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Review

● The Secretary Problem.
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The Secretary Problem

● Consider the problem of hiring an office secretary. 
– We interview candidates, coming one by one, on a rolling basis.

– Let’s say the ith candidate has a value            which stands for how 
much we like her.

– At some time point, we would like to hire the best candidate we have 
seen so far. 

– Suppose we can fire the old one and hire a new better candidate.
– Assume that we only want to interview at most n candidates.
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The Secretary Problem (contd.)

● The whole hiring process will be just like:
Randomly shuffle the n candidates.

Set TheOne ← 0

for i ← 1 to n do:

interview candidate i

if vi > vTheOne then:

TheOne  ← i
Hire candidate i

● Isn't it very simple?
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The cost 

● No pain, no gain. We cannot reap without sowing. 

● Let cI be the cost associated with interviewing a candidate.
● Let cH be the cost associated with hiring a candidate.  

● So, if totally we have ever hired m people (m−1 was fired though…), 
the total cost will be 
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The expected cost analysis

● Let Xi be an indicator random variable such that

●                 :  the number of times we hire a new candidate.

●  
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The expected cost analysis

● Let Xi be an indicator random variable such that

●                 :  the number of times we hire a new candidate.

●  
– For randomly chosen i numbers, the probability that the ith number is the biggest.
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The expected cost analysis

● Therefore,

● The expected cost is   
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The classic version

● Reference: 

– Thomas S. Ferguson: Who solved the 
Secretary Problem? Statistical Science, 
Vol. 4 (1989), pp. 282−289.
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A simple solution

● Reject the first r − 1 applicants.
● Choose the next applicant who is the best in the relative ranking of the 

observed applicants. 

● The famous 37% rule. 

Refer to 
https://www.books.com.tw/products/F014054315
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Illustration
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● Moments and Deviations.

● Basic tail bounds. 

Topics in the following classes
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Markov’s Inequality

● Let X be a random variable that assumes only non-negative values. 
Then, for all a > 0, 

Andrei Andreyevich Markov (Wikipedia)
1856–1922

https://en.wikipedia.org/wiki/Andrey_Markov
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Markov’s Inequality

● Let X be a random variable that assumes only non-negative values. 
Then, for all a > 0, 

● Proof:

                                  

Andrei Andreyevich Markov (Wikipedia)
1856–1922

https://en.wikipedia.org/wiki/Andrey_Markov
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Example: 75% heads in fair coin flips

● What’s the probability of obtaining > 3n/4 heads in a sequence of n 
fair coin flips?
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Example: 75% heads in fair coin flips

● What’s the probability of obtaining > 3n/4 heads in a sequence of n 
fair coin flips?

✔ Applying Markov’s inequality, 
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Example: 75% heads in fair coin flips

● What’s the probability of obtaining > 3n/4 heads in a sequence of n 
fair coin flips?

✔ Applying Markov’s inequality, 
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Scenarios of applying Markov’s inequality

● Markov’s inequality gives the best tail bound when: 
– All we know is the expectation of the random variable
– The random variable is non-negative.
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The kth moment

● Definition. The kth of a random variable X is E[Xk]. 

– So, the expectation is the first moment of X.
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The variance

● Definition. The variance of a random variable X is defined as
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The variance

● Definition. The variance of a random variable X is 

● Definition. The standard deviation of a random variable X is 

● Definition. The covariance of two random variables X and Y is 
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● Theorem. For any two random variables X and Y,

Var[X+Y] = Var[X] + Var[Y] + 2 Cov(X, Y).

Not as nice as the linearity of expectation!

Variance of the sum of two random variables
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● Theorem. For any two random variables X and Y,

Variance of the sum of two random variables
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Variance of the sum of two random variables

● Theorem. For any two random variables X and Y,

● Proof:
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Expectation of product of two random variables

● Theorem. If X and Y are two independent random variables, 
then 
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Expectation of product of two random variables

● Theorem. If X and Y are two independent random variables, 
then 
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Independence → Linearity of Variance

● Corollary. If X and Y are independent random variables, then 

                                  Cov(X, Y) = 0 

and 

                   Var[X+Y] = Var[X] + Var[Y].

Proof:
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Independence → Linearity of Variance

● Corollary. If X and Y are independent random variables, then 

and 
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Remark

● Theorem. For mutually independent random variables X1, X2, …, Xn
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Example: Variance of a binomial random variable

● Recall: a binomial random variable X can be regarded as the sum of n 
independent Bernoulli trials (Y’s), each with success probability p.
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Example: Variance of a binomial random variable

● Recall: a binomial random variable X can be regarded as the sum of n 
independent Bernoulli trials (Y’s), each with success probability p.
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Example: Variance of a binomial random variable

● Recall: a binomial random variable X can be regarded as the sum of n 
independent Bernoulli trials (Y’s), each with success probability p.

● By the theorem in p.29, 
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Chebyshev’s Inequality

● A stronger tail bound if you have the expectation and the 
variance. 

● Theorem [Chebyshev’s Inequality]. For any a > 0,  
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Chebyshev’s Inequality

● Theorem [Chebyshev’s Inequality]. For any a > 0, 

● Proof: 

Apply Markov’s inequality, 
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Chebyshev’s Inequality

● Corollary. For any t > 1, 
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Example: 75% heads in fair coin flips

●  
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Example: 75% heads in fair coin flips

●  

● Actually, 
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Example: 75% heads in fair coin flips

●  

● Actually, 
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Example: 75% heads in fair coin flips

●  

● Actually, 
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Example: Coupon Collector’s Problem

● Recall:

–  X: the time to collect n coupons.
– E[X] ≈ nHn.

● Using Markov’s inequality, 
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Example: Coupon Collector’s Problem

● Recall:

– X: the time to collect n coupons (sum of geometric random variables).
– E[X] ≈ nHn.

● Using Markov’s inequality, 

● It seems to be weak. Can we get a better bound?
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Example: Coupon Collector’s Problem

● Consider a geometric random variable Y.
– Y: the number of flips until the first heads (head: appear with prob. p).

● E[Y] = 1/p. How about E[Y2]? 

– We try to calculate it using conditional expectation. 
– Could be easier (?)
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Example: Coupon Collector’s Problem

● Consider a geometric random variable Y.
– Y: the number of flips until the first heads (head: appear with prob. p).

● E[Y] = 1/p. How about E[Y2]? 

– We try to calculate it using conditional expectation. 
– Could be easier (?)
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Example: Coupon Collector’s Problem

● Consider a geometric random variable Y.
– Y: the number of flips until the first heads (head: appear with prob. p).

● E[Y] = 1/p. How about E[Y2]? 

– We try to calculate it using conditional expectation. 
– Could be easier (?)

– If X = 1, then Y = 1; if X = 0, then Y > 1. So,  
Z: another  geometric random 
variable with parameter p.
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Example: Coupon Collector’s Problem

● Hence, 
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Example: Coupon Collector’s Problem

● Let’s go back to the coupons…

● Let’s welcome Chebyshev!
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Example: Coupon Collector’s Problem

● Let’s go back to the coupons…

● Let’s welcome Chebyshev!
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Example: Coupon Collector’s Problem

● Let’s go back to the coupons…

● Let’s welcome Chebyshev!

< 0.22 when n=100
< 0.15 when n=1,000



Randomized Algorithms, CSIE, TKU, Taiwan 49

Basel problem

Refer to  Wikipedia for more details and 
more approaches.
https://en.wikipedia.org/wiki/Basel_problem

https://en.wikipedia.org/wiki/Basel_problem
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Exercise

1. Let X be a number chosen uniformly at random from [1, n]. Find 
Var[X].

2. Suppose that we roll a standard fair die 100 times. Let X be the sum of 
the numbers that appear over the 100 rolls. Use Chebyshev’s 
inequality to bound 


