
The Probabilistic Method (I)

Randomized Algorithms
The Probabilistic Method (I)

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering,
National Taiwan Ocean University

Spring 2026

Joseph C. C. Lin (CSE, NTOU, TW) The Probabilistic Method (I) Spring 2026 1 / 55



The Probabilistic Method (I)

Outline

1 Motivation

2 The Basic Counting Argument & The Expectation Argument

3 Derandomization Using Conditional Expectations

4 Sample and Modify

5 The Second Moment Method

6 The Conditional Expectation Inequality

Joseph C. C. Lin (CSE, NTOU, TW) The Probabilistic Method (I) Spring 2026 2 / 55



The Probabilistic Method (I)

Motivation

Outline

1 Motivation

2 The Basic Counting Argument & The Expectation Argument

3 Derandomization Using Conditional Expectations

4 Sample and Modify

5 The Second Moment Method

6 The Conditional Expectation Inequality

Joseph C. C. Lin (CSE, NTOU, TW) The Probabilistic Method (I) Spring 2026 3 / 55



The Probabilistic Method (I)

Motivation

Motivation

Prove the existence of objects.

If the probability of selecting an object with the required properties is
positive, then the sample space must contain such an object.
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

Example

Coloring the edges of a graph with two colors.

Constraint: no large cliques with all edges having the same color.
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

Theorem 1

If
(n
k

)
2−(

k
2)+1 < 1, then it is possible to color the edges of Kn with two

colors so that it has no monochromatic Kk subgraph.

Note:
There are 2(

n
2) possible colorings of Kn.

There are
(
n
k

)
different Kk cliques of Kn.

Flip a fair coin independently to determine the color of each edge.
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

General Idea

Let Ai be the event that clique i is monochromatic.

Goal: Prove that the probability Pr

(nk)⋂
i=1

Ai

 > 0.

That is,

1− Pr

(
n
k)⋃

i=1

Ai

 > 0.
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

Proof

Once the first edge in clique i is colored, the remaining
(k
2

)
− 1 edges

must all be given the same color. So,

Pr(Ai ) = 2−(
k
2)+1.

By the union bound,

Pr

(nk)⋃
i=1

Ai

 ≤
(nk)∑
I=1

Pr(Ai ) =

(
n

k

)
2−(

k
2)+1 < 1,

The last inequality: the assumptions of the theorem.

Hence

Pr

(nk)⋂
i=1

Ai

 = 1− Pr

(nk)⋃
i=1

Ai

 > 0.
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

Our calculations can be simplified if we note that:

For n ≤ 2k/2 and k ≥ 3,(
n

k

)
2−(

k
2)+1 ≤ nk

k!
2−(k(k−1)/2)+1

≤ 2k/2+1

k!
< 1.

Joseph C. C. Lin (CSE, NTOU, TW) The Probabilistic Method (I) Spring 2026 10 / 55



The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

A Monte Carlo construction

Sample a coloring by coloring each edge independently at random.

How many samples must we generate before obtaining a sample
satisfying our requirement?

p: The probability of obtaining a sample we desire.

If p = 1− o(1), then the sampling algorithm is incorrect with
probability o(1).

Example: Finding a coloring on a graph of 1,000 vertices with no
monochromatic K20.

The probability that a random coloring has a monochromatic K20 is ≤

220/2+1

20!
< 8.5 · 10−16.

⇒ A Monte Carlo algorithm with a very small probability of failure.
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

Question

What if we want a Las Vegas algorithm? Can we still have an
expected polynomial running time randomized algorithm for
generating such a sample?

Expected number of samples: 1/p.

For a fixed (constant) k , check all
(n
k

)
cliques and make sure they are

not monochromatic.

Not polynomial time when k grows with n!
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

The average argument

Intuitive idea: Say a discrete random variable X has E[X ] = µ.
Then there must be some value a ≤ µ and b ≥ µ such that
Pr[X = a] > 0 and Pr[X = b] > 0.

Lemma 1

Suppose we have a probability space S such and a random variable X
defined on S such that E[X ] = µ. Then

Pr[X ≥ µ] > 0 and Pr[X ≤ µ] > 0.
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

Proof: Let X = {x ∈ R : Pr[X = x ] > 0} be the support of X .
Suppose that

µ = E[X ] =
∑
x∈X

Pr[X = x ].

If Pr[X ≥ µ] = 0, then

µ =
∑
x∈X

x Pr[X = x ] =
∑
x<µ

x Pr[X = x ] <
∑
x<µ

µPr[X = x ] = µ.

(⇒⇐)

Similarly, if Pr[X ≤ µ] = 0 then

µ =
∑
x∈X

x Pr[X = x ] =
∑
x>µ

x Pr[X = x ] >
∑
x>µ

µPr[X = x ] = µ.

(⇒⇐)
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

Application: Finding a Large Cut

Theorem 2

Given an undirected graph G = (V ,E ) with |V | = n and |E | = m. There
is a partition of V into disjoint sets A and B such that at least m/2 edges
connect a vertex in A to a vertex in B. That is, there is a cut with value
at least m/2.
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

Proof

Construct sets A and B by randomly and independently assigning
each vertex to one of the two sets.

Let e1, . . . , em be an arbitrary enumeration of the edges of G .

For i = 1, . . . ,m, define Xi such that

Xi =

{
1 if edge i connects A to B
0 otherwise

The probability that edge ei connects a vertex in A to a vertex in B is
1
2 , and thus

E[Xi ] =
1

2
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

Proof (contd.)

Let C = (A,B) be a random variable denoting the value of the cut
corresponding to the sets A and B. Then

E[C (A,B)] = E

[
m∑
i=1

Xi

]
=

m∑
i=1

E[Xi ] = m · 1
2
=

m

2
.
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

Proof (contd.)

We need “a lower bound” on the probability that a random partition
has a cut of value at least m/2.

To derive such a bound, let p = Pr
[
C (A,B) ≥ m

2

]
, and observe that

C (A,B) ≤ m, Then

m

2
= E[C (A,B)]

=
∑

i<m/2

i Pr[C (A,B) = i ] +
∑

i≥m/2

i Pr[C (A,B) = i ]

≤ (1− p)
(m
2
− 1

)
+ pm,

which implies that p ≥ 1
m/2+1 ⇒ expected number of samples

before finding a cut: ≤ m/2 + 1.
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

Application: Maximum Satisfiability

The following expression is an instance of SAT:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1).

Theorem 3

Given a set of m clauses, let ki be the number of literals in the ith clause
for i = 1, . . . ,m. Let k = mini∈{1,...,m} ki . Then there is a truth
assignment that satisfies at least

m∑
i=1

(1− 2−ki ) ≥ m(1− 2−k) clauses.
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The Probabilistic Method (I)

The Basic Counting Argument & The Expectation Argument

Proof

Assign values independently and uniformly at random to the variables.

The probability that the ith clause with ki literals is satisfied is at
least (1− 2−k).

The expected number of satisfied clauses is therefore at least

m∑
i=1

(1− 2−ki ) ≥ m(1− 2−k),

and there must be an assignment that satisfies at least that many
clauses.
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The Probabilistic Method (I)

Derandomization Using Conditional Expectations

Outline

1 Motivation
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The Probabilistic Method (I)

Derandomization Using Conditional Expectations

Derandomization

The probabilistic method can yield insight into how to construct
deterministic algorithms.

Derandomization using method of conditional expectations.

Again, let us consider the problem of finding a large cut.

Imagine that we place the vertices deterministically, one at a time,
in an arbitrary order v1, v2, . . . , vn.

xi : the set where vi is placed (so xi is either A or B).

Assumption: The first k vertices have been placed. Consider the
expected value of the cut if the remaining vertices are then placed
independently and uniformly into one of the two sets.
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independently and uniformly into one of the two sets.
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The Probabilistic Method (I)

Derandomization Using Conditional Expectations

Derandomization by Conditional Expectation (1/4)

We show inductively how to place the next vertex so that

E[C (A,B) | x1, x2, . . . , xk ] ≤ E[C (A,B) | x1, x2, . . . , xk+1]

It follows that

E[C (A,B)] ≤ E[C (A,B) | x1, x2, . . . , xn].

The right-hand side: the value of the cut determined by our
placement algorithm.

Hence our algorithm returns a cut whose value ≥ E[C (A,B]) ≥ m/2.

Joseph C. C. Lin (CSE, NTOU, TW) The Probabilistic Method (I) Spring 2026 23 / 55



The Probabilistic Method (I)

Derandomization Using Conditional Expectations

Derandomization by Conditional Expectation (1/4)

We show inductively how to place the next vertex so that

E[C (A,B) | x1, x2, . . . , xk ] ≤ E[C (A,B) | x1, x2, . . . , xk+1]

It follows that

E[C (A,B)] ≤ E[C (A,B) | x1, x2, . . . , xn].

The right-hand side: the value of the cut determined by our
placement algorithm.

Hence our algorithm returns a cut whose value ≥ E[C (A,B]) ≥ m/2.

Joseph C. C. Lin (CSE, NTOU, TW) The Probabilistic Method (I) Spring 2026 23 / 55



The Probabilistic Method (I)

Derandomization Using Conditional Expectations

Derandomization by Conditional Expectation (1/4)

We show inductively how to place the next vertex so that

E[C (A,B) | x1, x2, . . . , xk ] ≤ E[C (A,B) | x1, x2, . . . , xk+1]

It follows that

E[C (A,B)] ≤ E[C (A,B) | x1, x2, . . . , xn].

The right-hand side: the value of the cut determined by our
placement algorithm.

Hence our algorithm returns a cut whose value ≥ E[C (A,B]) ≥ m/2.

Joseph C. C. Lin (CSE, NTOU, TW) The Probabilistic Method (I) Spring 2026 23 / 55



The Probabilistic Method (I)

Derandomization Using Conditional Expectations

Derandomization by Conditional Expectation (2/4)

The induction base: E[C (A,B) | x1] = E[C (A,B)]

Placing the first vertex doesn’t matter (symmetric).

We now prove the inductive step:

E[C (A,B) | x1, x2, . . . , xk ] ≤ E[C (A,B) | x1, x2, . . . , xk+1]

Consider placing vk+1 randomly, so that it is placed in A or B with
probability 1/2 each.

Let Yk+1 be a random variable representing the set where it is placed.
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The Probabilistic Method (I)

Derandomization Using Conditional Expectations

Derandomization by Conditional Expectation (3/4)

Then

E[C (A,B) | x1, x2, . . . , xk ] =
1

2
E[C (A,B) | x1, x2, . . . , xk ,Yk+1 = A]

+
1

2
E[C (A,B) | x1, x2, . . . , xk ,Yk+1 = B].

It follows that

max
(
E[C (A,B) | x1, . . . , xk ,Yk+1 = A], E[C (A,B) | x1, . . . , xk ,Yk+1 = B]

)
≥ E[C (A,B) | x1, . . . , xk ].
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The Probabilistic Method (I)

Derandomization Using Conditional Expectations

Derandomization by Conditional Expectation (4/4)

Compute the two quantities

E[C (A,B) | x1, . . . , xk ,Yk+1 = A]
E[C (A,B) | x1, . . . , xk ,Yk+1 = B]

and then place vk+1 in the set that yields the larger expectation.

Once we do this, we will have a placement satisfying

E[C (A,B) | x1, x2, . . . , xk ] ≤ E[C (A,B) | x1, x2, . . . , xk+1].

Computation of E[C (A,B) | x1, . . . , xk ,Yk+1 = A (or B)]

For the first k + 1 vertices, compute the number of edges that contribute to
the cut.

For all the other edges, each one contributes to the cut with prob. 1/2.

Depends on whether vk+1 has more neighbors in A or in B.
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The Probabilistic Method (I)

Sample and Modify

Outline

1 Motivation

2 The Basic Counting Argument & The Expectation Argument

3 Derandomization Using Conditional Expectations

4 Sample and Modify

5 The Second Moment Method

6 The Conditional Expectation Inequality
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The Probabilistic Method (I)

Sample and Modify

Sample and Modify

Sample and Modify (Two Stages)

1st Stage: Construct a random structure that does not have the
required properties.

2nd Stage: Modify the structure so that the required properties are
satisfied.

In some cases, it is easy to work using this indirect approach.
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The Probabilistic Method (I)

Sample and Modify

Application: Independent Sets

Theorem 4

Let G = (V ,E ) be a graph on n vertices with m edges. Then G has an
independent set with at least n2/4m vertices.

Proof: Let d = 2m/n be the average degree of the vertices in G .
Consider the following randomized algorithm.

1 Delete each vertex of G (together with its incident edges)
independently with probability 1− 1/d .

2 For each remaining edge, remove it and one of its adjacent vertices.
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The Probabilistic Method (I)

Sample and Modify

Proof (2/3)

Let X be the number of vertices that survive the first step of the
algorithm.

Since the graph has n vertices and each vertex survives with
probability 1/d , it follows that

E[X ] =
n

d
.

Let Y be the number of edges that survive the first step. There are
nd/2 edges in the graph, and an edge survives iff its two adjacent
vertices survive.

Thus,

E[Y ] =
nd

2

(
1

d

)2

=
n

2d
.
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The Probabilistic Method (I)

Sample and Modify

Proof (3/3)

The second step of the algorithm removes all the remaining edges and
at most Y vertices.

When the algorithm terminates, it outputs an independent set of size
at least X − Y , and

E[X − Y ] =
n

d
− n

2d
=

n

2d
.

The expected size of the independent set generated by the algorithm
is n/2d , so the graph has an independent set with at least
n/2d = n2/4m vertices.
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The Probabilistic Method (I)

Sample and Modify

Application: Independent Sets

Theorem 5

For any integer k ≥ 3, there is a graph with n nodes, at least 1
4n

1+1/k

edges, and girth at least k .

girth: the length of a shortest cycle contained in the graph.

Proof: We first sample a random graph G ∈ Gn,p with p = n1/k−1. Let X
be the number of edges in the graph. Then

E[X ] = p

(
n

2

)
=

1

2

(
1− 1

n

)
n1/k+1.

Gn,p: a set of graphs of n vertices where every (u, v) exists with prob. p.
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The Probabilistic Method (I)

Sample and Modify

Proof (2/3)

Let Y be the number of cycles in the graph of length at most k − 1.

Any specific possible cycle of length i , where 3 ≤ i ≤ k − 1, occurs
with probability pi .

Also, there are
(n
i

) (i−1)!
2 possible cycles of length i .

First, consider choosing the i vertices, then consider the possible orders,
and finally keep in mind that reversing the order yields the same cycle.

Hence,

E[Y ] =
k−1∑
i=3

(
n

i

)
(i − 1)!

2
pi ≤

k−1∑
i=3

nipi

=
k−1∑
i=3

ni/k < kn(k−1)/k .
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The Probabilistic Method (I)

Sample and Modify

Proof (3/3)

We modify the original randomly chosen graph G by eliminating one
edge from each cycle of length up to k − 1.

The modified graph has girth at least k (∵ shorter cycles are
destroyed).

When n is sufficiently large, the expected number of edges in the
resulting graph is

E[X − Y ] ≥ 1

2

(
1− 1

n

)
n1/k+1 − kn(k−1)/k ≥ 1

4
n1/k+1.

Hence there exists a graph with at least 1
4n

1+1/k edges and girth at
least k .

Joseph C. C. Lin (CSE, NTOU, TW) The Probabilistic Method (I) Spring 2026 34 / 55



The Probabilistic Method (I)

The Second Moment Method

Outline

1 Motivation

2 The Basic Counting Argument & The Expectation Argument

3 Derandomization Using Conditional Expectations

4 Sample and Modify

5 The Second Moment Method

6 The Conditional Expectation Inequality
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The Probabilistic Method (I)

The Second Moment Method

The Second Moment Method

In the Gn,p model, it is often the case that there is a threshold
function f such that

when p = O(f (n)) or p = o(f (n)), almost no graph has the desired
property;

when p = Ω(f (n)) or p = ω(f (n)), almost every graph has the
desired property.
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The Probabilistic Method (I)

The Second Moment Method

The Second Moment Method

The following theorem from Chebyshev’s inequality is often used.

Theorem 6 [Derived from Chebyshev’s Inequality]

X is a nonnegative integer-valued random variable, then

Pr[X = 0] ≤ Var[X ]

(E[X ])2
.

Proof:

Pr[X = 0] ≤ Pr[|X − E[X ]| ≥ E[X ]] ≤ Var[X ]

(E[X ])2
.
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The Probabilistic Method (I)

The Second Moment Method

Application: Threshold Behavior in Random Graphs

Theorem 7

Consider Gn,p, suppose that p = f (n).

Let A be the event that a random graph chosen from Gn,p has a clique of
four or more vertices. Then, for any ε > 0 and sufficiently large n,

Pr[A] < ε if f (n) = o(n−2/3).

Similarly, if f (n) = ω(n−2/3) then, for sufficiently large n,

Pr[Ā] < ε.
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The Probabilistic Method (I)

The Second Moment Method

Proof (1/4)

We first consider the case in which p = f (n) and f (n) = o(n−2/3).
Let C1, . . . ,C(n4)

be an enumeration of all the subsets of four vertices

in G .

Let

Xi =

{
1 if Ci is a 4-clique
0 otherwise.

Let

X =

(n4)∑
i=1

Xi ,

so that (A 4-clique has 6 edges)

E[X ] =

(
n

4

)
p6.

Joseph C. C. Lin (CSE, NTOU, TW) The Probabilistic Method (I) Spring 2026 39 / 55



The Probabilistic Method (I)

The Second Moment Method

Proof (2/4)

Consider the case that E[X ] = o(1)

⇒ E[X ] < ε for sufficiently large
n.

Since X is a nonnegative integer-valued random variable, it follows
that Pr[X ≥ 1] ≤ E[X ] < ε.

Hence, the probability that a random graph chosen from Gn,p has a
clique of four or more vertices is less than ε.
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The Probabilistic Method (I)

The Second Moment Method

Proof (3/4)

Next, consider the case when p = f (n) = ω(n−2/3).

E[X ] → ∞ as n grows large.

Not sufficient to conclude that, with high probability, a graph chosen
random from Gn,p has a clique of at least four vertices.

We can, however, use the second moment method to prove that
Pr[X = 0] = o(1) in this case.

Then, we must show that Var[X ] = o((E[X ])2).

Consider the following lemma:
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The Probabilistic Method (I)

The Second Moment Method

Proof (4/4)

Lemma 2

Let Yi , i = 1, . . . ,m, be 0-1 random variables, and let Y =
∑m

i=1 Yi . Then

Var[Y ] ≤ E[Y ] +
∑

1≥i ,j≥m; i ̸=j

Cov(Yi ,Yj).
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The Probabilistic Method (I)

The Second Moment Method

Proof of Lemma 2

For any sequence of random variables Y1, . . . ,Ym,

Var

[
m∑
i=1

Yi

]
=

m∑
i=1

Var[Yi ] +
∑

1≤i ,j≤m;i ̸=j

Cov(Yi ,Yj).

This is the generalization from two variables to m variables.

When Yi is a 0-1 random variable, E[Y 2
i ] = E[Yi ] and so

Var[Yi ] = E[Y 2
i ]− (E[Yi ])

2 ≤ E[Yi ],

giving the lemma.
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The Probabilistic Method (I)

The Second Moment Method

Finishing the proof of Theorem 7

We wish to compute Variance of the number of 4-cliques

Var[X ] = Var
( (n4)∑

i=1

Xi

)
.
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The Probabilistic Method (I)

The Second Moment Method

Using covariance

Since Xi is an indicator,

Var[Xi ] ≤ E[Xi ] = p6, ⇒
∑
i

Var(Xi ) ≤
(
n

4

)
p6.

The remaining term is the total covariance. It depends on how much
the two 4-cliques Ci and Cj overlap.

Write Ci ∩ Cj for their intersection. We consider the cases
|Ci ∩ Cj | = 0, 1, 2, 3.
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The Probabilistic Method (I)

The Second Moment Method

Pairs of cliques: overlap cases (1/2)

Case |Ci ∩ Cj | = 0 or 1.
The sets of edges involved in the two cliques are disjoint.
Thus Xi and Xj are independent, so E[XiXj ]− E[Xi ]E[Xj ] = 0.

Case |Ci ∩ Cj | = 2.
The cliques share one edge; altogether 11 distinct edges must be
present.
Hence E[XiXj ] ≤ p11 ⇒ E[XiXj ]− E[Xi ]E[Xj ] ≤ p11.

The number of ordered pairs (Ci ,Cj) with |Ci ∩ Cj | = 2 is(
n

6

)(
6

2, 2, 2

)
.

Choose 6 vertices and then split them into Ci ∩ Cj (2 vertices), 2
vertices for Ci \ Cj , and 2 for Cj \ Ci .
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The Probabilistic Method (I)

The Second Moment Method

Pairs of cliques: overlap cases (2/2)

Case |Ci ∩ Cj | = 3.
The cliques share three vertices (a triangle), hence 9 distinct edges
must appear.
Thus

E[XiXj ]− E[Xi ]E[Xj ] ≤ E[XiXj ] ≤ p9.

There are (
n

5

)(
5

3, 1, 1

)
ordered pairs (Ci ,Cj) with |Ci ∩ Cj | = 3.
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The Probabilistic Method (I)

The Second Moment Method

Completing the bound on Var(X )

Collecting all contributions,

Var(X ) ≤
(
n

4

)
p6 +

(
n

6

)(
6

2, 2, 2

)
p11 +

(
n

5

)(
5

3, 1, 1

)
p9.

Using p = f (n) = ω(n−2/3) and E[X ] =
(n
4

)
p6, one checks that

Var[X ] = o
(
(E[X ])2

)
.

By the second moment method, this implies

Pr[X = 0] = o(1),

⇒ with high probability G contains a copy of K4.
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The Probabilistic Method (I)

The Conditional Expectation Inequality
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The Probabilistic Method (I)

The Conditional Expectation Inequality

For a sum of Bernoulli random variables, there is an alternative to the
second moment method.

Theorem 8

Let X =
∑n

i=1 Xi , where each Xi is a 0-1 random variable. Then

Pr[X > 0] ≥
n∑

i=1

Pr[Xi = 1]

E[X | Xi = 1]
.
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The Probabilistic Method (I)

The Conditional Expectation Inequality

Proof

Let Y = 1/X if X > 0, with Y = 0 otherwise. Then

Pr[X > 0] = E[XY ].

However,

E[XY ] = E

[
n∑

i=1

XiY

]
=

n∑
i=1

E[XiY ]

=
n∑

i=1

(E[XiY | Xi = 1] Pr[Xi = 1] + E[XiY | Xi = 0] Pr[Xi = 0])

=
n∑

i=1

E[Y | Xi = 1] Pr[Xi = 1] =
n∑

i=1

E[1/X | Xi = 1] Pr[Xi = 1]

≥
n∑

i=1

Pr[Xi = 1]

E[X | Xi = 1]
. (by Jensen’s inequality;E[f (Z )] ≥ f (E[Z ]))
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The Probabilistic Method (I)

The Conditional Expectation Inequality

An alternative proof of the 4-clique existence (1/3)

Let X =
∑(n4)

i=1 Xi , where Xi is 1 if the subset of four vertices Ci is a
4-clique and 0 otherwise.

For a specific Xj , we have Pr[Xj = 1] = p6. Using the linearity of
expectations, we compute

E[X | Xj = 1] = E

 (n4)∑
i=1

Xi

∣∣∣∣Xj = 1

 =

(n4)∑
i=1

E[Xi | Xj = 1].

Conditioning on Xj = 1, we now compute E[Xi | Xj = 1] by using
that, for a 0-1 random variable,

E[Xi | Xj = 1] = Pr[Xi = 1 | Xj = 1].
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The Probabilistic Method (I)

The Conditional Expectation Inequality

An alternative proof of the 4-clique existence (2/3)

There are
(n−4

4

)
sets of vertices Ci that do not interest Cj . Each

corresponding Xi is 1 with probability p6.

Similarly, Xi = 1 with probability p6 for the 4
(n−4

3

)
sets Ci that have

one vertex in common with Cj .

For the remaining cases, we have Pr[Xi = 1 | Xj = 1] = p5 for the
6
(n−4

2

)
sets Ci that have two vertices in common with Cj and

Pr[Xi = 1 | Xj = 1] = p3 for the 4
(n−4

1

)
sets Ci that have three

vertices in common with Cj .
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The Probabilistic Method (I)

The Conditional Expectation Inequality

An alternative proof of the 4-clique existence (3/3)

Overall, we have

E[X | Xj = 1] =

(n4)∑
i=1

E[Xi | Xj = 1]

= 1 +

(
n − 4

4

)
p6 + 4

(
n − 4

3

)
p6 + 6

(
n − 4

2

)
p5

+ 4

(
n − 4

1

)
p3

Applying Theorem 8 yields

Pr[X > 0] ≥
(n
4

)
p6

1 +
(n−4

4

)
p6 + 4

(n−4
3

)
p6 + 6

(n−4
2

)
p5 + 4

(n−4
1

)
p3

,

which approaches 1 as n ↑ when p = f (n) = ω(n−2/3).
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The Probabilistic Method (I)

Discussions
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