Randomized Algorithms
 — Randomized QuickSort \& k-Smallest Selection

Joseph Chuang-Chieh Lin
Department of Computer Science \& Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
- Rajeev Motwani and Prabhakar Raghavan: Randomized Algorithms. Cambridge University Press. 1995.

Outline

(1) Randomized QuickSort

(2) Randomized k-Smallest Selection

Outline

(1) Randomized QuickSort

(2) Randomized k-Smallest Selection

Illustration (a binary tree T demonstrating RandQS)

Algorithm RandQS

Input: A set of (distinct) numbers S
Output: The elements of S sorted in increasing order.
(1) Choose an element $y \in S$ uniformly at random;
(2) By comparing each element of S with y, compute

- $S_{1}:=\{x \in S: x<y\}$;
- $S_{2}:=\{x \in S: x>y\}$;
(3) Recursively sort S_{1} (i.e., run $\operatorname{RandQS}\left(S_{1}\right)$) and S_{2} (i.e., run RandQS $\left(S_{2}\right)$), and output the sorted version of S_{1}, followed by y, and then the sorted version of S_{2}.

Analysis (Expected Number of Comparisons)

- Comparisons are performed in Step 2.
- Let $S_{(i)}$ denote the element of rank i (i.e., the i th smallest in S).
- Define $X_{i j}$:
- $X_{i j}=1$ if $S_{(i)}$ and $S_{(j)}$ are compared in an execution.
- $X_{i j}=0$ otherwise.

Analysis (Expected Number of Comparisons)

- Comparisons are performed in Step 2.
- Let $S_{(i)}$ denote the element of rank i (i.e., the ith smallest in S).
- Define $X_{i j}$:
- $X_{i j}=1$ if $S_{(i)}$ and $S_{(j)}$ are compared in an execution.
- $X_{i j}=0$ otherwise.
- Thus, the total number of comparisons is $\sum_{i=1}^{n} \sum_{j>i} X_{i j}$,

Analysis (Expected Number of Comparisons)

- Comparisons are performed in Step 2.
- Let $S_{(i)}$ denote the element of rank i (i.e., the ith smallest in S).
- Define $X_{i j}$:
- $X_{i j}=1$ if $S_{(i)}$ and $S_{(j)}$ are compared in an execution.
- $X_{i j}=0$ otherwise.
- Thus, the total number of comparisons is $\sum_{i=1}^{n} \sum_{j>i} X_{i j}$, and its expected value is

$$
\mathbb{E}\left[\sum_{i=1}^{n} \sum_{j>i} x_{i j}\right]
$$

Analysis (Expected Number of Comparisons)

- Comparisons are performed in Step 2.
- Let $S_{(i)}$ denote the element of rank i (i.e., the i th smallest in S).
- Define $X_{i j}$:
- $X_{i j}=1$ if $S_{(i)}$ and $S_{(j)}$ are compared in an execution.
- $X_{i j}=0$ otherwise.
- Thus, the total number of comparisons is $\sum_{i=1}^{n} \sum_{j>i} X_{i j}$, and its expected value is

$$
\mathbb{E}\left[\sum_{i=1}^{n} \sum_{j>i} X_{i j}\right]=\sum_{i=1}^{n} \sum_{j>i} \mathbb{E}\left[X_{i j}\right] .
$$

Analysis (contd.)

- Let $p_{i j}$ denote the probability that $S_{(i)}$ and $S_{(j)}$ are compared in an execution.

Analysis (contd.)

- Let $p_{i j}$ denote the probability that $S_{(i)}$ and $S_{(j)}$ are compared in an execution.
- Since $X_{i j}$ is a Bernoulli random variable, we have

$$
\mathbb{E}\left[X_{i j}\right]=
$$

Analysis (contd.)

- Let $p_{i j}$ denote the probability that $S_{(i)}$ and $S_{(j)}$ are compared in an execution.
- Since $X_{i j}$ is a Bernoulli random variable, we have

$$
\mathbb{E}\left[X_{i j}\right]=p_{i j} \times 1+\left(1-p_{i j}\right) \times 0
$$

Analysis (contd.)

- Let $p_{i j}$ denote the probability that $S_{(i)}$ and $S_{(j)}$ are compared in an execution.
- Since $X_{i j}$ is a Bernoulli random variable, we have

$$
\mathbb{E}\left[X_{i j}\right]=p_{i j} \times 1+\left(1-p_{i j}\right) \times 0=p_{i j}
$$

Analysis (contd.)

- Let $p_{i j}$ denote the probability that $S_{(i)}$ and $S_{(j)}$ are compared in an execution.
- Since $X_{i j}$ is a Bernoulli random variable, we have

$$
\mathbb{E}\left[X_{i j}\right]=p_{i j} \times 1+\left(1-p_{i j}\right) \times 0=p_{i j}
$$

- Note: $S_{(i)}$ and $S_{(j)}$ are compared in an execution only when one of them is an ancestor of the other in the binary tree T.

Analysis (contd.)

$$
\sum_{i=1}^{n} \sum_{j>i} p_{i j}=\sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1}
$$

Analysis (contd.)

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j>i} p_{i j} & =\sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
\end{aligned}
$$

Analysis (contd.)

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j>i} p_{i j} & =\sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k}
\end{aligned}
$$

Analysis (contd.)

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j>i} p_{i j} & =\sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k} \\
& \leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}
\end{aligned}
$$

Analysis (contd.)

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j>i} p_{i j} & =\sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k} \\
& \leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}
\end{aligned}
$$

- Note that $H_{n}=\sum_{k=1}^{n} 1 / k$

Analysis (contd.)

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j>i} p_{i j} & =\sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k} \\
& \leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}=O(n \log n)
\end{aligned}
$$

- Note that $H_{n}=\sum_{k=1}^{n} 1 / k \approx \Theta(\ln n)$.

Exercise (3\%)

Using $O(n)$ Median-of-Medians Algorithm

- Remark: The Median-of-Medians algorithm (reference here) by Blum et al. can compute a median of an array of n numbers in a list in $O(n)$ time deterministically.
- Please prove that Algorithm MedianQS (next page) can sort an array of n numbers in $O(n \log n)$ time deterministically.

Algorithm MedianQS

Input: A set of (distinct) numbers S
Output: The elements of S sorted in increasing order.
(1) Compute the median y of S using the Median-of-Medians algorithm;
(2) By comparing each element of S with y, compute

- $S_{1}:=\{x \in S: x<y\}$;
- $S_{2}:=\{x \in S: x>y\}$;
(3) Recursively sort S_{1} (i.e., run $\operatorname{MedianQS}\left(S_{1}\right)$) and S_{2} (i.e., run MedianQS $\left(S_{2}\right)$), and output the sorted version of S_{1}, followed by y, and then the sorted version of S_{2}.

Outline

(1) Randomized QuickSort

(2) Randomized k-Smallest Selection

Algorithm Rand-(k)-Select

Input: A set of n (distinct) numbers S
Output: The k-th smallest element of S.
(1) Choose an element $y \in S$ uniformly at random;
(2) By comparing each element of S with y, compute

- $S_{1}:=\{x \in S: x<y\}$;
- $S_{2}:=\{x \in S: x>y\}$;
(3) If $\left|S_{1}\right|=k-1$ then return y
(1) Else
- if $\left|S_{1}\right| \geq k$, then recursively run $\operatorname{Rand}-(k)$-Select $\left(S_{1}\right)$.
- else, recursively run Rand-($\left.k-\left|S_{1}\right|-1\right)$-Select $\left(S_{2}\right)$.

Time Complexity Analysis (1/3)

- Let $X:=\max \left\{\left|S_{1}\right|,\left|S_{2}\right|\right\} / n$.

Time Complexity Analysis (1/3)

- Let $X:=\max \left\{\left|S_{1}\right|,\left|S_{2}\right|\right\} / n$.

pivot position in the sorted array

Time Complexity Analysis (1/3)

- Let $X:=\max \left\{\left|S_{1}\right|,\left|S_{2}\right|\right\} / n$.

pivot position in the sorted array
- What's $\mathbb{E}[X]$?

Time Complexity Analysis (1/3)

- Let $X:=\max \left\{\left|S_{1}\right|,\left|S_{2}\right|\right\} / n$.

pivot position in the sorted array
- What's $\mathbb{E}[X]$?
- Prove that $\mathbb{E}[X] \leq \frac{3}{4}($ Exercise $(1 \%))$.

Time Complexity Analysis (2/3)

Note: The recursion only runs in exactly one of S_{1} and S_{2}.

- Let Y_{i} be the size of the subset of S that the recursion proceeds with.

Time Complexity Analysis (2/3)

Note: The recursion only runs in exactly one of S_{1} and S_{2}.

- Let Y_{i} be the size of the subset of S that the recursion proceeds with.
- $\mathbb{E}\left[Y_{i}\right]=$

Time Complexity Analysis (2/3)

Note: The recursion only runs in exactly one of S_{1} and S_{2}.

- Let Y_{i} be the size of the subset of S that the recursion proceeds with.

$$
\text { - } \mathbb{E}\left[Y_{i}\right]=\mathbb{E}\left[n \prod_{j=1}^{i} X_{j}\right]=
$$

Time Complexity Analysis (2/3)

Note: The recursion only runs in exactly one of S_{1} and S_{2}.

- Let Y_{i} be the size of the subset of S that the recursion proceeds with.

$$
\text { - } \mathbb{E}\left[Y_{i}\right]=\mathbb{E}\left[n \prod_{j=1}^{i} X_{j}\right]=n \prod_{j=1}^{i} \mathbb{E}\left[X_{j}\right]
$$

Time Complexity Analysis (2/3)

Note: The recursion only runs in exactly one of S_{1} and S_{2}.

- Let Y_{i} be the size of the subset of S that the recursion proceeds with.

$$
\text { - } \mathbb{E}\left[Y_{i}\right]=\mathbb{E}\left[n \prod_{j=1}^{i} X_{j}\right]=n \prod_{j=1}^{i} \mathbb{E}\left[X_{j}\right] \leq n\left(\frac{3}{4}\right)^{i} \text {. }
$$

Time Complexity Analysis (3/3)

- Since the "partitioning" step takes $c_{1}(|S|)+c_{2}$ for some constants $c_{1}, c_{2} \in \mathbb{R}$, the expected running time of the algorithm is at most

$$
\begin{aligned}
\mathbb{E}[\text { Rand- }(k) \text {-Select }(S)] & \leq \sum_{i=0}^{n}\left(c_{1} n\left(\frac{3}{4}\right)^{i}+c_{2}\right) \\
& \leq c_{1} n\left(\sum_{i=0}^{n}\left(\frac{3}{4}\right)^{i}\right)+c_{2} n \\
& \leq 4 c_{1} n+c_{2} n \\
& =O(n)
\end{aligned}
$$

Discussions

