
A randomized approximation scheme
for metric MAX-CUT

Speaker: Chuang-Chieh Lin

National Chung Cheng University

W. Fernandez de la Vega and Claire Kenyon
Journal of Computer and System Sciences, 63, 531541 (2001).

Computation Theory Lab, CSIE, CCU, Taiwan 2

Outline

• Introduction

• The results

• The Euclidean case
– Analysis of running time and correctness

• The general metric case (omitted)

Computation Theory Lab, CSIE, CCU, Taiwan 3

Outline

• Introduction

• The results

• The Euclidean case
– Analysis of running time and correctness

• The general metric case (omitted)

Computation Theory Lab, CSIE, CCU, Taiwan 4

MAX-CUT

• MAX-CUT is the problem of finding a 2-partition of
vertices of a (possibly weighted) graph which
maximizes the number of edges (or sum of edge
weights) across the partition.

• It has been known for a long time that this basic
optimization problem is NP-hard but has a 2-
approximation algorithm.

Computation Theory Lab, CSIE, CCU, Taiwan 5

Background

• The best approximation ration for the general case is 1.
138 due to Goemans and Williamson [GW94, GW95].

• Unfortunately, there is not much room for improveme
nt since this problem is Max-SNP-hard [PY91], and h
ence has no -approximation scheme if P NP [ALM
SS98].

Computation Theory Lab, CSIE, CCU, Taiwan 6

Background (cont’d)

• Thus one is led to consider restricted versions of MA
X-CUT.

Computation Theory Lab, CSIE, CCU, Taiwan 7

Background (cont’d)

• For dense unweighted graphs (i.e., graphs with(n2)
edges), polynomial time approximation schemes were
presented by Arora et al. [AKK95] and Vega [V96].

• In [VK98], dense weighted instances are dealt with.

• Related results also appear in [GGR98, FK99].

Computation Theory Lab, CSIE, CCU, Taiwan 8

Remarks

• For an unweighted graph G, G is called dense if it has
(n2) edges.

• For weighted graphs, “dense” refers usually to the
0, 1 case.
– For a weighted graph G with 0,1 weights, G is called dense

if its average degree at least cn where c is a constant and n
denotes the number of vertices of G.

Computation Theory Lab, CSIE, CCU, Taiwan 9

Remarks (cont’d)

• A PTAS for dense instances of MAX-CUT was found
independently by Arora, Karger and Karpinski [AKK
95] and Fernandez de la Vega [V96].

• Actually, we will reduce metric MAX-CUT to an inst
ance of ordinary MAX-CUT in which the maximum
weight exceeds the average weight by at most a const
ant factor.
– It is almost immediate to check that the algorithms for dens

e 0,1 MAX-CUT work for this case with trivial modificatio
ns.

Computation Theory Lab, CSIE, CCU, Taiwan 10

Remarks (cont’d)

An instance of
0,1 MAX-CUT

An instance of
Ordinary MAX-CUT

3

1

Computation Theory Lab, CSIE, CCU, Taiwan 11

Remarks (cont’d)

• Thus in this paper, we say that a weighted graph G is
dense if its maximum weight exceeds its average
weight by at most a constant factor.

– Consider the case that there are only few edges with very
large weight yet the average weight of the graph is small.

Computation Theory Lab, CSIE, CCU, Taiwan 12

Remarks (cont’d)

• What is the physical meaning that a weighted graph G is
dense if its maximum weight exceeds its average weight
by at most a constant factor (say “”)?

• Let ŵ be the average edge weight of G and let w* be the
maximum edge weight of G.

Computation Theory Lab, CSIE, CCU, Taiwan 13

Remarks (cont’d)

• Let G = (V, E) and for e  V V, we denote the weight
of e by w(e). We have

• Thus the number of edges which have positive weights
is at least

w¤ < ¸ŵ) w¤ < ¸ ¢
P

e2V£V
w(e)

jV j2

P
e2V£V

w(e)

w¤
> 1

¸
¢ jV j2.

Computation Theory Lab, CSIE, CCU, Taiwan 14

Remarks (cont’d)

• In this paper, we focus on metric instances of MAX-
CUT.

• That is, the vertices correspond to points in metric
space, the graph is the complete graph, and edge {x, y}
has a weight equal to the distance between x and y.

• Throughout the paper, we denote by d(x, y) the distance
between two points x and y. X is our set of n points. M
AX-CUT(X) denotes the value of an optimum cut of X.

Computation Theory Lab, CSIE, CCU, Taiwan 15

Outline

• Introduction

• The results

• The Euclidean case
– Analysis of running time and correctness

• The general metric case (omitted)

Computation Theory Lab, CSIE, CCU, Taiwan 16

The results

• Metric MAX-CUT is NP-complete.

• Metric MAX-CUT has a (randomized) polynomial
time approximation scheme.

Computation Theory Lab, CSIE, CCU, Taiwan 17

The results

• Metric MAX-CUT is NP-complete.

• Metric MAX-CUT has a (randomized) polynomial
time approximation scheme.

These results are stated in the following theorems.

Computation Theory Lab, CSIE, CCU, Taiwan 18

Theorem 1 [due to Luca Trevisan]

• Metric MAX-CUT is NP-hard.

Computation Theory Lab, CSIE, CCU, Taiwan 19

Theorem 2

• Metric MAX-CUT has a (randomized) polynomial
time approximation scheme.
– That is, for any given  > 0, there is a randomized

algorithm which takes as input a discrete metric space
given by its distance matrix, runs in time polynomial in the
size of the space, and output a bipartition whose value is at
least (1  ) times the value of the maximum cut.

Computation Theory Lab, CSIE, CCU, Taiwan 20

Proof of Theorem 1

• The proof is a reduction from MAX-CUT.

• Consider an instance G of MAX-CUT with n vertices.

G

Computation Theory Lab, CSIE, CCU, Taiwan 21

Proof of Theorem 1 (cont’d)

• Create a new graph G with 2n vertices by taking two
independent copies of G1 and G2 of G.

G1 G2

G

Computation Theory Lab, CSIE, CCU, Taiwan 22

Proof of Theorem 1 (cont’d)

• Create a new weighted complete graph H with 2n
vertices by giving weight 2 to every edge which was
presented in G and weight 1 to all other edges.

H

: weight 2

: weight 1

Computation Theory Lab, CSIE, CCU, Taiwan 23

Proof of Theorem 1 (cont’d)

• H now is a metric graph.

H

: weight 2

: weight 1

Computation Theory Lab, CSIE, CCU, Taiwan 24

Proof of Theorem 1 (cont’d)

• It is easy to see that maximum cuts of H correspond to
taking a maximum cut (A, B) of G1 and the
complementary maximum cut (B, A) of G2.

G H

Computation Theory Lab, CSIE, CCU, Taiwan 25

Proof of Theorem 1 (cont’d)

• If the maximum cut of G has value v, then the
maximum cut of G has value 2v and the maximum
cut of H has value 2v + n2.

G H

Computation Theory Lab, CSIE, CCU, Taiwan 26

Proof of Theorem 1 (cont’d)

• If the maximum cut of G has value v, then the
maximum cut of G has value 2v and the maximum
cut of H has value 2v + n2.

G H

(A, B)(B, A)

A B

Computation Theory Lab, CSIE, CCU, Taiwan 27

Proof ideas and techniques

• In the Euclidean case and in small dimension, we
have a different algorithm which is a PTAS. It is
based on:
– changing coordinates by moving the origin to the center of

gravity of the point set,

– using polar coordinates, suitable rounding to simplify the
point set, and

– using brute force to solve the simplified instance.

Computation Theory Lab, CSIE, CCU, Taiwan 28

Proof ideas and techniques (cont’d)

• In the general metric case, we will obtain our
approximation theorem as a consequence of the
following reduction (i.e., Theorem 3).

Computation Theory Lab, CSIE, CCU, Taiwan 29

Theorem 3

• Approximating Metric MAX-CUT reduces to
approximating Dense MAX-CUT.

Computation Theory Lab, CSIE, CCU, Taiwan 30

Proof ideas and techniques (cont’d)

• We will reduce metric MAX-CUT to an instance of
ordinary (i.e., weighted) MAX-CUT which is dense
weighted.
– Recall that an instance of ordinary MAX-CUT is dense if

its maximum weight exceeds its average weight by at most
a constant factor.

Computation Theory Lab, CSIE, CCU, Taiwan 31

The problem of a naïve adaptation of the
algorithm for dense weighted graphs

• We have a naïve algorithm for dense 0-1weighted
graphs.

– The first step consists in taking a constant size sample of
the vertices.

– In the dense graphs setting, all significant vertices have the
same number of edges (up to a constant factor), hence
contribute the same number of edges to MAX-CUT (up to a
constant factor).

– Hence a sample of constant size is sufficient to get a fairly
good picture of the whole graph.

(vertices with large degree??)

Computation Theory Lab, CSIE, CCU, Taiwan 32

The problem of a naïve adaptation of the
algorithm for dense weighted graphs (cont’d)

• In the metric setting, the situation is completely
different.

• Outliers (points which are really far from the rest of
the set) may contribute much more to MAX-CUT
than other points.`

Computation Theory Lab, CSIE, CCU, Taiwan 33

The problem of a naïve adaptation of the
algorithm for dense weighted graphs (cont’d)

• A constant size sample is bound to miss the few
outliers, and examining the sample will not give good
information about MAX-CUT.

• Thus a naïve adaptation of the sense graph algorithm
to metric MAX-CUT is doomed.

Computation Theory Lab, CSIE, CCU, Taiwan 34

The problem of a naïve adaptation of the
algorithm for dense weighted graphs (cont’d)

• The solution to this problem is simple:
– The contribution of a point x to (metric) MAX-CUT is

roughly proportional to the average distance from x to the
rest of the set.

– Thus in the metric setting, one should NOT use a uniform
sample of the set of points, but a biased sample, where the
probability of taking x in the sample is proportional to the
average distance from x to the rest of the set.

Computation Theory Lab, CSIE, CCU, Taiwan 35

A fatal error in the paper??

• Given an arbitrary positive integer n and a real
number x. If x is at least (n1)/2, then we can obtain
x  x(1  1/n).
– Is this always true??

– For example, let n = 101, we have x  (101  1)/2 = 50. If
we pick x = 50.9, we have x = 50 and x(1  1/n) =
50.3960396.

– So we have a counterexample.

Computation Theory Lab, CSIE, CCU, Taiwan 36

Outline

• Introduction

• The results

• The Euclidean case
– Analysis of running time and correctness

• The general metric case (omitted)

Computation Theory Lab, CSIE, CCU, Taiwan 37

The Euclidean case
• In the presentation today, let us consider the

Euclidean case (the second part of the paper).
– The third part is the general metric case.

• When the dimension of the underlying space is fixed,
a PTAS for MAX-CUT can easily be obtained.

• Here, we describe the PTAS for MAX-CUT in the
plane. The cases of higher dimension are completely
similar (replacing polar coordinates by spherical
coordinates).

Computation Theory Lab, CSIE, CCU, Taiwan 38

The algorithm for the Euclidean case

Input: A set X of n points in the Euclidean plane.
1. Scale the problem so that the average interpoint distance is e

qual to 1.

2. Compute g = xX x/n, the center of gravity of X.

3. If (d(x, g), (x)) denote the polar coordinates of x with respe
ct to g, define the domains:

Dr;k =

½
x 2 R2 : ²(1 + ²)

r¡1 · d(x; g) < ²(1 + ²)r and
k¼² · µ(x) < (k + 1)¼²

¾
;

where r ¸ 1 and 0 · k < 2¼=². Let

D0 = fx 2 R2 : d(x; g) < ²g:

Computation Theory Lab, CSIE, CCU, Taiwan 39

4. Construct a point (multi)set X obtained by replacing each ele
ment of X Dr,k by yr,k, the point with polar coordinates d(yr,k ,
 g) = (1+ )r1 and (yr,k) = k. Hence yr,k has multiplicity eq
ual to the number of points of X Dr,k. Moreover, each elem
ent of X D0 is replaced by g.

5. Solve MAX-CUT on X  by doing exhaustive search on the fa
mily of all cuts such that points which have the same coordin
ates are placed on the same side of the cut.

Output: the corresponding cut of X.

Computation Theory Lab, CSIE, CCU, Taiwan 40

How to “scale the problem” so that the av
erage interpoint distance is equal to 1?

Computation Theory Lab, CSIE, CCU, Taiwan 41

A(a, b)

B(c, d)

d(A;B) =
p
(a¡ c)2 + (b¡ d)2.

If we want to modify d(A, B) to k d(A, B), we can chan
ge the coordinates of A and B to be

A(ka, kb)

B(kc, kd)

Computation Theory Lab, CSIE, CCU, Taiwan 42

How to compute the center of gravity of X?

Computation Theory Lab, CSIE, CCU, Taiwan 43

A(1, 2)

B(3, 7)

C(2, 0)

We have g = ((1+3+2)/3, (2+7+0)/3)

 = (2, 3)

Computation Theory Lab, CSIE, CCU, Taiwan 44

Let us see some illustration to make clear
the idea of the algorithm.

Computation Theory Lab, CSIE, CCU, Taiwan 45

g

: point of X

Computation Theory Lab, CSIE, CCU, Taiwan 46

g

: point of X

: point of X 

Computation Theory Lab, CSIE, CCU, Taiwan 47

g

: point of X

: point of X 

Computation Theory Lab, CSIE, CCU, Taiwan 48

Outline

• Introduction

• The results

• The Euclidean case
– Analysis of running time and correctness

• The general metric case (omitted)

Computation Theory Lab, CSIE, CCU, Taiwan 49

Analysis of the running time

• The running time of the algorithm is clearly poly-nomi
al, with possible exception of the exhaus-tive search. T
he running time of the exhaustive search is exponential
in the number of non-empty domains Dr,k.

• The following lemma will help us analyze this quantity.

Computation Theory Lab, CSIE, CCU, Taiwan 50

Lemma 1

• Let dmax = maxx, y  X d(x, y) denote the diameter of the
point set. Then the sum of all interpoint distances is at
least

P
fx;yg½X

d(x; y) ¸ (n¡ 1)dmax.

Computation Theory Lab, CSIE, CCU, Taiwan 51

Proof of Lemma 1

• Let x0, y0 be such that d(x0, y0) = dmax is maximum.

• Let X  be obtained from X by orthogonal projection o
nto line (x0 y0).

– This can only decrease distances while keeping dmax unchan
ged.

x0

y0

u v

u 
v 

Computation Theory Lab, CSIE, CCU, Taiwan 52

Proof of Lemma 1 (cont’d)

• By definition of dmax, all points of X  other than x0 and
y0 must lie between x0 and y0.

• And it is easy to see that the sum of all distances is mi
nimized when all the points of X  \ {x0, y0} are equal.

x0

y0

u, v, w, …

u , v , w , …

Computation Theory Lab, CSIE, CCU, Taiwan 53

Proof of Lemma 1 (cont’d)

• Then the sum of all interpoint distances is exactly (n
1)dmax , hence the lemma.

– Since (n2) d(x0, y0) + d(x0, y0) = (n1) dmax .

Computation Theory Lab, CSIE, CCU, Taiwan 54

Corollary 1

• If the average interpoint distance of X is 1, then the di
ameter of X is at most n/2.

• Proof:

Since
P

fx;yg½X
d(x; y) =

n(n¡1)
2

¸ (n ¡ 1)dmax,

we have dmax · n=2.

Computation Theory Lab, CSIE, CCU, Taiwan 55

Analysis of the running time (cont’d)
• Thus every point is at distance at most n/2 from g.

• If a domain Dr,k contains points of X, it must be the cas
et that (1+)r1 n/2.
– So we have r  1 + log1+(n/2).

• The total number of non-empty domains, including D0,
is then at most 1 + (1 + log1+(n/2))2/.

• Thus the number of cuts that needs to be examined is a
t most nO(1/2). nO(1/)?

Computation Theory Lab, CSIE, CCU, Taiwan 56

Analysis of correctness
• Next we will show that the cut output by the

algorithm is close to optimal.

• First, it is easy to see that if x and y are two points of
X  which have the same coordinates, then there is a
maximum cut of X  which places them on the same
side of the cut.
– Otherwise, moving either x or y to the other side would

improve the cut.

• Thus the algorithm does indeed compute MAX-
CUT(X ).

Computation Theory Lab, CSIE, CCU, Taiwan 57

Analysis of correctness (cont’d)

• The main question is thus comparing MAX-CUT(X )
to MAX-CUT(X).

• The idea is that points do not move very far when
going from X to X .

Computation Theory Lab, CSIE, CCU, Taiwan 58

Analysis of correctness (cont’d)

• In fact, if x  X Dr,k , then x is moved by at most the d
iameter dr of Dr,k.

((1+ )r1, k)

((1+ )r, (k+1))
(1+ )r ()

= 2(1+ )r

(1+ )r  (1+ )r1

= 2(1+ )r1

dr

Computation Theory Lab, CSIE, CCU, Taiwan 59

Analysis of correctness (cont’d)

• Thus

– On the other hand, if xD0, then x is moved by at most .

• Clearly, moving one point x at distance  from its
original position does not change the value of the
optimum cut by more than (n1).

dr · ²2(1 + ²)r¡1 + ²2(1 + ²)r¼

· 5²2(1 + ²)r¡1

= 5²d(x; g):7?

Computation Theory Lab, CSIE, CCU, Taiwan 60

Analysis of correctness (cont’d)

• Thus we have

• Consider the following lemma.

jMAX-CUT(X)¡MAX-CUT(X)j · ²n(n¡1)+5²(n¡1)P
x

d(x; g).

Computation Theory Lab, CSIE, CCU, Taiwan 61

Lemma 2
P
x2X

d(x; g) · n
2
.

Proof:
• It is easy to see that

• In one dimension this is clear.

d(x; g) · 1
n

P
y2X

d(x; y).

Computation Theory Lab, CSIE, CCU, Taiwan 62

Proof of Lemma 2 (cont’d)

Let us consider the case in one dimension first.

• LHS =

d(x; g) · 1
n

P
y2X

d(x; y).

d(x; g) = d

µ
x;

P
y2X y

n

¶

= x¡
P
y2X y

n
:

Computation Theory Lab, CSIE, CCU, Taiwan 63

Proof of Lemma 2 (cont’d)

• RHS =

d(x; g) · 1
n

P
y2X

d(x; y).

1

n

X

y2X
d(x; y) =

X

y2X

d(x; y)

n

=
X

y2X
d(
x

n
;
y

n
)

=
X

y2X
(
x

n
¡ y

n
)

= x¡
P

y2X y

n
:

Computation Theory Lab, CSIE, CCU, Taiwan 64

Proof of Lemma 2 (cont’d)

• In higher dimension it suffices to perform a orthogona
l projection of X onto line (xg), which does not affect t
he LHS and can only decrease the RHS.

• Then summing over all x yields the lemma (theorem).

d(x; g) · 1
n

P
y2X

d(x; y))
P
x2X

d(x; g) · n
2
.

Computation Theory Lab, CSIE, CCU, Taiwan 65

Analysis of correctness (cont’d)

• Using the lemma, we get

• The expected value of a random cut of X is n(n1)/4,
and so

• Hence the algorithm is a PTAS.

jMAX-CUT(X)¡MAX-CUT(X)j · 4²n2.

jMAX-CUT(X)¡MAX-CUT(X)j · 17²MAX-CUT(X).

7/2 ?

It is safe only for n 6.

Computation Theory Lab, CSIE, CCU, Taiwan 66

By the way, why is the expected value of a
random cut of X is n(n1)/4?

Computation Theory Lab, CSIE, CCU, Taiwan 67

Thank you.

