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A Toy Project (5%) - 2D Random Walk

s

t

rand_walk(int mat[][LENGTH], int x, int y);

rand_walk(mat, x+1, y);

rand_walk(mat, x+1, y);

rand_walk(mat, x, y+1);
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2D Random Walk

s

t

https://onlinegdb.com/9DClZM08Z

rand_walk(mat, x+1, y);

rand_walk(mat, x, y);

rand_walk(mat, x, y+1);

rand_walk(mat, x-1, y); rand_walk(mat, x, y-1);

➢ Don’t forget to update the current position.

https://onlinegdb.com/9DClZM08Z
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2D Random Walk

s

t

https://onlinegdb.com/9DClZM08Z

rand_walk(mat, x+1, y);

rand_walk(mat, x+1, y);

rand_walk(mat, x, y+1);

rand_walk(mat, x-1, y); rand_walk(mat, x, y-1);

➢ “Return” whenever the player gets to t.

https://onlinegdb.com/9DClZM08Z
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s

t

s

t

➢ Output: the moves & the number of steps from s to t.

2D Random Walk
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● A sample project as a reference.
https://onlinegdb.com/buPFTbnAn

2D Random Walk

https://onlinegdb.com/buPFTbnAn
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Stochastic Process

● A stochastic process                                   is a collection of random 
variables. 
– t: time 
– X(t): state of the process at time t.

● If T is a countably infinite set, we say X is a discrete time process.
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Markov Chain

● A discrete time stochastic process X0, X1, X2, … is a Markov 
chain if 

➢ Markov property.

states
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Markov Chain

● A discrete time stochastic process X0, X1, X2, … is a Markov 
chain if 

➢ Markov property.

✔ This does NOT imply that Xt is independent of X0, X1, …, Xt-2,

✔ The dependency of Xt on the past is captured in Xt-1.
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Markov Chain 

● Markov property implies: 
➔ The Markov chain is uniquely defined by the one-step transition matrix.
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Transition Probabilities

●   

– pi(t): the probability that the process is at state i at time t.
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Transition Probabilities

●   

– pi(t): the probability that the process is at state i at time t.

● m step transition probability:
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Transition Probabilities

●   

– pi(t): the probability that the process is at state i at time t.

● m step transition probability:
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Transition Probabilities

0 1 2

3

1



Randomized Algorithms, CSIE, TKU, Taiwan 16

Transition Probabilities

0 1 2

3

1
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Transition Probabilities

● If we begin in a state chosen uniformly at random: (¼, ¼, ¼, ¼), 
what is the probability distribution after three steps? 
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Transition Probabilities

● If we begin in a state chosen uniformly at random: (¼, ¼, ¼, ¼), what 
is the probability distribution after three steps? 
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Exercise

● Consider the two-state Markov chain with the following 
transition matrix. Find a simple expression for       .
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Application: Random Walks

. . . . . .

0 1 2 3 n−1 n

Aachener  DomSteppenbergallee Aachen
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Application: Random Walks

. . . . . .

0 1 2 3 n−1 n

Aachener  DomSteppenbergallee Aachen

● Xi : the position after the ith step you’ve walked. 
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Application: Random Walks

. . . . . .

0 1 2 3 n−1 n

Aachener  DomSteppenbergallee Aachen

● Only at the position 0 (my home) we know how to make a right step towards 
the destination (cathedral). 
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Application: Random Walks

. . . . . .

0 1 2 3 n−1 n

Aachener  DomSteppenbergallee Aachen

● Only at the position 0 (my home) we know how to make a right step towards 
the destination (cathedral). 
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Application: Random Walks

● If we are at positions 1, 2, …, n−1, we have no idea about the direction to go.

● Suppose then we have chance of 50% to get one step closer to the destination 
and 50% to get one step backward… 

● How many steps we expect to walk…?

0 1 2 3 n−1 n

Aachener  DomSteppenbergallee Aachen

j j+1j−1
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Application: Random Walks

● Markov chain X0, X1, X2, …
● Zj: random variable; the number of steps to reach n from j.
● hj : the expected steps to reach n when starting from j. 

● E[Zj] = hj.
● hn 

= 0, h0= h1 + 1. 

0 1 2 3 n−1 n

Aachener  DomSteppenbergallee Aachen

j j+1j−1
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Application: Random Walks

●  
0 1 2 3 n−1 n

Aachener  DomSteppenbergallee Aachen

j j+1j−1
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Application: Random Walks
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Application: Random Walks
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Application: Random Walks
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Application: Random Walks
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Exercise

● Consider the random walk we just discussed. Now we assume that 
whenever position 0 is reached, with probability ½ the walk moves to 
position 1 and with probability ½ the walk stays at 0. What is the 
expected number of steps to reach n starting from position 0?
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Classification of States

● i → j accessible:

– How about 2→0? 2 →1?
0 1 2

3

1
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Classification of States

● i → j accessible:

 How about 2→0? 2 →1?

● i ↔ j:  i and j communicate.

0 1 2

3

1



Randomized Algorithms, CSIE, TKU, Taiwan 34

Classification of States

● i → j accessible:

 How about 2→0? 2 →1?

● i ↔ j:  i and j communicate.

0 1

3
The Markov chain is irreducible.
● Any two states communicate.
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Classification of States

● rt
i,j
: the probability that starting at state i, the first 

transition to state j occurs at time t.

0 1

3
The Markov chain is recurrent.
●  
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Classification of States

● rt
i,j
: the probability that starting at state i, the first 

transition to state j occurs at time t.

● hi,i : the expected time to return state i when starting 
from state i.

0 1

3
The Markov chain is recurrent.
●  

● Each state i is positive recurrent.



Randomized Algorithms, CSIE, TKU, Taiwan 37

Classification of States

● rt
i,j
: the probability that starting at state i, the first 

transition to state j occurs at time t.

State 0, 1, 3 are transient.
●  

1
0 1 2

3
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Classification of States

● An example of null recurrent:

1 2 3 n−1 ni i+1i−1
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Classification of States

● An example of null recurrent:

1 2 3 n−1 ni i+1i−1
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Classification of States

● periodic states.

● aperiodic = not periodic

1 2 3 n−1 ni i+1i−1

● Suppose the chain starts at 2. 
● It can be at even number states only after even 

number steps.
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Classification of States

● An aperiodic, positive recurrent state is an 
ergodic state. 

● Ergodic Markov chain: every state is 
ergodic.

0 1 2

3

1
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Stationary Distributions

● Recall that 

● Consider
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Stationary Distributions

● Recall that 

● Consider

 

● We call it a stationary distribution of the 
Markov chain.
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Stationary Distributions

● Theorem. Any finite, irreducible, and ergodic Markov chain has the 
following properties:

1. The chain has a unique stationary distribution 

2. for all j and i, 

3.  
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Computing the Stationary Distribution

● Method 1:  Solve the system of linear equations.

● Example:

0 1

p

q

1−q1−p
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Computing the Stationary Distribution

● Method 1:  Solve the system of linear equations.

● Example:

0 1

p

q

1−q1−p
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Computing the Stationary Distribution

● Method 2:  Cut-sets of the Markov chain.

● The idea:

– For any state i of the chain, 

i



Randomized Algorithms, CSIE, TKU, Taiwan 48

Computing the Stationary Distribution

● Method 2:  Cut-sets of the Markov chain.

● Example:

The probability of leaving state 0 must equal the 
probability of entering state 0

0 1

p

q

1−q1−p
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Exercise

● Consider a Markov chain with state space {0, 1, 2, 3} and a transition 
matrix

Find the stationary distribution of the Markov chain.


