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Background of property testing

@ In the real world nowadays, we are faced with imperious need to
process increasing larger amounts of data in faster times.
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Background of property testing

@ In the real world nowadays, we are faced with imperious need to
process increasing larger amounts of data in faster times.

@ Many practical problems have inputs of very large size.

@ Sometimes it is not realistic to solve a problem in the time even linear
in the input size.

@ Property testing is one of the possible approaches faster than linear
time algorithms.



Background of property testing (contd.)

@ Try to answer “yes” or “no” for the following relaxed decision
problems by observing only a small fraction of the input.
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Background of property testing (contd.)

@ Try to answer “yes” or “no” for the following relaxed decision
problems by observing only a small fraction of the input.

» Does the input satisfy a designated property, or

» is e-far from satisfying the property?
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Background of property testing (contd.)

@ In property testing, we use e-far to say that the input is far from a
certain property.

@ ¢: the least fraction of the input needs to be modified.
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Background of property testing (contd.)

@ In property testing, we use e-far to say that the input is far from a
certain property.

@ ¢: the least fraction of the input needs to be modified.

@ For example:
» A sequence of integers L = (0,2,3,4,1).
> Allowed operations: integer deletions
» L is 0.2-far from being monotonically nondecreasing.
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The model for dense graphs

@ Graph representation: adjacency-matrix for a graph G = (V, E).

» undirected, no self-loops, < 1 edge between any u,v € V.
> |V| = n vertices and |E| = Q(n?) edges.
» A query: to see if two vertices u and v are adjacent or not.

o c-far from satisfying P:
» > en® edges should be deleted or added to make G satisfy P.
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Background of property testing (contd.)

@ The complexity measure: queries.

@ In property testing, the query complexity (say g(n, €)) is asked to be
sublinear in the input size (say f(n)).
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Background of property testing (contd.)

@ The complexity measure: queries.

@ In property testing, the query complexity (say g(n, €)) is asked to be
sublinear in the input size (say f(n)).

» g(n,e) = o(f(n)) if lim q;{’,’s) — 0, where € is viewed as a constant.
n—oo
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Property testers

@ A property tester for PP is an algorithm utilizing sublinear queries such
that:

> if the input satisfies IP:
answers “yes” with probability > 2/3 (1 — one-sided error);

>> if the input is e-far from satisfying P:
answers “no” with probability > 2/3.



Goals of this talk

@ The property: K ;:-freeness.
> A graph is K; free if it does not have a K as a subgraph.

>

Flg K272 and K373.

Fig.: Ks is not K >-free.
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Goals of this talk

@ The property: K ;:-freeness.
> A graph is K -free if it does not have a K;; as a subgraph.

>

Flg K2,2 and K3,3.

Fig.: Ks is not K o-free.
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Goals of this talk (contd.)

@ Reveal the difference between testing with a two-sided error and with
a one-sided error through testing K; ;-freeness in dense graphs.
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Outline

© Testing Kt +-freeness in dense graphs with a two-sided error
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K:: and t-stars

@ t-star: A star of size t (a vertex having t neighbors)

Fig.: K33 and 3-stars.

@ We say that t-star with edges (a, b), (a, ), (a, d) sits on {b,c,d}.
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A large enough dense graph must contain a K;; as its
subgraph

Observation

If a graph contains en’® edges, then it contains at least 5n vertices of
degree at least 5n.
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A large enough dense graph must contain a K;; as its
subgraph

Observation

If a graph contains en’® edges, then it contains at least 5n vertices of
degree at least 5n.

Proof.

The proof is omitted since it is easy.
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A large enough dense graph must contain a K;; as its
subgraph (contd.)
Claim 1

For any € and t, and for sufficiently large n, any graph with at least en?
edges contains a K+ as a subgraph.
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A large enough dense graph must contain a K;; as its
subgraph (contd.)
Claim 1

For any € and t, and for sufficiently large n, any graph with at least en?
edges contains a K+ as a subgraph.

Proof.

@ If G has en? edges then it contains > en/2 vertices of degree >
(by the previous observation).
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@ The number of t-stars in G is at least
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A large enough dense graph must contain a K;; as its
subgraph (contd.)

Claim 1

For any € and t, and for sufficiently large n, any graph with at least en?
edges contains a K+ as a subgraph.

Proof.

@ If G has en? edges then it contains > en/2 vertices of degree > =n
(by the previous observation).

@ The number of t-stars in G is at least
e (En € en\t en\ t+1 n
o) 2 5032 (@) oo (e
2”(r>—2” ) 2\5) > =)D

@ By the pigeonhole principle, there must be at least one set of ¢
vertices where at least ‘t' t-stars are sitting.
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@ Assume that n is sufficiently large.

@ Consider the algorithm as follows.

17 /41



A two-sided error tester

© Select 100/e pairs of vertices uniformly at random.
Denote the set of these pairs by S.

@ For (u,v) € S, query whether (u,v) is an edge of G.

Q d—|{(u,v)|(u,v) €S, (u,v) is an edge of G}|.

A If § <100, return “yes”;

/A Otherwise, return “no”.
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A two-sided error tester (contd.)

@ By the previous claim, if G contains more than %en2 edges, then it
contains a Ki ;.

@ If G contains less than en? edges, it is trivially not e-far from being
Kt +free.
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A two-sided error tester (contd.)

o If G is K; tfree, then it contains at most %en2 edges. Thus by
Chebyshev's inequality, we have

Pr[5 > 100] < Pr[§ > 100]

< Pr[|6 — 50| > 50]
6[72
(100/e) - ((_7{;‘/2) ((1—¢/2)
<
= 502
P
-
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A two-sided error tester (contd.)

o If G is K; tfree, then it contains at most %en2 edges. Thus by
Chebyshev's inequality, we have

Pr[5 > 100] < Pr[§ > 100]

< Pr[|6 — 50| > 50]
6[72
(100/e) - ((_7{;‘/2) ((1—¢/2)
<
= 502
P
-

o If G is e-far from being K; (-free, then it contains at least en® edges.
Thus also by Chebyshev's inequality, we have

200(1 — 2¢)

1
< < — > < —.
Pr[5 < 100] < Pr[|d —200] > 100] < == < 3
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Theorem 1

For sufficiently large n, testing K; -freeness with a two-sided error in an
n-vertex dense graph can be done by using at most O(1/€?) queries.
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Outline

© Testing Kt +-freeness in dense graphs with a one-sided error
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Next, we are going to show the existence of a graph G, where

@ G is e-far from being K ;-free, and

@ more than half of the induced subgraphs of size (1/8¢)*/? do not
contain a Ki ;.
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A random graph G(n, 4¢) helps!

@ Consider a random graph G(n, 4¢)

> a graph on n vertices
> each pair of vertices is an edge with probability 4e.

o Fix a set T of 2t vertices, then

2t
Pr[T contains a K] < < , ) (4e)t2.

@ Thus the expected number of copies of K ; is at most

(2 (¥) 00
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@ Event A: the number of copies of K:; in G(n,4e) is more than
twice the expectation.

o Event B: G(n,4c) contains less than 3en? edges.

@ What are Pr[A] and Pr[B]?
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@ Event A: the number of copies of K:; in G(n,4e) is more than
twice the expectation.

o Event B: G(n,4c) contains less than 3en? edges.

@ What are Pr[A] and Pr[B]?

» Pr[A] < 1 (by Markov's inequality).
1
2

» Pr[B] < 5 (by the Chernoff bound).

* 1.98en” < E[X] = 4¢(}) < 2en* (X: the number of edges of G;
n > 100 by the assumption that n is sufficiently large)

* Let u = 1.98en?, then

3 5 0.48
<= = < —
Pr[X < 2en] Pr {X_ (1 1.98)”]

—1u-(0.48/1.98)2 /2 < e—0.16n2

IN
N = ®
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What we concern about is ...

o Pr[ANB]=Pr[AUB] =1-Pr[AUB] > 0.
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What we concern about is ...
o Pr[ANB]=Pr[AUB] =1-Pr[AUB] > 0.

@ That is, there exists at least one graph G’ that has no more than
twice the expected number of copies of K, ; and is e-far from
being K, -free!

u]
|
I
ul
!

26 /41



What we concern about is ...
o Pr[ANB]=Pr[AUB] =1-Pr[AUB] > 0.

@ That is, there exists at least one graph G’ that has no more than
twice the expected number of copies of K;; and is e-far from
being K, -free!

@ The fraction of sets of size 2t that contain a K;: in G’ is at most

2(3) () (4" _ 2(2:> (4e)" < 2-4'(4e)" < 2(80)",

(50)

26 /41



What we concern about is ...
o Pr[ANB]=Pr[AUB] =1-Pr[AUB] > 0.

@ That is, there exists at least one graph G’ that has no more than
twice the expected number of copies of K;; and is e-far from
being K, -free!

@ The fraction of sets of size 2t that contain a K;: in G’ is at most

2(3) () (4" _ 2(2:> (4e)" < 2-4'(4e)" < 2(80)",

(50)

o If we choose a random set of vertices S of size (1/8¢)!/?, it contains

t/2 2t
@y (B7) 1y
< € <~ 7 (=
- 2t - (2! 4 \ 8¢
sets of size 2t.
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@ Thus the probability that the randomly chosen set of vertices S

. . t?
contains a copy of K; . is less than % (é) 2(86)t2 = %

Theorem 2

For any sufficiently large n and € < 1/4, there is an n-vertex graph G, that
is e-far from being K -free, such that most induced subgraphs, on sets of
size (1/8¢)t/?, do not contain a Ky, as a subgraph.
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Conclusions

o Testing K; -freeness in dense graphs is a very good and simple
example to know the difference between property testers with
two-sided error and those with one-sided error.
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Conclusions

o Testing K; -freeness in dense graphs is a very good and simple
example to know the difference between property testers with
two-sided error and those with one-sided error.

@ To work on property testing with one-sided error is somehow more
difficult, but is very common!

@ Sometimes we can devise a property tester for another property which
is “close” to the original one.
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Conclusions (contd.)

@ Through this talk, we reviewed the following concepts and skills,
which have been introduced in Prof. Chang's courses of Randomized
Algorithms:

» Markov's inequality, Chebyshev's inequality, Chernoff bounds, Bernoulli
and Binomial distributions, random graphs, the probabilistic method,
basic counting skills.
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Conclusions (contd.)

@ Through this talk, we reviewed the following concepts and skills,
which have been introduced in Prof. Chang's courses of Randomized
Algorithms:

» Markov's inequality, Chebyshev's inequality, Chernoff bounds, Bernoulli
and Binomial distributions, random graphs, the probabilistic method,
basic counting skills.

@ Actually, to work on graph property testing, we just need to
understand the graphs more! Probability theory is not the most
important thing.

@ The ideas which used to be wrong in deterministic way might work in
randomized approaches.
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Thank you!
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