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* Geometry random variable.

* Coupon Collector’s Problem



Geometric Distribution

* Imagine: flip a coin until it lands on a head.

— What’s the distribution of the number of flips?

* Definition. A geometric random variable X with parameter p is

Pr[X =n]=(1—-p)" " 'p.

forn=1, 2, ...
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The mean of a geometric r.v. X(p)
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The mean of a geometric r.v. X(p)
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Other methods (1)
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Other methods (2)
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Memoryless

* Let X be a geometric random variable X with parameter p > 0.
 Foranyn, k>0, PrliX =n+k| X > k| =Pr[X =n|.
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Coupon Collector’s Problem
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Coupon Collector’s Problem

* Have you already got all of them (totally n types)?

* Have you ever thought about how much you should pay for them?

— - e ——. L =

— T — T —~_ / —~_ _— T
Concealed Concealed Concealed Concealed Concealed
bag bag bag bag bag
- : / < / -

g0 4 4
c o o O

* Each bag is chosen independently and uniformly at random from the n possibilities.
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Coupon Collector’s Problem

* Let X be the number of bags bought until every type of coupon is
obtained.

 Let X. be the number of bags bought while you had already got
exactly i—1 different coupons.

— Geometric random variables.

— What about X = Z X,?
1=1
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Coupon Collector’s Problem

* When exactly i—1 coupons have been collected, the probability of
obtaining a new one is

1 —1
n

pi=1

e X.is a geometric random variable, so

1 n
pi n—1+1
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Coupon Collector’s Problem (contd.)

(A
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Coupon Collector’s Problem (contd.)

» Expected nlnn + ©(n) bags to buy for collecting all the
coupons (stickers)!
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The Secretary Problem

* Or, we call it the ‘Girlfriend/Boy friend Choosing Problem’.

* Consider the problem of hiring an office secretary.

We interview candidates, coming one by one, on a rolling basis.

Let’s say the ith candidate has a value »; € R which stands for how
much we like her.

At some time point, we would like to hire the best candidate we have
seen so far.

Suppose we can fire the old one and hire a new better candidate.

Assume that we only want to interview at most n candidates.
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The Secretary Problem (contd.)

* The whole hiring process will be just like:

Randomly shuffle the n candidates. * Isn't it very simple?
Set TheOne < 0

fori < 1ton do:
interview candidate i
lf Vi > VTheOne then:

TheOne <« i
Hire candidate i
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No pain, no gain. We cannot reap without sowing.

Let ¢ be the cost associated with interviewing a candidate.

Let cu be the cost associated with hiring a candidate.

So, if totally we have ever hired m people (m—1 was fired though...),
what is the total cost of the algorithm?
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No pain, no gain. We cannot reap without sowing.

Let ¢ be the cost associated with interviewing a candidate.

Let cu be the cost associated with hiring a candidate.

So, if totally we have ever hired m people (m—1 was fired though...),
what is the total cost of the algorithm? O(c/n + cym)
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e In the worst scenario,

* The cost in the worst case:
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* In the worst scenario,

e The cost in the worst case:

O((C[ + CH)n)

e What’s about the EXPECTED cost?

Randomized Algorithms, CSIE, Tamkang University, Taiwan

20



The expected cost analysis

o Let X, be an indicator random variable such that

X; =1 if candidate ¢ is hired
X; =0 otherwise

o X = Z X; : the number of times we hire a new candidate.
1=1

o PI‘[XZ] =5
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The expected cost analysis

e Let X, be an indicator random variable such that

X; =1 if candidate 7 is hired
X; =0 otherwise

e X = Z X : the number of times we hire a new candidate.
1=1

1
o Pr[X;] = Pr|candidate ¢ is better than previous ¢ — 1 candidates]| = —.
i
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The expected cost analysis

« Let X, be an indicator random variable such that

X; =1 if candidate 7 is hired
X; =0 otherwise

* X =) X;: the number of times we hire a new candidate.
=1

1
e Pr[X;] = Pr[candidate ¢ is better than previous ¢ — 1 candidates| = —.
i

— Imagine we have randomly chosen i numbers, what’s the probability that the ith
number is the biggest?

— It’s NOT a conditional probability.
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The expected cost analysis

e Therefore,

EX]=) E[X;] = ) Pr[X;=1]
_ vl
o
= Inn+ O(1).

* The expected cost is
O(cy Inn 4+ ¢n).
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The classic version

e Reference:

2. STATEMENT OF THE PROBLEM

The reader’s first reaction to the title might well be

— Thomas S. Ferguson: Who solved the to ask, “Which secretary problem?”. After all, as I
have just implied, there are many variations on the

Secretary Problem? Statistical Science,  problem. The secretary problem in its simplest form
Vol. 4 (]_989), Pp. 282-289. has the following features.

1. There is one secretarial position available.
2.
3. The applicants are interviewed sequentially in

The number n of applicants is known.

random order, each order being equally likely.

It is assumed that you can rank all the applicants
from best to worst without ties. The decision to
accept or reject an applicant must be based only
on the relative ranks of those applicants inter-
viewed so far.

An applicant once rejected cannot later be re-
called.

You are very particular and will be satisfied with
nothing but the very best. (That is, your payoff
is 1 if vou choose the best of the n applicants and
0 otherwisze.)
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A simple solution

* Reject the first r — 1 applicants.

* Choose the next applicant who is the best in the relative ranking of the
observed applicants.

e The famous 37% rule.

~ 37% as n is large

r
n

Refer to
https://www.books.com.tw/products/F014054315
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[1lustration
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Analysis

« ¢ (r): the probability that the best applicant is selected.
« Forr=1, ¢ (r)=1/n.

* Forr>1, ¢,(r) = Pr U{applicant j is the best and is selected}]
j=r

n

B 1 r—1_r—1z”: 1
 Lep j—-1 n L~j-—1

j=r J=r Y e
) T_li n 1 iWewantx, .
 on 4 j—1 n 5 r= lim —
J=r ' n—oo 1 !
~ a:/ (—) dt
" t
= —xlnax.
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Analysis

« ¢ (r): the probability that the best applicant is selected.

,--- 1 Each of the j—1 candidates is the !
o« Forr=1, ¢n(r) = 1/n. L7 | best of them with prob. 1/(j—1),
n -’ but we count only the r—1 of them.
* Forr>1, ¢,(r) = Pr U {applicant j is the best: and'is selected} | '~~~ """""77TTTTTTTooos
2
&L= -1 z": 1
=it gL noi=Id T L .
n : We want x,
o r—1 Z n l ' r
- n A j—1 n 5 r = lim —
J=r ' n—o00 N
L/94\N e
~ a:/ (—) dt
. \t
= —xlnz.
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Analysis (contd.)

e Find the value of x which maximizes ¢ (r).

~ Solve d(¢ (r))/dx = 0.
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Analysis (contd.)

e Find the value of x which maximizes ¢ (r).

- Solve d(@,(N)/dx=0. 0.0~ (u) (D)=L
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Analysis (contd.)

e Find the value of x which maximizes ¢ (r).

- Solve d(@,(N)/dx=0. 0.0~ (u) (D)=L

* We can find optimal x = 1/e = 0.367879... = 37%.
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Analysis (contd.)

e Find the value of x which maximizes ¢ (r).

- Solve d(@,(N)/dx=0. 0.0~ (u) (D)=L

* We can find optimal x = 1/e = 0.367879... = 37%.

* What about your strategy of finding your wife/husband?

— This lecture assumes that you can never go back to your ex’s...
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