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* The Secretary Problem.
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The Secretary Problem

* Consider the problem of hiring an office secretary.

We interview candidates, coming one by one, on a rolling basis.

Let’s say the ith candidate has a value v; € R which stands for how
much we like her.

At some time point, we would like to hire the best candidate we have
seen so far.

Suppose we can fire the old one and hire a new better candidate.

Assume that we only want to interview at most n candidates.
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The Secretary Problem (contd.)

* The whole hiring process will be just like:

Randomly shuffle the n candidates. * Isn't it very simple?
Set TheOne < 0

fori < 1ton do:
interview candidate i
lf Vi > VTheOne then:

TheOne <« i
Hire candidate i
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No pain, no gain. We cannot reap without sowing.

Let ¢ be the cost associated with interviewing a candidate.

Let cu be the cost associated with hiring a candidate.

So, if totally we have ever hired m people (m—1 was fired though...

the total cost will be O(c¢in + cygm)
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The expected cost analysis

e Let X, be an indicator random variable such that

X; =1 if candidate 7 is hired
X; =0 otherwise

* X =) X;: the number of times we hire a new candidate.
=1

1
* Pr[X;] = Pr|[candidate ¢ is better than previous ¢ — 1 candidates| = —.
i
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The expected cost analysis

e Let X, be an indicator random variable such that

X; =1 if candidate 7 is hired
X, =0

otherwise

* X =) X;: the number of times we hire a new candidate.
=1

1
e Pr[X;| = Pr[candidate 7 is better than previous ¢ — 1 candidates| = —.
i

— For randomly chosen i numbers, the probability that the ith number is the biggest.
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The expected cost analysis

 Therefore,

* The expected cost is

Inn+ ©(1).

O(cy Inn 4+ ¢n).
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The classic version

e Reference:

2. STATEMENT OF THE PROBLEM

The reader’s first reaction to the title might well be

— Thomas S. Ferguson: Who solved the to ask, “Which secretary problem?”. After all, as I
have just implied, there are many variations on the

Secretary Problem? Statistical Science,  problem. The secretary problem in its simplest form
Vol. 4 (]_989), Pp. 282-289. has the following features.

1. There is one secretarial position available.
2.
3. The applicants are interviewed sequentially in

The number n of applicants is known.

random order, each order being equally likely.

It is assumed that you can rank all the applicants
from best to worst without ties. The decision to
accept or reject an applicant must be based only
on the relative ranks of those applicants inter-
viewed so far.

An applicant once rejected cannot later be re-
called.

You are very particular and will be satisfied with
nothing but the very best. (That is, your payoff
is 1 if vou choose the best of the n applicants and
0 otherwisze.)
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A simple solution

* Reject the first r — 1 applicants.

* Choose the next applicant who is the best in the relative ranking of the
observed applicants.

e The famous 37% rule.

~ 37% as n is large

r
n

Refer to
https://www.books.com.tw/products/F014054315
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Topics in the following classes

e Moments and Deviations.

e Basic tail bounds.
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Markov’s Inequality

* Let X be a random variable that assumes only non-negative values.
Then, for all a > 0,

Andrei Andreyevich Markov (Wikipedia)
1856-1922

Randomized Algorithms, CSIE, TKU, Taiwan 13


https://en.wikipedia.org/wiki/Andrey_Markov

Markov’s Inequality

* Let X be a random variable that assumes only non-negative values.
Then, for all a > 0,

E|X
Pr[X > a] < | ]
a
* Proof:
' X
Let T=4 1 X220 g x>0 1<2
0 otherwise. a
Andrei Andreyevich Markov (Wikipedia)
X E|X _
Pr[X >a|=Pr[l =1]=E[[]<E [—] _ EX] B
a a
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Example: 75% heads in fair coin flips

* What’s the probability of obtaining > 3n/4 heads in a sequence of n
fair coin flips?
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Example: 75% heads in fair coin flips

* What’s the probability of obtaining > 3n/4 heads in a sequence of n
fair coin flips?

1 if the ¢th coin flip is head
X; = .
0 otherwise

BIX] = PrX, = 1] =
E[X] = ZE[XZ-] - g

v Applying Markov’s inequality,
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Example: 75% heads in fair coin flips

* What’s the probability of obtaining > 3n/4 heads in a sequence of n
fair coin flips?

1 if the ¢th coin flip is head
X; = .
0 otherwise

BIX] = PrX, = 1] =
E[X] = ZE[XZ-] - g

v Applying Markov’s inequality,
E[X] n/2 2
Pr[X > 4] < = = —.
X 23l < 5 = 51 T 3
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Scenarios of applying Markov’s inequality

* Markov’s inequality gives the best tail bound when:

— All we know is the expectation of the random variable

— The random variable is non-negative.
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The kth moment

e Definition. The kth of a random variable X is E[XX].

— So, the expectation is the first moment of X.
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The variance

* Definition. The variance of a random variable X is defined as

Var[X] = E[(X — E[X])’] = E[X"] - (E[X])*.
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The variance

e Definition. The variance of a random variable X is
Var[X] = E[(X — E[X])’] = E[X?] — (E[X])%.

e Definition. The standard deviation of a random variable X is

o[X] = (Var[X])'/2.

e Definition. The covariance of two random variables X and Y is

Cov(X,Y) = E[(X — E[X])(Y — E[Y])].
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Variance of the sum of two random variables

* Theorem. For any two random variables X and Y,
Var[X+Y] = Var[X] + Var[Y] + 2 Cov(X, Y).

R

Not as nice as the linearity of expectation!
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Variance of the sum of two random variables

* Theorem. For any two random variables X and Y,

Var|X + Y] = Var|X]| + Var|Y| + 2Cov(X,Y).
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Variance of the sum of two random variables

* Theorem. For any two random variables X and Y,

Var|X + Y] = Var|X]| + Var|Y| + 2Cov(X,Y).

* Proof:
Var[X +Y] = E[(X+Y —E[X +Y])?
= E(X+Y E[X] - E[Y])Q]
= E[(X —E[X]) + (Y - E[Y]))"]
= E[(X - E[X]) +(Y —E[Y])* +2(X - E[X])(Y — E[Y])]
= E[(X - E[X])]+E[(Y E[Y])’] + 2E[(X - E[X])(Y — E[Y])]

= Var|X]|+ Var|Y] +2Cov(X,Y).
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Expectation of product of two random variables

* Theorem. If X and Y are two independent random variables,
then E[X -Y] = E[X]-E[Y].
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Expectation of product of two random variables

* Theorem. If X and Y are two independent random variables,
then E[X -Y] = E[X]-E[Y].

EX Y] = ZZ(i-j)-PI‘[(X=i)ﬂ(Y=j)]
= ZZ(z‘-j)-Pr[Xzz'].Pr[Yzj]

_ (;z‘-Pr[X = z‘]) - (;-Pr[Y j])

E[X] E[Y].
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Independence — Linearity of Variance

* Corollary. If X and Y are independent random variables, then
Cov(X,Y)=0

and
Var|[X+Y] = Var[X] + Var|Y].
Proof:

Cov[X,Y] = E[X -EX])(Y - E[Y])]
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Independence — Linearity of Variance

e Corollary. If X and Y are independent random variables, then

Cov(X,Y)=0
and

Var|X + Y] = Var|X| + Var|Y].
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Remark

* Theorem. For mutually independent random variables X1, X, ..., X

Var lzn: X,L-] = zn:Var[Xi].
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Example: Variance of a binomial random variable

* Recall: a binomial random variable X can be regarded as the sum of n
independent Bernoulli trials (Y’s), each with success probability p.
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Example: Variance of a binomial random variable

* Recall: a binomial random variable X can be regarded as the sum of n
independent Bernoulli trials (Y’s), each with success probability p.

Var[Y] =E[(Y —E[Y]))]=p-(1—p)*+ (1 —p)- (0—p)* =p(1 —p).
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Example: Variance of a binomial random variable

* Recall: a binomial random variable X can be regarded as the sum of n
independent Bernoulli trials (Y’s), each with success probability p.

Var[Y] =E[(Y —E[Y])*]=p-(1-p)>+ (1 —p)-(0—p)° =p(1 - p).
* By the theorem in p.29,

Var[X| =n-(p(1 —p)) =np(1 —p).
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Chebyshev’s Inequality

* A stronger tail bound if you have the expectation and the
variance.

* Theorem [Chebyshev’s Inequality]. For any a > 0,

- Var[X].

Prl|X — B[X]| 2 ] < —
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Chebyshev’s Inequality

* Theorem [Chebyshev’s Inequality]. For any a > 0,

Pr[|X — E[X]| > a] <

* Proof:
Pr[|X — E[X]| > a] = Pr[(X — E[X])* > a°]

Apply Markov’s inequality,

Pr((X — E[X])® > a?] <
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Chebyshev’s Inequality

* Corollary. For any t > 1,

Pr(|X —E[X])| >t -0[X]] < tig
Pr(|X —E[X])| > t-E[X]] < t;(f];l['%%z
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Example: 75% heads in fair coin flips

. 1 if the ¢th coin flip is head
X; = .
0 otherwise

E[X,] = Pr[X; = 1] = % E[X] = ZE[XZ-] - g
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Example: 75% heads in fair coin flips

. 1 if the ¢th coin flip is head
X; = .
0 otherwise

E[X,] = Pr[X; = 1] = % E[X] = ZE[XZ-] - g

e Actually, E[Xf]zE[Xz]:%'
11 1
var[x-]=E[X31—<E[Xil>2:§‘1:1'
Var[X] = Var [ZX ZV"“ Xl=7
i=1
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Example: 75% heads in fair coin flips

. 1 if the ¢th coin flip is head
X; = .
0 otherwise

E[X;] =Pr[X; =1] = % E[X] = Z E[X;] =
* Actually,

Var[X;] = E[X?] — (E[X;])? = % _

Var[X| = Var [Z X; Z Var| X

Var[X]  n/4

Pr[X > 3n/4] < Pr[|X — E[X]| > n/4] <

Randomized Algorithms, CSIE, TKU, Taiwan
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4

n
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Example: 75% heads in fair coin flips

. 1 if the ¢th coin flip is head
X; = .
0 otherwise

Example: 75% heads in fair coin flips

1 n
E [X’I,] — PI‘ [X’I, — ]_] —_— 5 E [X] = Z E [X’L] = g . * What’s the probability of obtaining > 3n/4 heads in a sequence of n

fair coin flips?

1 if the ith coin flip is head
Xi= .
0 otherwise

E[X)] =Pr[X; =1] = %

1
5 . E[X] =§E[Xi] = g
1 1 1 - Applying Markov’s inequality,
Var[X,] = BIX?] - (BIX)? = 5 - | = |- wessins - 351
Randomized Algorithms, CSIE, TKU, Taiwan
n

Var[X]| = Var [ZX ZVar
Var[X] n/4 4
Pr|X > 3n/4] < Pr[|X — E[X]| > n/4] < (n/4)? = (/1) =
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Example: Coupon Collector’s Problem

e Recall:

— X: the time to collect n coupons.
- E[X] ~ nHn.

* Using Markov’s inequality,

Pr|X > 2nH,] <

N | —
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Example: Coupon Collector’s Problem

e Recall:

— X: the time to collect n coupons (sum of geometric random variables).
- E[X] ~ nHn.

* Using Markov’s inequality,

Pr|X > 2nH,] <

N | —

* It seems to be weak. Can we get a better bound?
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Example: Coupon Collector’s Problem

* Consider a geometric random variable Y.

— Y: the number of flips until the first heads (head: appear with prob. p).
 E[Y]=1/p. How about E[Y?]?

— We try to calculate it using conditional expectation.

— Could be easier (?)
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Example: Coupon Collector’s Problem

* Consider a geometric random variable Y.

— Y: the number of flips until the first heads (head: appear with prob. p).

 E[Y]=1/p. How about E[Y?]?
— We try to calculate it using conditional expectation.
— Could be easier (?)

E[Y? = Pr[X=0-EY?| X =0+Pr[X=1]-E[Y?| X =1]
= (1-p)-EY?|X=0+p-EY?|X=1].

Randomized Algorithms, CSIE, TKU, Taiwan
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Example: Coupon Collector’s Problem

* Consider a geometric random variable Y.

— Y: the number of flips until the first heads (head: appear with prob. p).
 E[Y]=1/p. How about E[Y?]?

— We try to calculate it using conditional expectation.

— Could be easier (?)

E[Y? = Pr[X=0-EY?| X =0+Pr[X=1]-E[Y?| X =1]

= (1-p)-E[Y?| X =0]+p-E[Y?| X = 1]

- IfX=1,thenY=1;if X=0, then Y > 1. So,

E[Y?| X =1]

=1

E[Y? | X = 0]

Z: another geometric random
variable with parameter p.

— E[(Z+1)?
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Example: Coupon Collector’s Problem

* Hence,

Pr[X =0]-E[Y?| X =0]+Pr[X =1]-E[Y? | X = 1]

(1-p)-EY? | X=0+p-E[Y?| X =1]
(1-p)-E[(Z+1)’]+p-1
(1—-p)-E[Z°]+2(1 - p)E[Z] + 1
(1-p)-E[Y?]+2(1-p)-—+1
C—pEVI 2 Ly 20
p 2 1 1
_ 21 _ 2_-—P _
Var|Y| = E[Y?] — (E[Y)) 5 <
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Example: Coupon Collector’s Problem

* Let’s go back to the coupons...

Var[X]ngar[Xi]Sg(]%> - ‘" (n—7f;+1)2

mT™n
<
- 6
* Let’s welcome Chebyshev!
mn? 2 1
Pr||X —nH,| > nH,| < = =0
X =l n1) € i = s =0 (7,

Randomized Algorithms, CSIE, TKU, Taiwan
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Example: Coupon Collector’s Problem

* Let’s go back to the coupons..
n n 2
1
Var| E Var|X;] < E =
ol X ar|X] < (2> (n—z—|—1)
1=1 1=1
Example: Coupon Collector’s Problem

n
¢ Recall:
1=1 - X: the time to collect n coupons.
2 - E[X] ~ nHn.
< 7T n
-~ ¢ Using Markov’s inequality,
6
)
* Let’s welcome Chebyshev!
71.2 n2 7.(.2

Pr[|X — nH,| > nH,] < = =
t[|X = nHn| 2 nHy) 6(nH,)?  6(H,)?
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Example: Coupon Collector’s Problem

* Let’s go back to the coupons...
n n n 2
1
Var[X] =) Var[X;] <) (=) =
arlX] =2 VarlXi < (p2> (n—’t+1)
1=1 1=1 1=1
Example: Coupon Collector’s Problem

n
_ 2
o n Z < ) ¢ Recall:
1=1 - X: the time to collect n coupons.
2 - E[X] ~ nHn.
7T n
S 6 ¢ Using Markov’s inequality,
* Let’s welcome Chebyshev!
2,2 2
TN s
PI‘HX — an| > an] < = = < 0.22 when n=100
6(nHy)*>  6(Hp)? < 0.15 when n=1,000
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asel problem

Euler's approach [edi]

Prs

Euler's original derivation of the value - essentially extended observations about finite polynomials and assumed that these same properties hold true for infinite

series

Of course, Euler's original reasoning requires justification (100 years later, Karl Weierstrass proved that Euler's representation of the sine function as an infinite product
is valid, by the Welerstrass factorization theorem), but even without justification, by simply obtaining the correct value, he was able to verify it numerically against partial
sums of the series. The agreement he observed gave him sufficient confidence to announce his result to the mathematical community.

To follow Euler's argument, recall the Taylor series expansion of the sine function

. _ o " z’ z’ "
A TR TH TH
Dividing through by x, we have
sinz 1 x? . 0 N
x 31 5T

Using the Weierstrass factorization theorem, it can also be shown that the lefi-hand side is the product of linear factors given by its roots. just as we do for finite
polynomials (which Euler assumed as a heuristic for expanding an infinite degree polynomial in terms of its roots, but in fact is not always true for general P(:r;)).

202 - )0 E) - ) E) -
262 (2"

If we formally multiply out this product and collect all the ¥ terms (we are allowed to do so because of Newton's identities), we see by induction that the x2 coefficient of
sinx . (5]
= s

(1 1 1 ) 11
— =+ 4+ Jei ]l = —— —

[4]

Il

m  4n? G2

Smx
v

But from the original infinite series expansion of
11 i 1
6 n? & p?

IMultiplying both sides of this equation by -2 gives the sum of the reciprocals of the positive square integers.

=1
LT

n=1

the coefficient of x is 7% = 7%. These two coefiicients must be equal; thus,

Refer to Wikipedia for more details and
more approaches.
https://en.wikipedia.org/wiki/Basel_problem
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Exercise

1. Let X be a number chosen uniformly at random from [1, n]. Find
Var[ X].

2. Suppose that we roll a standard fair die 100 times. Let X be the sum of
the numbers that appear over the 100 rolls. Use Chebyshev’s
inequality to bound

Pr[|X — 350| > 50].
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