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Background of property testing

In the real world nowadays, we are faced with imperious need to
process increasing larger amounts of data in faster times.

Many practical problems have inputs of very large size.

Sometimes it is not realistic to solve a problem in the time even linear
in the input size.

Property testing is one of the possible approaches faster than linear
time algorithms.
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Background of property testing (contd.)

Try to answer “yes” or “no” for the following relaxed decision
problems by observing only a small fraction of the input.

◮ Does the input satisfy a designated property, or

◮ is ǫ-far from satisfying the property?
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Background of property testing (contd.)

In property testing, we use ǫ-far to say that the input is far from a
certain property.

ǫ: the least fraction of the input needs to be modified.

For example:
◮ A sequence of integers L = (0, 2, 3, 4, 1).
◮ Allowed operations: integer deletions
◮ L is 0.2-far from being monotonically nondecreasing.
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The model for dense graphs

Graph representation: adjacency-matrix for a graph G = (V ,E ).
◮ undirected, no self-loops, ≤ 1 edge between any u, v ∈ V .
◮ |V | = n vertices and |E | = Ω(n2) edges.
◮ A query: to see if two vertices u and v are adjacent or not.

ǫ-far from satisfying P:
◮ ≥ ǫn2 edges should be deleted or added to make G satisfy P.
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Background of property testing (contd.)

The complexity measure: queries.

In property testing, the query complexity (say q(n, ǫ)) is asked to be
sublinear in the input size (say f (n)).

◮ q(n, ǫ) = o(f (n)) if lim
n→∞

q(n,ǫ)
f (n) → 0, where ǫ is viewed as a constant.
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Property testers

A property tester for P is an algorithm utilizing sublinear queries such
that:

� if the input satisfies P:
answers “yes” with probability ≥ 2/3 (1 → one-sided error);

� if the input is ǫ-far from satisfying P:
answers “no” with probability ≥ 2/3.
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Goals of this talk

The property: Kt,t-freeness.
◮ A graph is Kt,t-free if it does not have a Kt,t as a subgraph.

Fig.: K2,2 and K3,3.

Fig.: K5 is not K2,2-free.
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Goals of this talk (contd.)

Reveal the difference between testing with a two-sided error and with
a one-sided error through testing Kt,t -freeness in dense graphs.
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Kt,t and t-stars

t-star: A star of size t (a vertex having t neighbors)

Fig.: K3,3 and 3-stars.

We say that t-star with edges (a, b), (a, c), (a, d) sits on {b, c , d}.
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A large enough dense graph must contain a Kt,t as its

subgraph

Observation

If a graph contains ǫn2 edges, then it contains at least ǫ
2n vertices of

degree at least ǫ
2n.

Proof.

The proof is omitted since it is easy.
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A large enough dense graph must contain a Kt,t as its

subgraph (contd.)

Claim 1

For any ǫ and t, and for sufficiently large n, any graph with at least ǫn2

edges contains a Kt,t as a subgraph.

Proof.

If G has ǫn2 edges then it contains ≥ ǫn/2 vertices of degree ≥ ǫ
2n

(by the previous observation).

The number of t-stars in G is at least

ǫ

2
n

( ǫ
2n

t

)

≥
ǫ

2
n

(ǫn

2t

)t

≥
(ǫn

2t

)t+1
> tnt >

(

n

t

)

(t − 1).

By the pigeonhole principle, there must be at least one set of t

vertices where at least ‘t’ t-stars are sitting.
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Assume that n is sufficiently large.

Consider the algorithm as follows.
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A two-sided error tester

1 Select 100/ǫ pairs of vertices uniformly at random.
Denote the set of these pairs by S .

2 For (u, v) ∈ S , query whether (u, v) is an edge of G .

3 δ ← |{(u, v) | (u, v) ∈ S , (u, v) is an edge of G}|.

△ If δ ≤ 100, return “yes”;

△ Otherwise, return “no”.
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A two-sided error tester (contd.)

By the previous claim, if G contains more than 1
4ǫn2 edges, then it

contains a Kt,t .

If G contains less than ǫn2 edges, it is trivially not ǫ-far from being
Kt,t-free.
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A two-sided error tester (contd.)

If G is Kt,t-free, then it contains at most 1
4ǫn2 edges. Thus by

Chebyshev’s inequality, we have

Pr[δ > 100] ≤ Pr[δ ≥ 100]

≤ Pr[|δ − 50| ≥ 50]

≤
(100/ǫ) ·

(

ǫn2/4
n(n−1)/2

)

· (1− ǫ/2)

502

<
1

3
.

If G is ǫ-far from being Kt,t -free, then it contains at least ǫn2 edges.
Thus also by Chebyshev’s inequality, we have

Pr[δ ≤ 100] ≤ Pr[|δ − 200| ≥ 100] ≤
200(1 − 2ǫ)

1002
<

1

3
.
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Theorem 1

For sufficiently large n, testing Kt,t-freeness with a two-sided error in an

n-vertex dense graph can be done by using at most O(1/ǫ2) queries.
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Next, we are going to show the existence of a graph G , where

G is ǫ-far from being Kt,t-free, and

more than half of the induced subgraphs of size (1/8ǫ)t/2 do not
contain a Kt,t .
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A random graph G (n, 4ǫ) helps!

Consider a random graph G (n, 4ǫ)

◮ a graph on n vertices
◮ each pair of vertices is an edge with probability 4ǫ.

Fix a set T of 2t vertices, then

Pr[T contains a Kt,t ] ≤

(

2t

t

)

(4ǫ)t
2
.

Thus the expected number of copies of Kt,t is at most

(

n

2t

)(

2t

t

)

(4ǫ)t
2
.
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Event A: the number of copies of Kt,t in G (n, 4ǫ) is more than

twice the expectation.

Event B : G (n, 4ǫ) contains less than 3
2
ǫn2 edges.

What are Pr[A] and Pr[B ]?

◮ Pr[A] < 1
2 (by Markov’s inequality).

◮ Pr[B] < 1
2 (by the Chernoff bound).

⋆ 1.98ǫn
2

< E[X ] = 4ǫ
`

n

2

´

< 2ǫn
2 (X : the number of edges of G ;

n > 100 by the assumption that n is sufficiently large)

⋆ Let µ = 1.98ǫn
2 , then

Pr[X ≤
3

2
ǫn

2] = Pr

»

X ≤

„

1 −
0.48

1.98

«

µ

–

≤ e
−µ·(0.48/1.98)2/2

< e
−0.1ǫn2

<
1

2
.
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What we concern about is ...

Pr[A ∩ B] = Pr[A ∪ B] = 1− Pr[A ∪ B ] > 0.

That is, there exists at least one graph G ′ that has no more than

twice the expected number of copies of Kt,t and is ǫ-far from

being Kt,t-free!

The fraction of sets of size 2t that contain a Kt,t in G ′ is at most

2
(

n
2t

)(2t
t

)

(4ǫ)t
2

(

n
2t

) = 2

(

2t

t

)

(4ǫ)t
2
≤ 2 · 4t(4ǫ)t

2
≤ 2(8ǫ)t

2
.

If we choose a random set of vertices S of size (1/8ǫ)t/2, it contains

≤

(

( 1
8ǫ)

t/2

2t

)

≤

(

(

1
8ǫ

)t/2
)2t

(2t)!
<

1

4

(

1

8ǫ

)t2

sets of size 2t.
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Thus the probability that the randomly chosen set of vertices S

contains a copy of Kt,t is less than 1
4

(

1
8ǫ

)t2

2(8ǫ)t
2

= 1
2 .

Theorem 2

For any sufficiently large n and ǫ < 1/4, there is an n-vertex graph G, that

is ǫ-far from being Kt,t -free, such that most induced subgraphs, on sets of

size (1/8ǫ)t/2, do not contain a Kt,t as a subgraph.
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Conclusions

Testing Kt,t-freeness in dense graphs is a very good and simple
example to know the difference between property testers with
two-sided error and those with one-sided error.

To work on property testing with one-sided error is somehow more
difficult, but is very common!

Sometimes we can devise a property tester for another property which
is “close” to the original one.
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Conclusions (contd.)

Through this talk, we reviewed the following concepts and skills,
which have been introduced in Prof. Chang’s courses of Randomized
Algorithms:

◮ Markov’s inequality, Chebyshev’s inequality, Chernoff bounds, Bernoulli
and Binomial distributions, random graphs, the probabilistic method,
basic counting skills.

Actually, to work on graph property testing, we just need to
understand the graphs more! Probability theory is not the most
important thing.

The ideas which used to be wrong in deterministic way might work in
randomized approaches.
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Thank you!

41 / 41


	Introduction
	Testing Kt,t-freeness in dense graphs with a two-sided error
	Testing Kt,t-freeness in dense graphs with a one-sided error
	Conclusions
	

