Randomized Algorithms

The Probabilistic Method (I)

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Outline

- Motivation
- The Basic Counting Argument & The Expectation Argument
- Oerandomization Using Conditional Expectations
- Sample and Modify
- The Second Moment Method
- The Conditional Expectation Inequality

The Probabilistic Method (I)
Motivation

Outline

- Motivation
- 2 The Basic Counting Argument & The Expectation Argument
- 3 Derandomization Using Conditional Expectations
- 4 Sample and Modify
- 5 The Second Moment Method
- 6 The Conditional Expectation Inequality

Motivation

• Prove the existence of objects.

Motivation

- Prove the existence of objects.
- If the probability of selecting an object with the required properties is positive, then the sample space must contain such an object.

Outline

- Motivation
- 2 The Basic Counting Argument & The Expectation Argument
- 3 Derandomization Using Conditional Expectations
- 4 Sample and Modify
- 5 The Second Moment Method
- 6 The Conditional Expectation Inequality

The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

Example

• Coloring the edges of a graph with two colors.

Constraint: no large cliques with all edges having the same color.

Theorem 1

If $\binom{n}{k} 2^{-\binom{k}{2}+1} < 1$, then it is possible to color the edges of K_n with two colors so that it has no monochromatic K_k subgraph.

7 / 55

Theorem 1

If $\binom{n}{k} 2^{-\binom{k}{2}+1} < 1$, then it is possible to color the edges of K_n with two colors so that it has no monochromatic K_k subgraph.

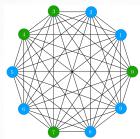
Note:

- There are $2^{\binom{n}{2}}$ possible colorings of K_n .
- There are $\binom{n}{k}$ different K_k cliques of K_n .

Theorem 1

If $\binom{n}{k} 2^{-\binom{k}{2}+1} < 1$, then it is possible to color the edges of K_n with two colors so that it has no monochromatic K_k subgraph.

- Note:
 - There are $2^{\binom{n}{2}}$ possible colorings of K_n .
 - There are $\binom{n}{k}$ different K_k cliques of K_n .
- Flip a fair coin independently to determine the color of each edge.



General Idea

- Let A_i be the event that clique i is monochromatic.
- **Goal:** Prove that the probability $\Pr \left[\bigcap_{i=1}^{\binom{n}{k}} \overline{A_i} \right] > 0.$

General Idea

- Let A_i be the event that clique i is monochromatic.
- **Goal:** Prove that the probability $\Pr \left| \bigcap_{i=1}^{\binom{n}{k}} \overline{A_i} \right| > 0.$
 - That is,

$$1 - \Pr\left[\bigcup_{i=1}^{\binom{n}{k}} A_i\right] > 0.$$

• Once the first edge in clique i is colored, the remaining $\binom{k}{2} - 1$ edges must all be given the same color. So,

• Once the first edge in clique i is colored, the remaining $\binom{k}{2} - 1$ edges must all be given the same color. So,

$$\Pr(A_i) = 2^{-\binom{k}{2}+1}.$$

• Once the first edge in clique i is colored, the remaining $\binom{k}{2}-1$ edges must all be given the same color. So,

$$\Pr(A_i) = 2^{-\binom{k}{2}+1}.$$

By the union bound,

$$\Pr\left(\bigcup_{i=1}^{\binom{n}{k}} A_i\right) \leq \sum_{l=1}^{\binom{n}{k}} \Pr(A_i) = \binom{n}{k} 2^{-\binom{k}{2}+1} < 1,$$

• The last inequality: the assumptions of the theorem.

• Once the first edge in clique i is colored, the remaining $\binom{k}{2}-1$ edges must all be given the same color. So,

$$\Pr(A_i) = 2^{-\binom{k}{2}+1}.$$

By the union bound,

$$\Pr\left(\bigcup_{i=1}^{\binom{n}{k}} A_i\right) \leq \sum_{l=1}^{\binom{n}{k}} \Pr(A_i) = \binom{n}{k} 2^{-\binom{k}{2}+1} < 1,$$

- The last inequality: the assumptions of the theorem.
- Hence

$$\Pr\left(\bigcap_{i=1}^{\binom{n}{k}}\overline{A_i}\right) = 1 - \Pr\left(\bigcup_{i=1}^{\binom{n}{k}}A_i\right) > 0.$$

• Our calculations can be simplified if we note that: For $n < 2^{k/2}$ and k > 3.

$$\binom{n}{k} 2^{-\binom{k}{2}+1} \leq \frac{n^k}{k!} 2^{-(k(k-1)/2)+1}$$

$$\leq \frac{2^{k/2+1}}{k!}$$

$$< 1.$$

- Sample a coloring by coloring each edge independently at random.
 - How many samples must we generate before obtaining a sample satisfying our requirement?

- Sample a coloring by coloring each edge independently at random.
 - How many samples must we generate before obtaining a sample satisfying our requirement?
- p: The probability of obtaining a sample we desire.

- Sample a coloring by coloring each edge independently at random.
 - How many samples must we generate before obtaining a sample satisfying our requirement?
- p: The probability of obtaining a sample we desire.
- If p = 1 o(1), then the sampling algorithm is incorrect with probability o(1).

- Sample a coloring by coloring each edge independently at random.
 - How many samples must we generate before obtaining a sample satisfying our requirement?
- p: The probability of obtaining a sample we desire.
- If p = 1 o(1), then the sampling algorithm is incorrect with probability o(1).
- Example: Finding a coloring on a graph of 1,000 vertices with no monochromatic K_{20} .
 - \bullet The probability that a random coloring has a monochromatic \mathcal{K}_{20} is \leq

$$\frac{2^{20/2+1}}{20!} < 8.5 \cdot 10^{-16}.$$

- Sample a coloring by coloring each edge independently at random.
 - How many samples must we generate before obtaining a sample satisfying our requirement?
- p: The probability of obtaining a sample we desire.
- If p = 1 o(1), then the sampling algorithm is incorrect with probability o(1).
- Example: Finding a coloring on a graph of 1,000 vertices with no monochromatic K_{20} .
 - \bullet The probability that a random coloring has a monochromatic \mathcal{K}_{20} is \leq

$$\frac{2^{20/2+1}}{201} < 8.5 \cdot 10^{-16}.$$

⇒ A Monte Carlo algorithm with a very small probability of failure

 What if we want a Las Vegas algorithm? Can we still have an expected polynomial running time randomized algorithm for generating such a sample?

- What if we want a Las Vegas algorithm? Can we still have an expected polynomial running time randomized algorithm for generating such a sample?
- Expected number of samples: 1/p.

- What if we want a Las Vegas algorithm? Can we still have an expected polynomial running time randomized algorithm for generating such a sample?
- Expected number of samples: 1/p.
- For a fixed (constant) k, check all $\binom{n}{k}$ cliques and make sure they are not monochromatic.

- What if we want a Las Vegas algorithm? Can we still have an expected polynomial running time randomized algorithm for generating such a sample?
- Expected number of samples: 1/p.
- For a fixed (constant) k, check all $\binom{n}{k}$ cliques and make sure they are not monochromatic.
 - Not polynomial time when k grows with n!

The average argument

• Intuitive idea: Say a discrete random variable X has $\mathbb{E}[X] = \mu$. Then there must be some value $a \leq \mu$ and $b \geq \mu$ such that $\Pr[X = a] > 0$ and $\Pr[X = b] > 0$.

The average argument

• Intuitive idea: Say a discrete random variable X has $\mathbb{E}[X] = \mu$. Then there must be some value $a \leq \mu$ and $b \geq \mu$ such that $\Pr[X = a] > 0$ and $\Pr[X = b] > 0$.

Lemma 1

Suppose we have a probability space S such and a random variable X defined on S such that $\mathbb{E}[X] = \mu$. Then

$$Pr[X \ge \mu] > 0$$
 and $Pr[X \le \mu] > 0$.

The Basic Counting Argument & The Expectation Argument

Proof: Let $\mathcal{X} = \{x \in \mathbb{R} : \Pr[X = x] > 0\}$ be the support of X. Suppose that

$$\mu = \mathbb{E}[X] = \sum_{x \in \mathcal{X}} \Pr[X = x].$$

Proof: Let $\mathcal{X} = \{x \in \mathbb{R} : \Pr[X = x] > 0\}$ be the support of X.

Suppose that

$$\mu = \mathbb{E}[X] = \sum_{x \in \mathcal{X}} \Pr[X = x].$$

If $\Pr[X \ge \mu] = 0$, then

$$\mu = \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{x} \Pr[\mathbf{X} = \mathbf{x}] = \sum_{\mathbf{x} < \mu} \mathbf{x} \Pr[\mathbf{X} = \mathbf{x}] < \sum_{\mathbf{x} < \mu} \mu \Pr[\mathbf{X} = \mathbf{x}] = \mu.$$

The Basic Counting Argument & The Expectation Argument

Proof: Let $\mathcal{X} = \{x \in \mathbb{R} : \Pr[X = x] > 0\}$ be the support of X.

Suppose that

$$\mu = \mathbb{E}[X] = \sum_{x \in \mathcal{X}} \Pr[X = x].$$

If $\Pr[X \ge \mu] = 0$, then

$$\mu = \sum_{x \in \mathcal{X}} x \Pr[X = x] = \sum_{x < \mu} x \Pr[X = x] < \sum_{x < \mu} \mu \Pr[X = x] = \mu.$$

 $(\Rightarrow \Leftarrow)$

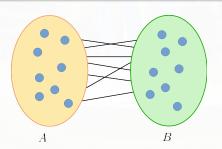
Similarly, if $\Pr[X \leq \mu] = 0$ then

$$\mu = \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{x} \Pr[\mathbf{X} = \mathbf{x}] = \sum_{\mathbf{x} > \mu} \mathbf{x} \Pr[\mathbf{X} = \mathbf{x}] > \sum_{\mathbf{x} > \mu} \mu \Pr[\mathbf{X} = \mathbf{x}] = \mu.$$

Application: Finding a Large Cut

Theorem 2

Given an undirected graph G = (V, E) with |V| = n and |E| = m. There is a partition of V into disjoint sets A and B such that at least m/2 edges connect a vertex in A to a vertex in B. That is, there is a cut with value at least m/2.



- Construct sets A and B by randomly and independently assigning each vertex to one of the two sets.
- Let e_1, \ldots, e_m be an arbitrary enumeration of the edges of G.
- For i = 1, ..., m, define X_i such that

$$X_i = \begin{cases} 1 & \text{if edge } i \text{ connects } A \text{ to } B \\ 0 & \text{otherwise} \end{cases}$$

- Construct sets A and B by randomly and independently assigning each vertex to one of the two sets.
- Let e_1, \ldots, e_m be an arbitrary enumeration of the edges of G.
- For i = 1, ..., m, define X_i such that

$$X_i = \begin{cases} 1 & \text{if edge } i \text{ connects } A \text{ to } B \\ 0 & \text{otherwise} \end{cases}$$

• The probability that edge e_i connects a vertex in A to a vertex in B is $\frac{1}{2}$, and thus

$$\mathbb{E}[X_i] = \frac{1}{2}$$

Proof (contd.)

• Let C = (A, B) be a random variable denoting the value of the cut corresponding to the sets A and B. Then

$$\mathbb{E}[C(A,B)] = \mathbb{E}\left[\sum_{i=1}^m X_i\right] = \sum_{i=1}^m \mathbb{E}[X_i] = m \cdot \frac{1}{2} = \frac{m}{2}.$$

Proof (contd.)

- We need "a lower bound" on the probability that a random partition has a cut of value at least m/2.
- To derive such a bound, let $p = \Pr\left[C(A, B) \ge \frac{m}{2}\right]$, and observe that $C(A, B) \le m$, Then

$$\frac{m}{2} = \mathbb{E}[C(A, B)]$$

$$= \sum_{i < m/2} i \Pr[C(A, B) = i] + \sum_{i \ge m/2} i \Pr[C(A, B) = i]$$

$$\leq (1 - p) \left(\frac{m}{2} - 1\right) + pm,$$

Proof (contd.)

- We need "a lower bound" on the probability that a random partition has a cut of value at least m/2.
- To derive such a bound, let $p = \Pr\left[C(A,B) \ge \frac{m}{2}\right]$, and observe that $C(A,B) \le m$, Then

$$\frac{m}{2} = \mathbb{E}[C(A, B)]$$

$$= \sum_{i < m/2} i \Pr[C(A, B) = i] + \sum_{i \ge m/2} i \Pr[C(A, B) = i]$$

$$\leq (1 - p) \left(\frac{m}{2} - 1\right) + pm,$$

which implies that $p \ge \frac{1}{m/2+1}$

Proof (contd.)

- We need "a lower bound" on the probability that a random partition has a cut of value at least m/2.
- To derive such a bound, let $p = \Pr\left[C(A, B) \ge \frac{m}{2}\right]$, and observe that $C(A, B) \le m$, Then

$$\frac{m}{2} = \mathbb{E}[C(A, B)]$$

$$= \sum_{i < m/2} i \Pr[C(A, B) = i] + \sum_{i \ge m/2} i \Pr[C(A, B) = i]$$

$$\leq (1 - p) \left(\frac{m}{2} - 1\right) + pm,$$

which implies that $p \ge \frac{1}{m/2+1} \Rightarrow$ expected number of samples before finding a cut: $\leq m/2+1$.

Application: Maximum Satisfiability

The following expression is an instance of SAT:

$$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2 \vee x_4) \wedge (x_4 \vee \overline{x_3}) \wedge (x_4 \vee \overline{x_1}).$$

Application: Maximum Satisfiability

The following expression is an instance of SAT:

$$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2 \vee x_4) \wedge (x_4 \vee \overline{x_3}) \wedge (x_4 \vee \overline{x_1}).$$

Theorem 3

Given a set of m clauses, let k_i be the number of literals in the ith clause for $i=1,\ldots,m$. Let $k=\min_{i\in\{1,\ldots,m\}}k_i$. Then there is a truth assignment that satisfies at least

$$\sum_{i=1}^{m} (1 - 2^{-k_i}) \ge m(1 - 2^{-k}) \quad \text{clauses.}$$

Proof

- Assign values independently and uniformly at random to the variables.
- The probability that the *i*th clause with k_i literals is satisfied is at least $(1-2^{-k})$.
- The expected number of satisfied clauses is therefore at least

$$\sum_{i=1}^{m} (1-2^{-k_i}) \geq m(1-2^{-k}),$$

and there must be an assignment that satisfies at least that many clauses.

Outline

- Motivation
- 2 The Basic Counting Argument & The Expectation Argument
- Oerandomization Using Conditional Expectations
- 4 Sample and Modify
- 5 The Second Moment Method
- 6 The Conditional Expectation Inequality

Spring 2026

- The probabilistic method can yield insight into how to construct deterministic algorithms.
- Derandomization using method of conditional expectations.

- The probabilistic method can yield insight into how to construct deterministic algorithms.
- Derandomization using method of conditional expectations.

- The probabilistic method can yield insight into how to construct deterministic algorithms.
- Derandomization using method of conditional expectations.
- Again, let us consider the problem of finding a large cut.

Spring 2026

- The probabilistic method can yield insight into how to construct deterministic algorithms.
- Derandomization using method of conditional expectations.
- Again, let us consider the problem of finding a large cut.
 - Imagine that we **place the vertices deterministically**, one at a time, in an arbitrary order v_1, v_2, \ldots, v_n .

- The probabilistic method can yield insight into how to construct deterministic algorithms.
- Derandomization using method of conditional expectations.
- Again, let us consider the problem of finding a large cut.
 - Imagine that we place the vertices deterministically, one at a time, in an arbitrary order v_1, v_2, \ldots, v_n .
 - x_i : the set where v_i is placed (so x_i is either A or B).

- The probabilistic method can yield insight into how to construct deterministic algorithms.
- Derandomization using method of conditional expectations.
- Again, let us consider the problem of finding a large cut.
 - Imagine that we place the vertices deterministically, one at a time, in an arbitrary order v_1, v_2, \ldots, v_n .
 - x_i : the set where v_i is placed (so x_i is either A or B).
 - **Assumption:** The first *k* vertices have been placed. Consider the expected value of the cut if the remaining vertices are then placed independently and uniformly into one of the two sets.

• We show inductively how to place the next vertex so that

$$\mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_k] \leq \mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_{k+1}]$$

We show inductively how to place the next vertex so that

$$\mathbb{E}[C(A, B) \mid x_1, x_2, \dots, x_k] \leq \mathbb{E}[C(A, B) \mid x_1, x_2, \dots, x_{k+1}]$$

It follows that

$$\mathbb{E}[C(A,B)] \leq \mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_n].$$

We show inductively how to place the next vertex so that

$$\mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_k] \leq \mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_{k+1}]$$

It follows that

$$\mathbb{E}[C(A,B)] \leq \mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_n].$$

- The right-hand side: the value of the cut determined by our placement algorithm.
- Hence our algorithm returns a cut whose value $\geq \mathbb{E}[\mathcal{C}(A,B]) \geq m/2$.

• The induction base: $\mathbb{E}[C(A, B) \mid x_1] = \mathbb{E}[C(A, B)]$

- The induction base: $\mathbb{E}[C(A, B) \mid x_1] = \mathbb{E}[C(A, B)]$
 - Placing the first vertex doesn't matter (symmetric).

- The induction base: $\mathbb{E}[C(A, B) \mid x_1] = \mathbb{E}[C(A, B)]$
 - Placing the first vertex doesn't matter (symmetric).
- We now prove the inductive step:

$$\mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_k] \leq \mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_{k+1}]$$

- The induction base: $\mathbb{E}[C(A, B) \mid x_1] = \mathbb{E}[C(A, B)]$
 - Placing the first vertex doesn't matter (symmetric).
- We now prove the inductive step:

$$\mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_k] \leq \mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_{k+1}]$$

- Consider placing v_{k+1} randomly, so that it is placed in A or B with probability 1/2 each.
- Let Y_{k+1} be a random variable representing the set where it is placed.

Then

$$\mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_k] = \frac{1}{2} \mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_k, Y_{k+1} = A] + \frac{1}{2} \mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_k, Y_{k+1} = B].$$

Then

$$\mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_k] = \frac{1}{2} \mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_k, Y_{k+1} = A] + \frac{1}{2} \mathbb{E}[C(A,B) \mid x_1, x_2, \dots, x_k, Y_{k+1} = B].$$

It follows that

$$\max \left(\mathbb{E}[C(A,B) \mid x_1, \dots, x_k, Y_{k+1} = A], \ \mathbb{E}[C(A,B) \mid x_1, \dots, x_k, Y_{k+1} = B] \right)$$

$$> \ \mathbb{E}[C(A,B) \mid x_1, \dots, x_k].$$

- Compute the two quantities
 - $\mathbb{E}[C(A, B) | x_1, \dots, x_k, Y_{k+1} = A]$
 - $\mathbb{E}[C(A, B) | x_1, \dots, x_k, Y_{k+1} = B]$

and then place v_{k+1} in the set that yields the larger expectation.

Once we do this, we will have a placement satisfying

$$\mathbb{E}[C(A, B) \mid x_1, x_2, \dots, x_k] \leq \mathbb{E}[C(A, B) \mid x_1, x_2, \dots, x_{k+1}].$$

Computation of $\mathbb{E}[C(A, B) \mid x_1, \dots, x_k, Y_{k+1} = A \text{ (or } B)]$

- ullet For the first k+1 vertices, compute the number of edges that contribute to the cut.
- For all the other edges, each one contributes to the cut with prob. 1/2.

- Compute the two quantities
 - $\mathbb{E}[C(A, B) \mid x_1, \dots, x_k, Y_{k+1} = A]$
 - $\mathbb{E}[C(A, B) | x_1, \dots, x_k, Y_{k+1} = B]$

and then place v_{k+1} in the set that yields the larger expectation.

Once we do this, we will have a placement satisfying

$$\mathbb{E}[C(A, B) \mid x_1, x_2, \dots, x_k] \leq \mathbb{E}[C(A, B) \mid x_1, x_2, \dots, x_{k+1}].$$

Computation of $\mathbb{E}[C(A, B) \mid x_1, \dots, x_k, Y_{k+1} = A \text{ (or } B)]$

- ullet For the first k+1 vertices, compute the number of edges that contribute to the cut.
- For all the other edges, each one contributes to the cut with prob. 1/2.
 - Depends on whether v_{k+1} has more neighbors in A or in B.

The Probabilistic Method (I) Sample and Modify

Outline

- Motivation
- 2 The Basic Counting Argument & The Expectation Argument
- 3 Derandomization Using Conditional Expectations
- Sample and Modify
- 5 The Second Moment Method
- The Conditional Expectation Inequality

Sample and Modify

Sample and Modify (Two Stages)

- 1st Stage: Construct a random structure that does not have the required properties.
- 2nd Stage: Modify the structure so that the required properties are satisfied.

Sample and Modify

Sample and Modify (Two Stages)

- 1st Stage: Construct a random structure that does not have the required properties.
- 2nd Stage: Modify the structure so that the required properties are satisfied.
- In some cases, it is easy to work using this indirect approach.

Application: Independent Sets

Theorem 4

Let G = (V, E) be a graph on n vertices with m edges. Then G has an independent set with at least $n^2/4m$ vertices.

Proof: Let d = 2m/n be the average degree of the vertices in G. Consider the following randomized algorithm.

Application: Independent Sets

Theorem 4

Let G = (V, E) be a graph on n vertices with m edges. Then G has an independent set with at least $n^2/4m$ vertices.

Proof: Let d = 2m/n be the average degree of the vertices in G. Consider the following randomized algorithm.

- Delete each vertex of G (together with its incident edges) independently with probability 1 1/d.
- 2 For each remaining edge, remove it and one of its adjacent vertices.

- Let X be the number of vertices that survive the first step of the algorithm.
- Since the graph has n vertices and each vertex survives with probability 1/d, it follows that

$$\mathbb{E}[X] = \frac{n}{d}.$$

- Let *X* be the number of vertices that survive the first step of the algorithm.
- Since the graph has n vertices and each vertex survives with probability 1/d, it follows that

$$\mathbb{E}[X] = \frac{n}{d}.$$

 Let Y be the number of edges that survive the first step. There are nd/2 edges in the graph, and an edge survives iff its two adjacent vertices survive.

- Let *X* be the number of vertices that survive the first step of the algorithm.
- Since the graph has n vertices and each vertex survives with probability 1/d, it follows that

$$\mathbb{E}[X] = \frac{n}{d}.$$

- Let Y be the number of edges that survive the first step. There are nd/2 edges in the graph, and an edge survives iff its two adjacent vertices survive.
- Thus,

$$\mathbb{E}[Y] = \frac{nd}{2} \left(\frac{1}{d}\right)^2 = \frac{n}{2d}.$$

- The second step of the algorithm removes all the remaining edges and at most Y vertices.
- When the algorithm terminates, it outputs an independent set of size at least X-Y, and

$$\mathbb{E}[X-Y] = \frac{n}{d} - \frac{n}{2d} = \frac{n}{2d}.$$

• The expected size of the independent set generated by the algorithm is n/2d, so the graph has an independent set with at least $n/2d = n^2/4m$ vertices.

Application: Independent Sets

Theorem 5

For any integer $k \ge 3$, there is a graph with n nodes, at least $\frac{1}{4}n^{1+1/k}$ edges, and girth at least k.

• girth: the length of a shortest cycle contained in the graph.

Spring 2026

Application: Independent Sets

Theorem 5

For any integer $k \ge 3$, there is a graph with n nodes, at least $\frac{1}{4}n^{1+1/k}$ edges, and girth at least k.

• girth: the length of a shortest cycle contained in the graph.

Proof: We first sample a random graph $G \in G_{n,p}$ with $p = n^{1/k-1}$. Let X be the number of edges in the graph. Then

$$\mathbb{E}[X] = p\binom{n}{2} = \frac{1}{2}\left(1 - \frac{1}{n}\right)n^{1/k+1}.$$

• $G_{n,p}$: a set of graphs of n vertices where every (u, v) exists with prob. p.

- Let Y be the number of cycles in the graph of length at most k-1.
- Any specific possible cycle of length i, where $3 \le i \le k-1$, occurs with probability p^i .

- Let Y be the number of cycles in the graph of length at most k-1.
- Any specific possible cycle of length i, where $3 \le i \le k-1$, occurs with probability p^i .
- Also, there are $\binom{n}{i} \frac{(i-1)!}{2}$ possible cycles of length *i*.
 - First, consider choosing the *i* vertices, then consider the possible orders, and finally keep in mind that reversing the order yields the same cycle.

Spring 2026

- Let Y be the number of cycles in the graph of length at most k-1.
- Any specific possible cycle of length i, where $3 \le i \le k-1$, occurs with probability p^i .
- Also, there are $\binom{n}{i} \frac{(i-1)!}{2}$ possible cycles of length i.
 - First, consider choosing the *i* vertices, then consider the possible orders, and finally keep in mind that reversing the order yields the same cycle.
- Hence,

$$\mathbb{E}[Y] = \sum_{i=3}^{k-1} \binom{n}{i} \frac{(i-1)!}{2} p^i \leq \sum_{i=3}^{k-1} n^i p^i$$
$$= \sum_{i=3}^{k-1} n^{i/k} < k n^{(k-1)/k}.$$

- We modify the original randomly chosen graph G by eliminating one edge from each cycle of length up to k-1.
- The modified graph has girth at least k (∵ shorter cycles are destroyed).
- When n is sufficiently large, the expected number of edges in the resulting graph is

$$\mathbb{E}[X-Y] \geq \frac{1}{2}\left(1-\frac{1}{n}\right)n^{1/k+1}-kn^{(k-1)/k}\geq \frac{1}{4}n^{1/k+1}.$$

• Hence there exists a graph with at least $\frac{1}{4}n^{1+1/k}$ edges and girth at least k.

Outline

- Motivation
- 2 The Basic Counting Argument & The Expectation Argument
- 3 Derandomization Using Conditional Expectations
- Sample and Modify
- 5 The Second Moment Method
- 6 The Conditional Expectation Inequality

Spring 2026

The Second Moment Method

- In the $G_{n,p}$ model, it is often the case that there is a threshold function f such that
 - when p = O(f(n)) or p = o(f(n)), almost no graph has the desired property;
 - when $p = \Omega(f(n))$ or $p = \omega(f(n))$, almost every graph has the desired property.

The Second Moment Method

• The following theorem from Chebyshev's inequality is often used.

Theorem 6 [Derived from Chebyshev's Inequality]

X is a nonnegative integer-valued random variable, then

$$\Pr[X=0] \le \frac{\operatorname{Var}[X]}{(\mathbb{E}[X])^2}.$$

The Second Moment Method

• The following theorem from Chebyshev's inequality is often used.

Theorem 6 [Derived from Chebyshev's Inequality]

X is a nonnegative integer-valued random variable, then

$$\Pr[X=0] \leq \frac{\operatorname{Var}[X]}{(\mathbb{E}[X])^2}.$$

Proof:

$$\Pr[X=0] \leq \Pr[|X - \mathbb{E}[X]| \geq \mathbb{E}[X]] \leq \frac{\operatorname{Var}[X]}{(\mathbb{E}[X])^2}.$$

Application: Threshold Behavior in Random Graphs

Theorem 7

Consider $G_{n,p}$, suppose that p = f(n).

Let A be the event that a random graph chosen from $G_{n,p}$ has a clique of four or more vertices. Then, for any $\varepsilon > 0$ and sufficiently large n,

$$\Pr[A] < \varepsilon \quad \text{if } f(n) = o(n^{-2/3}).$$

Similarly, if $f(n) = \omega(n^{-2/3})$ then, for sufficiently large n,

$$\Pr[\bar{A}] < \varepsilon$$
.

- We first consider the case in which p = f(n) and $f(n) = o(n^{-2/3})$. Let $C_1, \ldots, C_{\binom{n}{4}}$ be an enumeration of all the subsets of four vertices in G.
- Let

$$X_i = \begin{cases} 1 & \text{if } C_i \text{ is a 4-clique} \\ 0 & \text{otherwise.} \end{cases}$$

Let

$$X = \sum_{i=1}^{\binom{n}{4}} X_i,$$

so that (A 4-clique has 6 edges)

$$\mathbb{E}[X] = \binom{n}{4} p^6.$$

• Consider the case that $\mathbb{E}[X] = o(1)$

• Consider the case that $\mathbb{E}[X] = o(1) \Rightarrow \mathbb{E}[X] < \varepsilon$ for sufficiently large n.

- Consider the case that $\mathbb{E}[X] = o(1) \Rightarrow \mathbb{E}[X] < \varepsilon$ for sufficiently large n.
- Since X is a nonnegative integer-valued random variable, it follows that $\Pr[X \ge 1] \le \mathbb{E}[X] < \varepsilon$.

- Consider the case that $\mathbb{E}[X] = o(1) \Rightarrow \mathbb{E}[X] < \varepsilon$ for sufficiently large n.
- Since X is a nonnegative integer-valued random variable, it follows that $\Pr[X \geq 1] \leq \mathbb{E}[X] < \varepsilon$.
- Hence, the probability that a random graph chosen from $G_{n,p}$ has a clique of four or more vertices is less than ε .

- Next, consider the case when $p = f(n) = \omega(n^{-2/3})$.
- $\mathbb{E}[X] \to \infty$ as n grows large.
 - Not sufficient to conclude that, with high probability, a graph chosen random from $G_{n,p}$ has a clique of at least four vertices.

- Next, consider the case when $p = f(n) = \omega(n^{-2/3})$.
- $\mathbb{E}[X] \to \infty$ as *n* grows large.
 - Not sufficient to conclude that, with high probability, a graph chosen random from $G_{n,p}$ has a clique of at least four vertices.
- We can, however, use the second moment method to prove that Pr[X=0] = o(1) in this case.

Spring 2026

- Next, consider the case when $p = f(n) = \omega(n^{-2/3})$.
- $\mathbb{E}[X] \to \infty$ as n grows large.
 - Not sufficient to conclude that, with high probability, a graph chosen random from $G_{n,p}$ has a clique of at least four vertices.
- We can, however, use the second moment method to prove that Pr[X=0] = o(1) in this case.
- Then, we must show that $Var[X] = o((\mathbb{E}[X])^2)$.

- Next, consider the case when $p = f(n) = \omega(n^{-2/3})$.
- $\mathbb{E}[X] \to \infty$ as n grows large.
 - Not sufficient to conclude that, with high probability, a graph chosen random from $G_{n,p}$ has a clique of at least four vertices.
- We can, however, use the second moment method to prove that Pr[X = 0] = o(1) in this case.
- Then, we must show that $Var[X] = o((\mathbb{E}[X])^2)$.
- Consider the following lemma:

Spring 2026

Lemma 2

Let $Y_i, i = 1, ..., m$, be 0-1 random variables, and let $Y = \sum_{i=1}^m Y_i$. Then

$$\mathsf{Var}[Y] \leq \mathbb{E}[Y] + \sum_{1 \geq i, j \geq m; \ i \neq j} \mathsf{Cov}(Y_i, Y_j).$$

Proof of Lemma 2

ullet For any sequence of random variables Y_1,\ldots,Y_m ,

$$\operatorname{Var}\left[\sum_{i=1}^{m} Y_{i}\right] = \sum_{i=1}^{m} \operatorname{Var}[Y_{i}] + \sum_{1 \leq i, j \leq m; i \neq j} \operatorname{Cov}(Y_{i}, Y_{j}).$$

- This is the generalization from two variables to m variables.
- ullet When Y_i is a 0-1 random variable, $\mathbb{E}[Y_i^2] = \mathbb{E}[Y_i]$ and so

$$Var[Y_i] = \mathbb{E}[Y_i^2] - (\mathbb{E}[Y_i])^2 \le \mathbb{E}[Y_i],$$

giving the lemma.

Spring 2026

Finishing the proof of Theorem 7

• We wish to compute Variance of the number of 4-cliques

$$Var[X] = Var\left(\sum_{i=1}^{\binom{n}{4}} X_i\right).$$

Using covariance

• Since X_i is an indicator,

$$\operatorname{\sf Var}[X_i] \leq \mathbb{E}[X_i] = p^6, \quad \Rightarrow \quad \sum_i \operatorname{\sf Var}(X_i) \leq \binom{n}{4} p^6.$$

- The remaining term is the total covariance. It depends on how much the two 4-cliques C_i and C_j overlap.
- Write $C_i \cap C_j$ for their intersection. We consider the cases $|C_i \cap C_j| = 0, 1, 2, 3$.

Pairs of cliques: overlap cases (1/2)

- Case $|C_i \cap C_j| = 0$ or 1.
 - The sets of edges involved in the two cliques are disjoint.
 - Thus X_i and X_j are independent, so $\mathbb{E}[X_i X_j] \mathbb{E}[X_i] \mathbb{E}[X_j] = 0$.
- Case $|C_i \cap C_j| = 2$.
 - The cliques share one edge; altogether 11 distinct edges must be present.
 - Hence $\mathbb{E}[X_iX_j] \leq p^{11} \quad \Rightarrow \quad \mathbb{E}[X_iX_j] \mathbb{E}[X_i]\mathbb{E}[X_j] \leq p^{11}$.
 - ullet The number of ordered pairs (C_i,C_j) with $|C_i\cap C_j|=2$ is

$$\binom{n}{6}\binom{6}{2,2,2}$$
.

Choose 6 vertices and then split them into $C_i \cap C_j$ (2 vertices), 2 vertices for $C_i \setminus C_j$, and 2 for $C_j \setminus C_i$.

Pairs of cliques: overlap cases (2/2)

- Case $|C_i \cap C_i| = 3$.
 - The cliques share three vertices (a triangle), hence 9 distinct edges must appear.
 - Thus

$$\mathbb{E}[X_iX_j] - \mathbb{E}[X_i]\mathbb{E}[X_j] \leq \mathbb{E}[X_iX_j] \leq p^9.$$

• There are

$$\binom{n}{5}\binom{5}{3,1,1}$$

ordered pairs (C_i, C_i) with $|C_i \cap C_i| = 3$.

Spring 2026

Completing the bound on Var(X)

• Collecting all contributions,

$$\mathsf{Var}(X) \leq \binom{n}{4} p^6 + \binom{n}{6} \binom{6}{2,2,2} p^{11} + \binom{n}{5} \binom{5}{3,1,1} p^9.$$

• Using $p = f(n) = \omega(n^{-2/3})$ and $\mathbb{E}[X] = \binom{n}{4}p^6$, one checks that

$$Var[X] = o((\mathbb{E}[X])^2).$$

By the second moment method, this implies

$$\Pr[X=0]=o(1),$$

Completing the bound on Var(X)

Collecting all contributions,

$$\mathsf{Var}(X) \leq \binom{n}{4} p^6 + \binom{n}{6} \binom{6}{2,2,2} p^{11} + \binom{n}{5} \binom{5}{3,1,1} p^9.$$

• Using $p = f(n) = \omega(n^{-2/3})$ and $\mathbb{E}[X] = \binom{n}{4}p^6$, one checks that

$$Var[X] = o((\mathbb{E}[X])^2).$$

By the second moment method, this implies

$$\Pr[X=0]=o(1),$$

 \Rightarrow with high probability G contains a copy of K_4 .

Outline

- Motivation
- 2 The Basic Counting Argument & The Expectation Argument
- 3 Derandomization Using Conditional Expectations
- 4 Sample and Modify
- 5 The Second Moment Method
- The Conditional Expectation Inequality

 For a sum of Bernoulli random variables, there is an alternative to the second moment method.

Theorem 8

Let $X = \sum_{i=1}^{n} X_i$, where each X_i is a 0-1 random variable. Then

$$\Pr[X > \mathbf{0}] \ge \sum_{i=1}^{n} \frac{\Pr[X_i = 1]}{\mathbb{E}[X \mid X_i = 1]}.$$

Proof

ullet Let Y=1/X if X>0, with Y=0 otherwise. Then $\Pr[X>0]=\mathbb{E}[XY].$

Proof

• Let Y = 1/X if X > 0, with Y = 0 otherwise. Then

$$\Pr[X > 0] = \mathbb{E}[XY].$$

However,

$$\mathbb{E}[XY] = \mathbb{E}\left[\sum_{i=1}^{n} X_{i}Y\right] = \sum_{i=1}^{n} \mathbb{E}[X_{i}Y]$$

$$= \sum_{i=1}^{n} \left(\mathbb{E}[X_{i}Y \mid X_{i} = 1] \operatorname{Pr}[X_{i} = 1] + \mathbb{E}[X_{i}Y \mid X_{i} = 0] \operatorname{Pr}[X_{i} = 0]\right)$$

$$= \sum_{i=1}^{n} \mathbb{E}[Y \mid X_{i} = 1] \operatorname{Pr}[X_{i} = 1] = \sum_{i=1}^{n} \mathbb{E}[1/X \mid X_{i} = 1] \operatorname{Pr}[X_{i} = 1]$$

$$\geq \sum_{i=1}^{n} \frac{\operatorname{Pr}[X_{i} = 1]}{\mathbb{E}[X \mid X_{i} = 1]}. \text{ (by Jensen's inequality; } \mathbb{E}[f(Z)] \geq f(\mathbb{E}[Z])$$

An alternative proof of the 4-clique existence (1/3)

- Let $X = \sum_{i=1}^{\binom{n}{4}} X_i$, where X_i is 1 if the subset of four vertices C_i is a 4-clique and 0 otherwise.
- For a specific X_i , we have $\Pr[X_i = 1] = p^6$. Using the linearity of expectations, we compute

$$\mathbb{E}[X\mid X_j=1]=\mathbb{E}\left[\sum_{i=1}^{\binom{a}{2}}X_i\left|X_j=1\right]=\sum_{i=1}^{\binom{a}{2}}\mathbb{E}[X_i\mid X_j=1].$$

• Conditioning on $X_i = 1$, we now compute $\mathbb{E}[X_i \mid X_i = 1]$ by using that, for a 0-1 random variable,

$$\mathbb{E}[X_i \mid X_j = 1] = \Pr[X_i = 1 \mid X_j = 1].$$

An alternative proof of the 4-clique existence (2/3)

• There are $\binom{n-4}{4}$ sets of vertices C_i that do not interest C_j . Each corresponding X_i is 1 with probability p^6 .

An alternative proof of the 4-clique existence (2/3)

- There are $\binom{n-4}{4}$ sets of vertices C_i that do not interest C_i . Each corresponding X_i is 1 with probability p^6 .
- Similarly, $X_i = 1$ with probability p^6 for the $4\binom{n-4}{3}$ sets C_i that have one vertex in common with C_i .

An alternative proof of the 4-clique existence (2/3)

- There are $\binom{n-4}{4}$ sets of vertices C_i that do not interest C_j . Each corresponding X_i is 1 with probability p^6 .
- Similarly, $X_i = 1$ with probability p^6 for the $4\binom{n-4}{3}$ sets C_i that have one vertex in common with C_j .
- For the remaining cases, we have $\Pr[X_i = 1 \mid X_j = 1] = p^5$ for the $6\binom{n-4}{2}$ sets C_i that have two vertices in common with C_j and $\Pr[X_i = 1 \mid X_j = 1] = p^3$ for the $4\binom{n-4}{1}$ sets C_i that have three vertices in common with C_j .

An alternative proof of the 4-clique existence (3/3)

Overall, we have

$$\mathbb{E}[X \mid X_j = 1] = \sum_{i=1}^{\binom{n}{4}} \mathbb{E}[X_i \mid X_j = 1]$$

$$= 1 + \binom{n-4}{4} p^6 + 4 \binom{n-4}{3} p^6 + 6 \binom{n-4}{2} p^5$$

$$+ 4 \binom{n-4}{1} p^3$$

Applying Theorem 8 yields

$$\Pr[X>0] \ge \frac{\binom{n}{4}p^6}{1 + \binom{n-4}{4}p^6 + 4\binom{n-4}{3}p^6 + 6\binom{n-4}{2}p^5 + 4\binom{n-4}{1}p^3},$$

which approaches 1 as $n \uparrow$ when $p = f(n) = \omega(n^{-2/3})$.

The Probabilistic Method (I)

Discussions

