
A randomized approximation scheme 
for metric MAX-CUT

Speaker:  Chuang-Chieh Lin

National Chung Cheng University

W. Fernandez de la Vega and Claire Kenyon
Journal of Computer and System Sciences, 63, 531541 (2001).



Computation Theory Lab, CSIE, CCU, Taiwan 2

Outline

• Introduction

• The results

• The Euclidean case
– Analysis of running time and correctness

• The general metric case (omitted)



Computation Theory Lab, CSIE, CCU, Taiwan 3

Outline

• Introduction

• The results

• The Euclidean case
– Analysis of running time and correctness

• The general metric case (omitted)



Computation Theory Lab, CSIE, CCU, Taiwan 4

MAX-CUT

• MAX-CUT is the problem of finding a 2-partition of 
vertices of a (possibly weighted) graph which 
maximizes the number of edges (or sum of edge 
weights) across the partition.

• It has been known for a long time that this basic 
optimization problem is NP-hard but has a 2-
approximation algorithm. 
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Background

• The best approximation ration for the general case is 1.
138 due to Goemans and Williamson [GW94, GW95].

• Unfortunately, there is not much room for improveme
nt since this problem is Max-SNP-hard [PY91], and h
ence has no -approximation scheme if P NP [ALM
SS98].
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Background (cont’d)

• Thus one is led to consider restricted versions of MA
X-CUT.
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Background (cont’d)

• For dense unweighted graphs (i.e., graphs with(n2) 
edges), polynomial time approximation schemes were 
presented by Arora et al. [AKK95] and Vega [V96].

• In [VK98], dense weighted instances are dealt with.

• Related results also appear in [GGR98, FK99].



Computation Theory Lab, CSIE, CCU, Taiwan 8

Remarks

• For an unweighted graph G, G is called dense if it has 
(n2) edges.

• For weighted graphs, “dense” refers usually to the    
0, 1 case.
– For a weighted graph G with 0,1 weights, G is called dense 

if its average degree at least cn where c is a constant and n 
denotes the number of vertices of G.
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Remarks (cont’d)

• A PTAS for dense instances of MAX-CUT was found 
independently by Arora, Karger and Karpinski [AKK
95] and Fernandez de la Vega [V96].

• Actually, we will reduce metric MAX-CUT to an inst
ance of ordinary MAX-CUT in which the maximum 
weight exceeds the average weight by at most a const
ant factor.
– It is almost immediate to check that the algorithms for dens

e 0,1 MAX-CUT work for this case with trivial modificatio
ns.
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Remarks (cont’d)

An instance of 
0,1 MAX-CUT

An instance of 
Ordinary MAX-CUT

3

1
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Remarks (cont’d)

• Thus in this paper, we say that a weighted graph G is 
dense if its maximum weight exceeds its average 
weight by at most a constant factor.

– Consider the case that there are only few edges with very 
large weight yet the average weight of the graph is small.
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Remarks (cont’d)

• What is the physical meaning that a weighted graph G is 
dense if its maximum weight exceeds its average weight 
by at most a constant factor (say “”)?

• Let ŵ be the average edge weight of G and let w* be the 
maximum edge weight of G.
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Remarks (cont’d)

• Let G = (V, E) and for e  V V, we denote the weight 
of e by w(e). We have

• Thus the number of edges which have positive weights 
is at least 

w¤ < ¸ŵ ) w¤ < ¸ ¢
P

e2V£V
w(e)

jV j2

P
e2V£V

w(e)

w¤
> 1

¸
¢ jV j2.
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Remarks (cont’d)

• In this paper, we focus on metric instances of MAX-
CUT.

• That is, the vertices correspond to points in metric 
space, the graph is the complete graph, and edge {x, y} 
has a weight equal to the distance between x and y.

• Throughout the paper, we denote by d(x, y) the distance 
between two points x and y. X is our set of n points. M
AX-CUT(X) denotes the value of an optimum cut of X.
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The results

• Metric MAX-CUT is NP-complete.

• Metric MAX-CUT has a (randomized) polynomial 
time approximation scheme.
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The results

• Metric MAX-CUT is NP-complete.

• Metric MAX-CUT has a (randomized) polynomial 
time approximation scheme.

These results are stated in the following theorems.
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Theorem 1 [due to Luca Trevisan]

• Metric MAX-CUT is NP-hard.
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Theorem 2

• Metric MAX-CUT has a (randomized) polynomial 
time approximation scheme.
– That is, for any given  > 0, there is a randomized 

algorithm which takes as input a discrete metric space 
given by its distance matrix, runs in time polynomial in the 
size of the space, and output a bipartition whose value is at 
least (1  ) times the value of the maximum cut.
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Proof of Theorem 1

• The proof is a reduction from MAX-CUT.

• Consider an instance G of MAX-CUT with n vertices.

G
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Proof of Theorem 1 (cont’d)

• Create a new graph G with 2n vertices by taking two 
independent copies of G1 and G2 of G.

G1 G2

G
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Proof of Theorem 1 (cont’d)

• Create a new weighted complete graph H with 2n 
vertices by giving weight 2 to every edge which was 
presented in G and weight 1 to all other edges.

H

: weight 2

: weight 1
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Proof of Theorem 1 (cont’d)

• H now is a metric graph.

H

: weight 2

: weight 1



Computation Theory Lab, CSIE, CCU, Taiwan 24

Proof of Theorem 1 (cont’d)

• It is easy to see that maximum cuts of H correspond to 
taking a maximum cut (A, B) of G1 and the 
complementary maximum cut (B, A) of G2.

G H
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Proof of Theorem 1 (cont’d)

• If the maximum cut of G has value v, then the 
maximum cut of G has value 2v and the maximum 
cut of H has value 2v + n2.

G H
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Proof of Theorem 1 (cont’d)

• If the maximum cut of G has value v, then the 
maximum cut of G has value 2v and the maximum 
cut of H has value 2v + n2.

G H

(A, B)(B, A)

A B
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Proof ideas and techniques

• In the Euclidean case and in small dimension, we 
have a different algorithm which is a PTAS. It is 
based on:
– changing coordinates by moving the origin to the center of 

gravity of the point set, 

– using polar coordinates, suitable rounding to simplify the 
point set, and 

– using brute force to solve the simplified instance.
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Proof ideas and techniques (cont’d)

• In the general metric case, we will obtain our 
approximation theorem as a consequence of the 
following reduction (i.e., Theorem 3).
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Theorem 3

• Approximating Metric MAX-CUT reduces to 
approximating Dense MAX-CUT.
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Proof ideas and techniques (cont’d)

• We will reduce metric MAX-CUT to an instance of 
ordinary (i.e., weighted) MAX-CUT which is dense 
weighted.
– Recall that an instance of ordinary MAX-CUT is dense if 

its maximum weight exceeds its average weight by at most 
a constant factor.
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The problem of a naïve adaptation of the 
algorithm for dense weighted graphs

• We have a naïve algorithm for dense 0-1weighted 
graphs.

– The first step consists in taking a constant size sample of 
the vertices.

– In the dense graphs setting, all significant vertices have the 
same number of edges (up to a constant factor), hence 
contribute the same number of edges to MAX-CUT (up to a 
constant factor). 

– Hence a sample of constant size is sufficient to get a fairly 
good picture of the whole graph.

(vertices with large degree??)
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The problem of a naïve adaptation of the 
algorithm for dense weighted graphs (cont’d)

• In the metric setting, the situation is completely 
different.

• Outliers (points which are really far from the rest of 
the set) may contribute much more to MAX-CUT 
than other points.`
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The problem of a naïve adaptation of the 
algorithm for dense weighted graphs (cont’d)

• A constant size sample is bound to miss the few 
outliers, and examining the sample will not give good 
information about MAX-CUT. 

• Thus a naïve adaptation of the sense graph algorithm 
to metric MAX-CUT is doomed.
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The problem of a naïve adaptation of the 
algorithm for dense weighted graphs (cont’d)

• The solution to this problem is simple:
– The contribution of a point x to (metric) MAX-CUT is 

roughly proportional to the average distance from x to the 
rest of the set.

– Thus in the metric setting, one should NOT use a uniform 
sample of the set of points, but a biased sample, where the 
probability of taking x in the sample is proportional to the 
average distance from x to the rest of the set.
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A fatal error in the paper??

• Given an arbitrary positive integer n and a real 
number x. If x is at least (n1)/2, then we can obtain 
x  x(1  1/n).
– Is this always true??

– For example, let n = 101, we have x  (101  1)/2 = 50. If 
we pick x = 50.9, we have x  = 50 and x(1  1/n) = 
50.3960396. 

– So we have a counterexample.
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The Euclidean case
• In the presentation today, let us consider the 

Euclidean case (the second part of the paper). 
– The third part is the general metric case.

• When the dimension of the underlying space is fixed, 
a PTAS for MAX-CUT can easily be obtained.

• Here, we describe the PTAS for MAX-CUT in the 
plane. The cases of higher dimension are completely 
similar (replacing polar coordinates by spherical 
coordinates).
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The algorithm for the Euclidean case

Input: A set X of n points in the Euclidean plane.
1. Scale the problem so that the average interpoint distance is e

qual to 1.

2. Compute g = xX x/n, the center of gravity of X.

3. If (d(x, g), (x)) denote the polar coordinates of x with respe
ct to g, define the domains:

Dr;k =

½
x 2 R2 : ²(1 + ²)

r¡1 · d(x; g) < ²(1 + ²)r and
k¼² · µ(x) < (k + 1)¼²

¾
;

where r ¸ 1 and 0 · k < 2¼=². Let

D0 = fx 2 R2 : d(x; g) < ²g:
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4. Construct a point (multi)set X obtained by replacing each ele
ment of X Dr,k by yr,k, the point with polar coordinates d(yr,k ,
 g) = (1+ )r1 and (yr,k) = k. Hence yr,k has multiplicity eq
ual to the number of points of X Dr,k. Moreover, each elem
ent of X D0 is replaced by g.

5. Solve MAX-CUT on X  by doing exhaustive search on the fa
mily of all cuts such that points which have the same coordin
ates are placed on the same side of the cut.

Output: the corresponding cut of X.
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How to “scale the problem” so that the av
erage interpoint distance is equal to 1?
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A(a, b)

B(c, d)

d(A;B) =
p
(a¡ c)2 + (b¡ d)2.

If we want to modify d(A, B) to k d(A, B), we can chan
ge the coordinates of A and B to be

A(ka, kb)

B(kc, kd)
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How to compute the center of gravity of X?
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A(1, 2)

B(3, 7)

C(2, 0)

We have g = ((1+3+2)/3, (2+7+0)/3)

      = (2, 3)
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Let us see some illustration to make clear 
the idea of the algorithm.
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g

: point of X
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g

: point of X

: point of X 
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g

: point of X

: point of X 
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Analysis of the running time

• The running time of the algorithm is clearly poly-nomi
al, with possible exception of the exhaus-tive search. T
he running time of the exhaustive search is exponential 
in the number of non-empty domains Dr,k. 

• The following lemma will help us analyze this quantity.
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Lemma 1 

• Let dmax = maxx, y  X d(x, y) denote the diameter of the 
point set. Then the sum of all interpoint distances is at 
least

P
fx;yg½X

d(x; y) ¸ (n¡ 1)dmax.
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Proof of Lemma 1

• Let x0, y0 be such that d(x0, y0) = dmax is maximum.

• Let X  be obtained from X by orthogonal projection o
nto line (x0 y0).

– This can only decrease distances while keeping dmax unchan
ged.

x0

y0

u v

u 
v 
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Proof of Lemma 1 (cont’d)

• By definition of dmax, all points of X  other than x0 and 
y0 must lie between x0 and y0. 

• And it is easy to see that the sum of all distances is mi
nimized when all the points of X  \ {x0, y0} are equal.

x0

y0

u, v, w, …

u , v , w , …
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Proof of Lemma 1 (cont’d)

• Then the sum of all interpoint distances is exactly (n
1)dmax , hence the lemma.

– Since (n2) d(x0, y0) + d(x0, y0) = (n1) dmax .



Computation Theory Lab, CSIE, CCU, Taiwan 54

Corollary 1

• If the average interpoint distance of X is 1, then the di
ameter of X is at most n/2.

• Proof:

Since
P

fx;yg½X
d(x; y) =

n(n¡1)
2

¸ (n ¡ 1)dmax,

we have dmax · n=2.
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Analysis of the running time (cont’d)
• Thus every point is at distance at most n/2 from g.

• If a domain Dr,k contains points of X, it must be the cas
et that (1+)r1 n/2.
– So we have r  1 + log1+(n/2).

• The total number of non-empty domains, including D0, 
is then at most 1 + (1 + log1+(n/2))2/.

• Thus the number of cuts that needs to be examined is a
t most nO(1/2). nO(1/)?
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Analysis of correctness
• Next we will show that the cut output by the 

algorithm is close to optimal.

• First, it is easy to see that if x and y are two points of 
X  which have the same coordinates, then there is a 
maximum cut of X  which places them on the same 
side of the cut.
– Otherwise, moving either x or y to the other side would 

improve the cut.

• Thus the algorithm does indeed compute MAX-
CUT(X ).
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Analysis of correctness (cont’d)

• The main question is thus comparing MAX-CUT(X ) 
to MAX-CUT(X).

• The idea is that points do not move very far when 
going from X  to X . 
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Analysis of correctness (cont’d)

• In fact, if x  X Dr,k , then x is moved by at most the d
iameter dr of Dr,k.

((1+ )r1,  k)

((1+ )r,  (k+1))
(1+ )r () 

= 2(1+ )r

(1+ )r  (1+ )r1

= 2(1+ )r1

dr
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Analysis of correctness (cont’d)

• Thus 

– On the other hand, if xD0, then x is moved by at most . 

• Clearly, moving one point x at distance  from its 
original position does not change the value of the 
optimum cut by more than (n1).

dr · ²2(1 + ²)r¡1 + ²2(1 + ²)r¼

· 5²2(1 + ²)r¡1

= 5²d(x; g):7?
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Analysis of correctness (cont’d)

• Thus we have

• Consider the following lemma.

jMAX-CUT(X)¡MAX-CUT(X)j · ²n(n¡1)+5²(n¡1)P
x

d(x; g).
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Lemma 2
P
x2X

d(x; g) · n
2
.

Proof:
• It is easy to see that 

• In one dimension this is clear.

d(x; g) · 1
n

P
y2X

d(x; y).
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Proof of Lemma 2 (cont’d)

Let us consider the case in one dimension first.  

• LHS = 

d(x; g) · 1
n

P
y2X

d(x; y).

d(x; g) = d

µ
x;

P
y2X y

n

¶

= x¡
P
y2X y

n
:
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Proof of Lemma 2 (cont’d)

• RHS = 

d(x; g) · 1
n

P
y2X

d(x; y).

1

n

X

y2X
d(x; y) =

X

y2X

d(x; y)

n

=
X

y2X
d(
x

n
;
y

n
)

=
X

y2X
(
x

n
¡ y

n
)

= x¡
P

y2X y

n
:
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Proof of Lemma 2 (cont’d)

• In higher dimension it suffices to perform a orthogona
l projection of X onto line (xg), which does not affect t
he LHS and can only decrease the RHS.

• Then summing over all x yields the lemma (theorem).

d(x; g) · 1
n

P
y2X

d(x; y))
P
x2X

d(x; g) · n
2
.
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Analysis of correctness (cont’d)

• Using the lemma, we get 

• The expected value of a random cut of X is n(n1)/4, 
and so

• Hence the algorithm is a PTAS.

jMAX-CUT(X)¡MAX-CUT(X)j · 4²n2.

jMAX-CUT(X)¡MAX-CUT(X)j · 17²MAX-CUT(X).

7/2 ?

It is safe only for n 6.
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By the way, why is the expected value of a 
random cut of X is n(n1)/4? 
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Thank you.


