2} = 2p.$$

The theorem follows from

$$\Pr\left[\bigcap_{i=1}^{n} \overline{E}_{i}\right] = \prod_{i=1}^{n} \Pr\left[\overline{E}_{i} \mid \bigcap_{j=1}^{i-1} \overline{E}_{j}\right]$$

$$= \prod_{i=1}^{n} \left(1 - \Pr\left[E_{i} \mid \bigcap_{j=1}^{i-1} \overline{E}_{j}\right]\right)$$

$$\geq \prod_{i=1}^{n} (1 - 2p) > 0.$$

Application: Edge-Disjoint Paths

- Assume that n pairs of users need to communicate using edge-disjoint paths on a given network.
- Each pair i = 1, 2, ..., n can choose a path from a collection F_i of m paths.
- Goal: Apply LLL to show that, if the possible paths do not share too
 many edges, then there is a way to choose n edge-disjoint paths
 connecting the n pairs.

Theorem 1

If any path in F_i shares edges with no more than k paths in F_j , where $i \neq j$ and $8nk/m \leq 1$, than there is a way to choose n edge-disjoint paths connecting the n pairs.

Proof of Theorem 1 (1/2)

- Consider the probability space defined by each pair choosing a path independently and uniformly at random from its set of *m* paths.
- $E_{i,j}$: the event that the paths chosen by pairs i and j share at least one edge.

Proof of Theorem 1 (1/2)

- Consider the probability space defined by each pair choosing a path independently and uniformly at random from its set of m paths.
- $E_{i,j}$: the event that the paths chosen by pairs i and j share at least one edge.
- Since a path in F_i shares edges with no more than k paths in F_i ,

$$p = \Pr[E_{i,j}] \leq \frac{k}{m}.$$

Proof of Theorem 1 (2/2)

• Let d be the degree of the dependency graph. Since event $E_{i,j}$ is independent of all events $E_{i'j'}$ when $i' \notin \{i,j\}$, we have d < 2n. Since

$$4dp<\frac{8nk}{m}\leq 1,$$

all of the conditions of the LLL are satisfied, proving

$$\Pr\left[\bigcap_{i\neq j}\overline{E}_{i,j}\right]>0.$$

Hence, there is a choice of paths such that the n paths are edge disjoint.

Application: Satisfiability

Theorem 2

If no variable in a k-SAT formula appears in more than $T=2^k/4k$ clauses, then the formula has a satisfying assignment.

Proof:

- Consider the probability space defined by the event that "the ith clause is not satisfied by the random assignment."
- Define E_i : the event that the *i*th clause is not satisfied by the random assignment. Since each clause has k literals,

$$\Pr[E_i] = 2^{-k}$$
.

Proof of Theorem 2 (2/3)

- The event E_i is mutually independent of all of the events related to clauses that do not share variables with clause i.
- Because each of the k variables in clause i can appear in no more than $T=2^k/4k$ clauses, the degree of the dependency graph is bounded by $d \le kT \le 2^{k-2}$.

Proof of Theorem 2 (2/3)

- The event E_i is mutually independent of all of the events related to clauses that do not share variables with clause i.
- Because each of the k variables in clause i can appear in no more than $T=2^k/4k$ clauses, the degree of the dependency graph is bounded by $d \le kT \le 2^{k-2}$.
- In this case,

$$4dp \le 4 \cdot 2^{k-2} 2^{-k} \le 1.$$

Spring 2026

Proof of Theorem 2 (3/3)

• So, we can apply the LLL to conclude that

$$\Pr\left(\bigcap_{i=1}^{m} \bar{E}_{i}\right) > 0;$$

hence there is a satisfying assignment for the formula.

Outline

- 1 The Lovász Local Lemma
- Explicit Constructions Using the Local Lemma

3 Lovász Local Lemma: The General Case

The issue of LLL

- The Lovász Local Lemma proves that a random element in an appropriately defined sample space has a nonzero probability of satisfying our requirement.
- However, this probability might be too small for an algorithm that is based on simple sampling.
- The number of objects that we need to sample before we find an element that satisfies our requirements might be exponential in the problem size.

• The Lovász Local Lemma can be used to derive efficient construction algorithms.

 The Lovász Local Lemma can be used to derive efficient construction algorithms.

Common two phases (break the problem into small subproblems)

- a subset of the variables of the problem are assigned random values;
 - the random partial solution fixed in the first phase can be extended to a full solution of the problem.
 - the dependency graph H between events defined by the variables deferred to the second phase has, w.h.p., only small connected components.
- 2 the remaining variables are deferred to the second stage.

 The Lovász Local Lemma can be used to derive efficient construction algorithms.

Common two phases (break the problem into small subproblems)

- a subset of the variables of the problem are assigned random values;
 - the random partial solution fixed in the first phase can be extended to a full solution of the problem.
 - the dependency graph H between events defined by the variables deferred to the second phase has, w.h.p., only small connected components.
- 2 the remaining variables are deferred to the second stage.
- Let's see some examples.

Example: A Satisfiability Algorithm (k-SAT)

• **Goal:** Design a polynomial time algorithm for *k*-SAT when *k* is a constant.

Example: A Satisfiability Algorithm (k-SAT)

- Design a polynomial time algorithm for k-SAT when k is a constant.
 - Note: k-SAT is NP-complete for $k \ge 3$.

Input Setting

- Consider a k-SAT formula \mathcal{F} , k is an even constant, such that each variable appears in no more than $T=2^{\alpha k}$ clauses for some constant $\alpha>0$.
- x_1, x_2, \ldots, x_ℓ : the ℓ variables; C_1, C_2, \ldots, C_m : the m clauses of \mathcal{F} .

Example: A Satisfiability Algorithm (k-SAT)

- Goal: Design a polynomial time algorithm for k-SAT when k is a constant.
 - Note: k-SAT is NP-complete for $k \ge 3$.

Input Setting

- Consider a k-SAT formula \mathcal{F} , k is an even constant, such that each variable appears in no more than $T=2^{\alpha k}$ clauses for some constant $\alpha>0$.
- x_1, x_2, \ldots, x_ℓ : the ℓ variables; C_1, C_2, \ldots, C_m : the m clauses of \mathcal{F} .

Dangerous clause

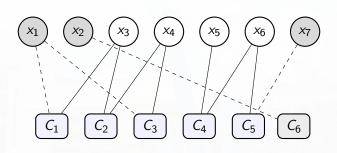
A clause C_i is dangerous if both of the following conditions hold:

- k/2 literals of the clause C_i have been fixed;
- C_i is not yet satisfied.

The Two Phases

- **Phase I:** Consider the variables x_1, \ldots, x_ℓ sequentially. If x_i is not in a dangerous clause, assign it independently and uniformly at random a value in $\{0,1\}$.
 - Surviving clause: a clause which is not satisfied by variables (< k/2) fixed in Phase I.
 - Deferred variable: not assigned a value in Phase I.
- Phase II: Exhaustive search to assign values to deferred variables.

From partial assignment to surviving clauses



$$C_1 = (x_1 \lor x_3), C_2 = (\neg x_3 \lor x_4), C_3 = (x_1 \lor \neg x_4),$$

 $C_4 = (x_5 \lor x_6), C_5 = (\neg x_6 \lor x_7), C_6 = (x_2).$
 $F = C_1 \land C_2 \land C_3 \land C_4 \land C_5 \land C_6.$

- x_1 , x_2 , x_7 : fixed; x_3 , x_4 , x_5 , x_6 : deferred.
- C_6 is satisfied by x_2 so disappears in H'.

The Lemma

- The partial solution computed in Phase I can be extended to a full satisfying assignment of \mathcal{F} .
- with high probability, the exhaustive search in Phase II is completed in time polynomial in *m*.

Lemma 1

There is an assignment of values to the deferred variables such that all the surviving clauses are satisfied.

- Let H = (V, E) be a graph on m nodes, where $V = \{1, 2, ..., m\}$ and let $(i, j) \in E$ if and only if $C_i \cap C_j \neq \emptyset$ (dependency graph).
- Let H' = (V', E') be a subgraph of H such that
 - (a) $i \in V'$ iff C_i is a surviving clause. and
 - (b) $(i,j) \in E'$ iff C_i and C_j share a deferred variable.

- Let H = (V, E) be a graph on m nodes, where $V = \{1, 2, ..., m\}$ and let $(i, j) \in E$ if and only if $C_i \cap C_i \neq \emptyset$ (dependency graph).
- Let H' = (V', E') be a subgraph of H such that
 - (a) $i \in V'$ iff C_i is a surviving clause. and
 - (b) $(i,j) \in E'$ iff C_i and C_i share a deferred variable.
- Consider the probability space defined by assigning a random value in [0, 1] independently to each deferred variable.

- Let H = (V, E) be a graph on m nodes, where $V = \{1, 2, ..., m\}$ and let $(i, j) \in E$ if and only if $C_i \cap C_j \neq \emptyset$ (dependency graph).
- Let H' = (V', E') be a subgraph of H such that
 - (a) $i \in V'$ iff C_i is a surviving clause. and
 - (b) $(i,j) \in E'$ iff C_i and C_j share a deferred variable.
- Consider the probability space defined by assigning a random value in [0, 1] independently to each deferred variable.
- Let E_i , for i = 1, 2, ..., m, be the event that surviving clause C_i is NOT satisfied by this assignment (Phase I + II).

- Let H = (V, E) be a graph on m nodes, where $V = \{1, 2, ..., m\}$ and let $(i, j) \in E$ if and only if $C_i \cap C_j \neq \emptyset$ (dependency graph).
- Let H' = (V', E') be a subgraph of H such that
 - (a) $i \in V'$ iff C_i is a surviving clause. and
 - (b) $(i,j) \in E'$ iff C_i and C_j share a deferred variable.
- Consider the probability space defined by assigning a random value in [0,1] independently to each deferred variable.
- Let E_i , for i = 1, 2, ..., m, be the event that surviving clause C_i is NOT satisfied by this assignment (Phase I + II).
- Associate E_i with node $i \in V'$. The graph H' is then the dependency graph for this set of events.

• A surviving clause has at least k/2 deferred variables, so

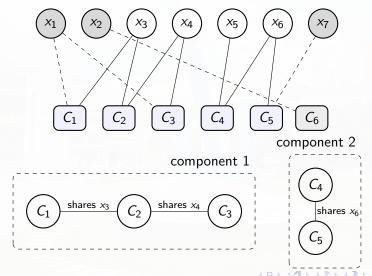
$$p=\Pr[E_i]\leq 2^{-k/2}.$$

- A variable appears in no more than T clauses; therefore, the degree of the dependency graph is bounded by $d = kT \le k2^{\alpha k}$.
- For any $k \ge 12$, there is a corresponding suitably small constant $\alpha > 0$ so that

$$4dp = 4k2^{\alpha k}2^{-k/2} \le 1.$$

 Thus, by the Lovász Local Lemma, there exists an assignment for the deferred variables that (+ the assignment of variables in phase I) satisfies the formula.

Dependency graph and its connected components



- The problem is divided into independent subformulas.
- These subformulas correspond to connected components of the dependency graph H'.

- The problem is divided into independent subformulas.
- These subformulas correspond to connected components of the dependency graph H'.
- ★ What if the size of each connected component is small?

- The problem is divided into independent subformulas.
- These subformulas correspond to connected components of the dependency graph H'.
- ★ What if the size of each connected component is small?
 ⇒ the exhaustive search of all possible assignments can be done efficiently.

- The problem is divided into independent subformulas.
- These subformulas correspond to connected components of the dependency graph H'.
- ★ What if the size of each connected component is small?
 ⇒ the exhaustive search of all possible assignments can be done efficiently.

Lemma 2

All connected components in H' are of size $O(\log m)$ with probability 1 - o(1).

• The probability that a given clause survives is the probability that either this clause or at least one of its direct neighbors is dangerous, which is bounded by

$$(d+1)2^{-k/2}$$
, where $d = kT > 1$.

 The probability that a given clause survives is the probability that either this clause or at least one of its direct neighbors is dangerous, which is bounded by

$$(d+1)2^{-k/2}$$
, where $d = kT > 1$.

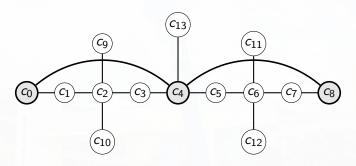
- a clause if dangerous with probability $\leq 2^{-k/2}$.
- union bound.
- We identify a subset K of the vertices in a component R such that
 the survival of the clauses represented by the vertices in K are
 independent events.

4-Tree of a connected component

4-Tree

A 4-tree S of a connected component R in H is defined as follows:

- S is a rooted tree;
- ② any two nodes in S are at distance at least 4 in H;
- there can be an edge in S only between two nodes with distance exactly 4 between them in H;
- any node of R is either in S or is at distance 3 or less from a node is S.



- vertex in S (4-tree) \circ vertex in $R \setminus S$
- edge of S (between nodes at dist. 4 in H)
- edge of R (edge of H)

Fig.: A 4-tree $S = \{c_0, c_4, c_8\}$ inside a connected component R of H.

Intuitive Idea(s)

- A node *u* in a 4-tree survives and the event that another node *v* in a 4-tree survives are **independent**.
 - Any clause that could cause u to survive has distance ≥ 2 from any clause that could cause v to survive.
 - Clauses at distance 2 share no variables, and hence the events that they are dangerous are independent.

Spring 2026

Intuitive Idea(s)

- A node u in a 4-tree survives and the event that another node v in a 4-tree survives are **independent**.
 - Any clause that could cause u to survive has distance ≥ 2 from any clause that could cause v to survive.
 - Clauses at distance 2 share no variables, and hence the events that they are dangerous are independent.
- We can take advantage of this independent to conclude that, for any 4-tree S, the probability that the nodes in the 4-tree survive is

$$\leq ((d+1)2^{-k/2})^{|S|}.$$

• A maximal 4-tree *S* of a connected component *R* is the 4-tree with the largest possible number of vertices.

- A maximal 4-tree *S* of a connected component *R* is the 4-tree with the largest possible number of vertices.
- Since the degree of the dependency graph is bounded by d, there are no more than $d+d(d-1)+d(d-1)(d-1)\leq d^3-1$ nodes at distance 3 or less from any given vertex.

- A maximal 4-tree S of a connected component R is the 4-tree with the largest possible number of vertices.
- Since the degree of the dependency graph is bounded by d, there are no more than $d + d(d-1) + d(d-1)(d-1) \le d^3 - 1$ nodes at distance 3 or less from any given vertex.
- Claim: A maximal 4-tree of R must have $\geq r/d^3$ vertices (note: r = |V(R)|.

- A maximal 4-tree *S* of a connected component *R* is the 4-tree with the largest possible number of vertices.
- Since the degree of the dependency graph is bounded by d, there are no more than $d+d(d-1)+d(d-1)(d-1)\leq d^3-1$ nodes at distance 3 or less from any given vertex.
- Claim: A maximal 4-tree of R must have $\geq r/d^3$ vertices (note: r = |V(R)|).
 - When we consider the vertices of the maximal 4-tree S and all neighbors within distance ≤ 3 of these vertices, we obtain < r vertices.

Proof of Lemma 2 (4/6): Maximality of S

• Hence, there must be a vertex of distance \geq 4 from all vertices in S.

Proof of Lemma 2 (4/6): Maximality of S

- Hence, there must be a vertex of distance \geq 4 from all vertices in S.
- If this vertex has distance exactly 4 from some vertex in S, then it can be added to S and thus S is not maximal ($\Rightarrow \leftarrow$).
- If its distance > 4 from all vertices in S, consider any path that brings it closer to S; such a path must eventually pass through a vertex of distance at least 4 from all vertices in S and of distance 4 from some vertex in S (⇒⇐: maximality of S).

Proof of Lemma 2 (5/6): 1 - o(1) constraint

- Next, we show that there is no connected component R of size $r \ge c \lg m$ for some constant c in H'.
- We show that we show that there is NO 4-tree of H of size r/d^3 that survives with probability 1-o(1).

Proof of Lemma 2 (5/6): 1 - o(1) constraint

- Next, we show that there is no connected component R of size $r \ge c \lg m$ for some constant c in H'.
- We show that we show that there is NO 4-tree of H of size r/d^3 that survives with probability 1-o(1).
- Count the number of 4-trees of size $s = r/d^3$ in H.

Proof of Lemma 2 (5/6): 1 - o(1) constraint

- Next, we show that there is no connected component R of size $r \ge c \lg m$ for some constant c in H'.
- We show that we show that there is NO 4-tree of H of size r/d^3 that survives with probability 1-o(1).
- Count the number of 4-trees of size $s = r/d^3$ in H. We can choose the root of the 4-tree in m ways.
- A tree with root v is uniquely defined by an Eulerian tour that starts and ends at v and traverses each edge of the tree twice, once in each direction.
- Since an edge of S represents a path of length 4 in H, at each vertex in the 4-tree the Eulerian path can continue in as many as d^4 different ways, and therefore the number of 4-trees of size $s = m d^{8r/d^3}$.

 The probability that the nodes of each such 4-tree survive in H' is at most.

$$((d+1)2^{-k/2})^s = ((d+1)2^{-k/2})^{r/d^3}.$$

Hence the probability that H' has a connected component of size r is bounded by

$$md^{8r/d3}((d+1)2^{-k/2})^{r/d^3} \le m2^{(rk/d^3)(8\alpha+2\alpha-1/2)} = o(1)$$

for $r \ge c \log_2 m$ and for a suitably large constant c and a sufficiently small constant $\alpha > 0$.

Solving k-SAT in expected polynomial time for small k

Thus, we have the following theorem.

Theorem 2

Consider a k-SAT formula with m clauses, where k is an even constant and each variable appears in up to $2^{\alpha k}$ clauses for a sufficiently small constant $\alpha>0$. Then there is an algorithm that finds a satisfying assignment for the formula in expected time that is polynomial in m.

Solving k-SAT in expected polynomial time for small k

Thus, we have the following theorem.

Theorem 2

Consider a k-SAT formula with m clauses, where k is an even constant and each variable appears in up to $2^{\alpha k}$ clauses for a sufficiently small constant $\alpha > 0$. Then there is an algorithm that finds a satisfying assignment for the formula in expected time that is polynomial in m.

Proof:

• If the Phase I partitions the problem into subformulas involving only $O(k \log m)$ variables (w.p. 1 - o(1)), then a solution can be found by solving each subformula exhaustively in time polynomial in m.

Solving k-SAT in expected polynomial time for small k

Thus, we have the following theorem.

Theorem 2

Consider a k-SAT formula with m clauses, where k is an even constant and each variable appears in up to $2^{\alpha k}$ clauses for a sufficiently small constant $\alpha>0$. Then there is an algorithm that finds a satisfying assignment for the formula in expected time that is polynomial in m.

Proof:

- If the Phase I partitions the problem into subformulas involving only $O(k \log m)$ variables (w.p. 1 o(1)), then a solution can be found by solving each subformula exhaustively in time polynomial in m.
- Thus, we need only run phase I a constant number of times on average before obtaining a good partition.

The Probabilistic Method (II)
Lovász Local Lemma: The General Case

Outline

The Lovász Local Lemma

- 2 Explicit Constructions Using the Local Lemma
- 3 Lovász Local Lemma: The General Case

The General LLL

For completeness we provide the general case of LLL below.

Theorem 2 [Lovász Local Lemma (The General Case)]

Let E_1, E_2, \ldots, E_n be a set of events in an arbitrary probability space, and let G = (V, E) be the dependency graph for these events. Assume there exist $x_1, x_2, \ldots, x_n \in [0, 1]$ such that, for all $1 \le i \le n$,

$$\Pr[E_i] \le x_i \prod_{(i,j) \in E} (1 - x_j).$$

Then,

$$\Pr\left[\bigcap_{i=1}^n \overline{E}_i\right] \ge \prod_{i=1}^n (1-x_i).$$

The Probabilistic Method (II)

Discussions

