Celebrity Games

Carme Àlvarez, Maria J. Blesa, Amalia Duch, Arnau Messegué, and Maria Serna

Theoretical Computer Science 648 (2016) 56-71.

Speaker: Joseph Chuang-Chieh Lin

Institute of Information Science Academia Sinica Taiwan

9 September 2016

Outline

- 2 Social optimum and Nash equilibria
- 3 Bounding the PoA
- 4 Celebrity games for eta=1
- Open problems

Celebrity games

- A new model of network creation games.
 - Players have weights.
 - There is a critical distance β .
 - The cost incurred by a player:
 - ★ Establishing links;
 - $\star\,$ Sum of weights of players farther than the critical distance.
- The celebrity game vs. the network creation game.
 - players' weights.
 - the distance cost of being disconnected;

Celebrity games

- A new model of network creation games.
 - Players have weights.
 - There is a critical distance β .
 - The cost incurred by a player:
 - ★ Establishing links;
 - \star Sum of weights of players farther than the critical distance.
- The celebrity game vs. the network creation game.
 - players' weights.
 - the distance cost of being disconnected;

Celebrity games

- A new model of network creation games.
 - Players have weights.
 - There is a critical distance β .
 - The cost incurred by a player:
 - ★ Establishing links;
 - $\star\,$ Sum of weights of players farther than the critical distance.
- The celebrity game vs. the network creation game.
 - players' weights.
 - the distance cost of being disconnected;

Basics (graph)

- G = (V, E): an undirected graph.
- $d_G(u, v)$: the distance between u and v in G.
- diam(u) = max_{v∈V} d_G(u, v).
 diam(G) = max_{v∈V} diam(v).

• For
$$U \subseteq V$$
, $w(U) = \sum_{u \in U} x_u$.
 $\star W = w(V)$.

- $w_{\max} = \max_{u \in V} w_u$.
- $w_{\min} = \min_{u \in V} w_u$.

Basics (The model)

Celebrity Game

- A celebrity game Γ is a tuple $\langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ where:
 - $V = \{1, \ldots, n\}$ is the set of *n* players;
 - $w_u > 0$ for each $u \in V$ is the weight of player u;
 - $\alpha > 0$ is the cost of establishing a link;
 - $\beta \in [1, n-1]$: the critical distance.
- A strategy for player $u: S_u \subseteq V \setminus \{u\}$.
 - S(u): the set of strategies for u.
- A strategy profile: $S = (S_1, \ldots, S_n)$.
 - $\mathcal{S}(\Gamma)$: the set of strategy profiles of Γ .
- Every strategy profile associates an outcome graph
 G[S] = (V, {{u, v} | u ∈ S_v ∨ v ∈ S_u}).

Basics (The model)

Celebrity Game

- A celebrity game Γ is a tuple $\langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ where:
 - $V = \{1, \ldots, n\}$ is the set of *n* players;
 - $w_u > 0$ for each $u \in V$ is the weight of player u;
 - $\alpha > 0$ is the cost of establishing a link;
 - $\beta \in [1, n-1]$: the critical distance.
- A strategy for player $u: S_u \subseteq V \setminus \{u\}.$
 - S(u): the set of strategies for u.
- A strategy profile: $S = (S_1, \ldots, S_n)$.
 - $\mathcal{S}(\Gamma)$: the set of strategy profiles of Γ .
- Every strategy profile associates an outcome graph
 G[S] = (V, {{u, v} | u ∈ S_v ∨ v ∈ S_u}).

Celebrity Games Introduction

Basics (cost & NE)

•
$$c_u(S) = \alpha |S_u| + \sum_{\{v | d_{G[S]}(u,v) > \beta\}} w_v.$$

• $C(S) = \sum_{u \in V} c_u(S).$

• The cost difference $\Delta(S_{-u}, S'_u) := c_u(S_{-u}, S'_u) - c_u(S)$.

• (S_{-u}, S'_{u}) : S_{u} is replaced by S'_{u} , the others remain unchanged.

Nash equilibrium (NE)

Let $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ be a celebrity game. A strategy profile $S \in S(\Gamma)$ is a Nash equilibrium of Γ if

 $\forall u \in V, \forall S'_u \in \mathcal{S}(u)$, such that $\Delta(S_{-u}, S'_u) \ge 0$.

· < /⊒ > < ∃ > <

Celebrity Games Introduction

Basics (More on total cost)

• For G = G[S],

$$C(G) = \alpha |E(G)| + \sum_{u \in V} \sum_{\{v \mid d_G(u,v) > \beta\}} w_v$$

= $\alpha |E(G)| + \sum_{\{(u,v) \mid u < v \land d_G(u,v) > \beta\}} (w_v + w_u)$

Particular cases:

•
$$C(K_n) = \alpha n(n-1)/2.$$

•
$$C(I_n) = W(n-1)$$
 for $\beta \ge 1$.

• $C(ST_n) = \alpha(n-1)$ for $1 < \beta \le n-1$, and $C(ST_n) = \alpha(n-1) + (n-2)(W - w_c)$, where c is the central vertex, for $\beta = 1$.

-

∃ >

Image: Image:

Celebrity Games Introduction

Basics (More on total cost)

• For G = G[S],

$$C(G) = \alpha |E(G)| + \sum_{u \in V} \sum_{\{v \mid d_G(u,v) > \beta\}} w_v$$

= $\alpha |E(G)| + \sum_{\{(u,v) \mid u < v \land d_G(u,v) > \beta\}} (w_v + w_u)$

• Particular cases:

•
$$C(K_n) = \alpha n(n-1)/2.$$

•
$$C(I_n) = W(n-1)$$
 for $\beta \ge 1$.

•
$$C(ST_n) = \alpha(n-1)$$
 for $1 < \beta \le n-1$, and
 $C(ST_n) = \alpha(n-1) + (n-2)(W - w_c)$, where c is the central vertex, for $\beta = 1$.

Celebrity Games Introduction

Basics (PoS & PoA)

- PoA(Γ) = max_{S∈NE(Γ)} C(S)/opt(Γ).
- $PoS(\Gamma) = min_{S \in NE(\Gamma)} C(S)/opt(\Gamma).$

NP-hard for computing a best response

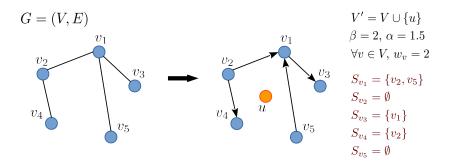
Proposition 1

Computing a best response for a player to a strategy profile in a celebrity game is \mathbf{NP} -hard.

• Reduction from minimum dominating set.

Celebrity Games Introduction

Proof of Proposition 1

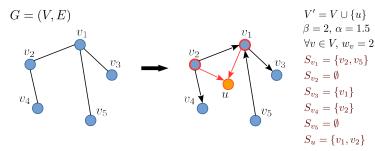


Joseph C.-C. Lin (Academia Sinica, TW)

Celebrity Games

Celebrity Games Introduction

Proof of Proposition 1 (contd.)



- Let $D \subseteq V$ be a strategy of u.
- If *D* is a dominating set of *G*:

•
$$c_u(S_{-u}, D) = \alpha |D| + \sum_{x \in V, d(u,x) > 2} 2 = \alpha |D|.$$

Otherwise,

$$c_u(S_{-u}, D) = \alpha |D| + \sum_{x \in V, d(u, x) > 2} 2 > \alpha (|D| + |\{x \in V \mid d(u, x) > 2\}|).$$

Social Optimum and Nash Equilibria

Joseph C.-C. Lin (Academia Sinica, TW)

Celebrity Games

9 Sep 2016 12 / 55

For a celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$, $opt(\Gamma) = min\{\alpha, W\}(n-1)$.

Let S ∈ OPT(Γ) and G = G[S] with connected components G₁,..., G_r.
V_i = V(G_i), k_i = |V_i|, and W_i = w(V_i), for each i.

• Each G_i must be a tree of diameter $\leq \beta$

$$C(G) = \sum_{i=1}^{r} \alpha(k_i - 1) + \sum_{i=1}^{r} k_i (W - W_i) = \alpha(n - r) + nW - \sum_{i=1}^{r} k_i W_i.$$

• $\therefore 1 \le k_i \le n - (r-1)$ $\therefore W \le \sum_{i=1}^r k_i W_i \le (n-r+1)W.$ $\rhd \ \alpha(n-r) + (r-1)W \le C(G).$

Consider the two cases below.

► < ∃ ►</p>

For a celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$, $opt(\Gamma) = min\{\alpha, W\}(n-1)$.

• Let $S \in OPT(\Gamma)$ and G = G[S] with connected components G_1, \ldots, G_r .

•
$$V_i = V(G_i)$$
, $k_i = |V_i|$, and $W_i = w(V_i)$, for each i .

• Each G_i must be a tree of diameter $\leq \beta$.

$$C(G) = \sum_{i=1}^{r} \alpha(k_i - 1) + \sum_{i=1}^{r} k_i (W - W_i) = \alpha(n - r) + nW - \sum_{i=1}^{r} k_i W_i.$$

• $\therefore 1 \le k_i \le n - (r-1)$ $\therefore W \le \sum_{i=1}^r k_i W_i \le (n-r+1)W.$ $\Rightarrow \alpha(n-r) + (r-1)W \le C(G).$

Consider the two cases below.

.

For a celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$, $opt(\Gamma) = min\{\alpha, W\}(n-1)$.

• Let $S \in OPT(\Gamma)$ and G = G[S] with connected components G_1, \ldots, G_r .

•
$$V_i = V(G_i)$$
, $k_i = |V_i|$, and $W_i = w(V_i)$, for each i .

• Each G_i must be a tree of diameter $\leq \beta$.

•
$$C(G) = \sum_{i=1}^{r} \alpha(k_i - 1) + \sum_{i=1}^{r} k_i (W - W_i) = \alpha(n - r) + nW - \sum_{i=1}^{r} k_i W_i.$$

•
$$\therefore 1 \le k_i \le n - (r-1)$$
 $\therefore W \le \sum_{i=1}^r k_i W_i \le (n-r+1)W.$
 $\rhd \alpha(n-r) + (r-1)W \le C(G).$

Consider the two cases below.

For a celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$, $opt(\Gamma) = min\{\alpha, W\}(n-1)$.

- Let S ∈ OPT(Γ) and G = G[S] with connected components G₁,..., G_r.
 V_i = V(G_i), k_i = |V_i|, and W_i = w(V_i), for each i.
- Each G_i must be a tree of diameter $\leq \beta$.

•
$$C(G) = \sum_{i=1}^{r} \alpha(k_i - 1) + \sum_{i=1}^{r} k_i (W - W_i) = \alpha(n - r) + nW - \sum_{i=1}^{r} k_i W_i.$$

• $\therefore 1 \leq k_i \leq n-(r-1)$ $\therefore W \leq \sum_{i=1}^r k_i W_i \leq (n-r+1)W.$

 $\triangleright \ \alpha(n-r)+(r-1)W \leq C(G).$

Consider the two cases below.

(日) (同) (三) (三)

(

For a celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$, $opt(\Gamma) = min\{\alpha, W\}(n-1)$.

Let S ∈ OPT(Γ) and G = G[S] with connected components G₁,..., G_r.
V_i = V(G_i), k_i = |V_i|, and W_i = w(V_i), for each i.

• Each
$$G_i$$
 must be a tree of diameter $\leq \beta$.

$$C(G) = \sum_{i=1}^{r} \alpha(k_i - 1) + \sum_{i=1}^{r} k_i (W - W_i) = \alpha(n - r) + nW - \sum_{i=1}^{r} k_i W_i.$$

• $\therefore 1 \leq k_i \leq n-(r-1)$ $\therefore W \leq \sum_{i=1}^r k_i W_i \leq (n-r+1)W.$

 $\triangleright \ \alpha(n-r) + (r-1)W \leq C(G).$

Consider the two cases below.

.

For a celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$, $opt(\Gamma) = min\{\alpha, W\}(n-1)$.

- Let S ∈ OPT(Γ) and G = G[S] with connected components G₁,..., G_r.
 V_i = V(G_i), k_i = |V_i|, and W_i = w(V_i), for each i.
- Each G_i must be a tree of diameter $\leq \beta$.

•
$$C(G) = \sum_{i=1}^{r} \alpha(k_i - 1) + \sum_{i=1}^{r} k_i (W - W_i) = \alpha(n - r) + nW - \sum_{i=1}^{r} k_i W_i.$$

•
$$\therefore 1 \le k_i \le n - (r-1)$$
 $\therefore W \le \sum_{i=1}^r k_i W_i \le (n-r+1)W$
 $\rhd \alpha(n-r) + (r-1)W \le C(G).$

Consider the two cases below.

For a celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$, $opt(\Gamma) = min\{\alpha, W\}(n-1)$.

- Let S ∈ OPT(Γ) and G = G[S] with connected components G₁,..., G_r.
 V_i = V(G_i), k_i = |V_i|, and W_i = w(V_i), for each i.
- Each G_i must be a tree of diameter $\leq \beta$.

•
$$C(G) = \sum_{i=1}^{r} \alpha(k_i - 1) + \sum_{i=1}^{r} k_i (W - W_i) = \alpha(n - r) + nW - \sum_{i=1}^{r} k_i W_i.$$

•
$$\therefore 1 \le k_i \le n - (r-1)$$
 $\therefore W \le \sum_{i=1}^r k_i W_i \le (n-r+1)W.$
 $\rhd \alpha(n-r) + (r-1)W \le C(G).$

Consider the two cases below.

Celebrity Games Social optimum and Nash equilibria

Proof of Proposition 2 (contd.)

Recall that: $\alpha(n-r) + (r-1)W \leq C(G)$

- Case I: α ≥ W.
 W(n-1) ≤ α(n-r) + (r 1)W ≤ C(G).
 Since C(I_n) = W(n-1) and G is optimal, then C(G) = W(n-1).
 Case II: α < W.
 α(n-1) ≤ C(G).
 - Since $C(ST_n) = \alpha(n-1) \le C(G)$, then $C(G) = \alpha(n-1)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Celebrity Games Social optimum and Nash equilibria

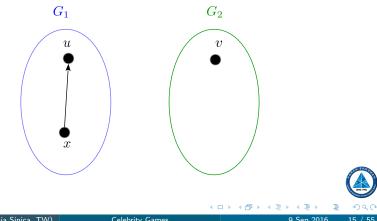
Proof of Proposition 2 (contd.)

Recall that: $\alpha(n-r) + (r-1)W \leq C(G)$

- Case I: α ≥ W.
 W(n-1) ≤ α(n-r) + (r 1)W ≤ C(G).
 Since C(I_n) = W(n-1) and G is optimal, then C(G) = W(n-1).
 Case II: α < W.
 α(n-1) ≤ C(G).
 - Since $C(ST_n) = \alpha(n-1) \leq C(G)$, then $C(G) = \alpha(n-1)$.

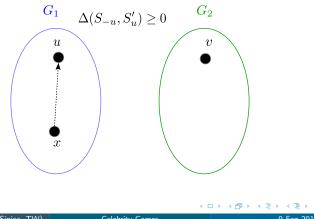
- 4 @ > 4 @ > 4 @ >

Every NE graph of a celebrity game $\Gamma = \langle V, (w_{\mu})_{\mu \in V}, \alpha, \beta \rangle$ is either connected or the graph I_n .



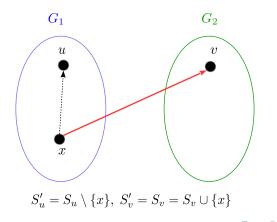
Joseph C.-C. Lin (Academia Sinica, TW)

Every NE graph of a celebrity game $\Gamma = \langle V, (w_{\mu})_{\mu \in V}, \alpha, \beta \rangle$ is either connected or the graph I_n .

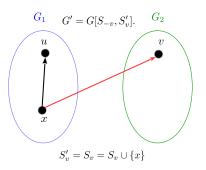


Joseph C.-C. Lin (Academia Sinica, TW)

Every NE graph of a celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ is either connected or the graph I_n .



Every NE graph of a celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ is either connected or the graph I_n .



• $d_{G'}(v, u) = 2 \le \beta \Rightarrow$ $\Delta(S_{-v}, S'_v) \le -\Delta(S_{-u}, S'_u) - w_u < 0$ ($\Rightarrow \in S$ is a NE).

- Every celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ has a NE.
- α ≥ w_{max}: I_n is a NE graph;
 otherwise: ST_n is a NE graph but I_n is NOT.

• $\alpha \ge w_{\max}$: • Let $G = G[S] = I_n$. • $S_u = \emptyset, \forall u \in V$. • Consider $u \in V$ and $S'_u \neq \emptyset$. • $\Delta(S'_{uv}, S'_u) = \alpha |S'_u| - \sum_{v \in S'_u} w_v = \sum_{v \in S'_u} (\alpha - w_v) \ge 0$

• Every celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ has a NE.

•
$$\alpha \ge w_{\max}$$
:
• Let $G = G[S] = I_n$.
• $S_u = \emptyset, \forall u \in V$.
• Consider $u \in V$ and $S'_u \neq \emptyset$.
• $\Delta(S'_{-u}, S'_u) = \alpha |S'_u| - \sum_{v \in S'_u} w_v = \sum_{v \in S'_u} (\alpha - w_v) \ge 0$.

• Every celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ has a NE.

•
$$\alpha \ge w_{\max}$$
:
• Let $G = G[S] = I_n$.
• $S_u = \emptyset, \forall u \in V$.
• Consider $u \in V$ and $S'_u \neq \emptyset$.
• $\Delta(S'_{-u}, S'_u) = \alpha |S'_u| - \sum_{v \in S'_u} w_v = \sum_{v \in S'_u} (\alpha - w_v) \ge 0$.

• Every celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ has a NE.

•
$$\alpha \geq w_{\max}$$
:
• Let $G = G[S] = I_n$.
• $S_u = \emptyset, \forall u \in V$.
• Consider $u \in V$ and $S'_u \neq \emptyset$.
• $\Delta(S'_{-u}, S'_u) = \alpha |S'_u| - \sum_{v \in S'_u} w_v = \sum_{v \in S'_u} (\alpha - w_v) \geq 0$.

• Every celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ has a NE.

•
$$\alpha \geq w_{\max}$$
:
• Let $G = G[S] = I_n$.
• $S_u = \emptyset, \forall u \in V$.
• Consider $u \in V$ and $S'_u \neq \emptyset$.
• $\Delta(S'_{-u}, S'_u) = \alpha |S'_u| - \sum_{v \in S'_u} w_v = \sum_{v \in S'_u} (\alpha - w_v) \geq 0$.

• Every celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ has a NE.

• $\alpha \ge w_{\max}$: I_n is a NE graph;

otherwise: ST_n is a NE graph but I_n is NOT.

• $\alpha < w_{\max}$:

- Let u be a vertex with $w(u) = w_{\max}$.
- Let ST_n be a star graph with u being the center.

• $S_u = \emptyset$, and $S_v = \{u\}, \, \forall v \in V \setminus \{u\}$.

- $\beta>1\Rightarrow$ NO player gets a cost decrease by connecting to more players.
- For $u \neq v$, $w_v + \alpha < w_v + w_{\max} < W \Rightarrow \alpha < W w_v$

(deleting any connection won't help)

I_n can NOT be a NE graph.

For $v \in V \setminus \{u\}$, v has incentive to connect u ($w_u = w_{max}$).

(日) (同) (三) (三)

• Every celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ has a NE.

α ≥ w_{max}: I_n is a NE graph;
 otherwise: ST_n is a NE graph but I_n is NOT.

- $\alpha < w_{\max}$:
 - Let u be a vertex with $w(u) = w_{max}$.
 - Let ST_n be a star graph with u being the center.
 - $S_u = \emptyset$, and $S_v = \{u\}, \forall v \in V \setminus \{u\}.$
 - $eta > 1 \Rightarrow \mathsf{NO}$ player gets a cost decrease by connecting to more players.
 - For $u \neq v$, $w_v + \alpha < w_v + w_{max} < W \Rightarrow \alpha < W w_v$
 - (deleting any connection won't help)
 - For $v \in V \setminus \{u\}$ v has incentive to connect u (w₀ = w

• Every celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ has a NE.

α ≥ w_{max}: I_n is a NE graph;
 otherwise: ST_n is a NE graph but I_n is NOT.

- $\alpha < w_{\max}$:
 - Let u be a vertex with $w(u) = w_{max}$.
 - Let ST_n be a star graph with u being the center.

•
$$S_u = \emptyset$$
, and $S_v = \{u\}, \forall v \in V \setminus \{u\}.$

- $\beta > 1 \Rightarrow$ NO player gets a cost decrease by connecting to more players.
- For $u \neq v$, $w_v + \alpha < w_v + w_{max} < W \Rightarrow \alpha < W w_v$ (deleting any connection won't help).
- I_n can NOT be a NE graph. For $v \in V \setminus \{u\}$, v has incentive to connect u ($w_n = w_{max}$)

.

• Every celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ has a NE.

α ≥ w_{max}: I_n is a NE graph;
 otherwise: ST_n is a NE graph but I_n is NOT.

- $\alpha < w_{\max}$:
 - Let u be a vertex with $w(u) = w_{\max}$.
 - Let ST_n be a star graph with u being the center.

•
$$S_u = \emptyset$$
, and $S_v = \{u\}, \forall v \in V \setminus \{u\}.$

- $\beta > 1 \Rightarrow$ NO player gets a cost decrease by connecting to more players.
- For $u \neq v$, $w_v + \alpha < w_v + w_{max} < W \Rightarrow \alpha < W w_v$
 - (deleting any connection won't help)
- I_n can NOT be a NE graph.
 For v ∈ V \ {u}, v has incentive to connect u (w_u = w_{max}).

.

• Every celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ has a NE.

α ≥ w_{max}: I_n is a NE graph;
 otherwise: ST_n is a NE graph but I_n is NOT.

- $\alpha < w_{\max}$:
 - Let u be a vertex with $w(u) = w_{\max}$.
 - Let ST_n be a star graph with u being the center.

•
$$S_u = \emptyset$$
, and $S_v = \{u\}, \, \forall v \in V \setminus \{u\}$.

- $\beta > 1 \Rightarrow$ NO player gets a cost decrease by connecting to more players.
- For $u \neq v$, $w_v + \alpha < w_v + w_{max} < W \Rightarrow \alpha < W w_v$ (deleting any connection won't help).

I_n can NOT be a NE graph.
 For v ∈ V \ {u}, v has incentive to connect u (w_u = w_{max}).

< 3 > < 3 >

• Every celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ has a NE.

 α ≥ w_{max}: I_n is a NE graph; otherwise: ST_n is a NE graph but I_n is NOT.

- $\alpha < w_{\max}$:
 - Let u be a vertex with $w(u) = w_{\max}$.
 - Let ST_n be a star graph with u being the center.

•
$$S_u = \emptyset$$
, and $S_v = \{u\}, \, \forall v \in V \setminus \{u\}.$

- $\beta > 1 \Rightarrow$ NO player gets a cost decrease by connecting to more players.
- For u ≠ v, w_v + α < w_v + w_{max} < W ⇒ α < W − w_v (deleting any connection won't help).
- I_n can NOT be a NE graph.
 For v ∈ V \ {u}, v has incentive to connect u (w_u = w_{max}).

< E > < E >

• Every celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ has a NE.

 α ≥ w_{max}: I_n is a NE graph; otherwise: ST_n is a NE graph but I_n is NOT.

- $\alpha < w_{\max}$:
 - Let u be a vertex with $w(u) = w_{\max}$.
 - Let ST_n be a star graph with u being the center.

•
$$S_u = \emptyset$$
, and $S_v = \{u\}, \, \forall v \in V \setminus \{u\}$.

- $\beta > 1 \Rightarrow$ NO player gets a cost decrease by connecting to more players.
- For u ≠ v, w_v + α < w_v + w_{max} < W ⇒ α < W − w_v (deleting any connection won't help).
- I_n can NOT be a NE graph. For $v \in V \setminus \{u\}$, v has incentive to connect u ($w_u = w_{max}$).

• Every celebrity game $\Gamma = \langle V, (w_u)_{u \in V}, \alpha, \beta \rangle$ has a NE.

α ≥ w_{max}: I_n is a NE graph;
 otherwise: ST_n is a NE graph but I_n is NOT.

• $\alpha < w_{\max}$:

- Let u be a vertex with $w(u) = w_{\max}$.
- Let ST_n be a star graph with u being the center.

•
$$S_u = \emptyset$$
, and $S_v = \{u\}, \, \forall v \in V \setminus \{u\}.$

- $\beta > 1 \Rightarrow$ NO player gets a cost decrease by connecting to more players.
- For u ≠ v, w_v + α < w_v + w_{max} < W ⇒ α < W − w_v (deleting any connection won't help).
- I_n can NOT be a NE graph. For $v \in V \setminus \{u\}$, v has incentive to connect u ($w_u = w_{max}$).

Let Γ be a celebrity game with $\alpha \geq w_{\max}$.

• If there is MORE THAN ONE vertex $u \in V$ with $\alpha > W - w_u$, then I_n is the UNIQUE NE graph of Γ ;

• otherwise, ST_n is a NE graph of Γ .

Corollary 1

Let Γ be a celebrity game.

 I_n is the unique NE graph of Γ if and only if

• $\alpha \geq w_{\max}$ and

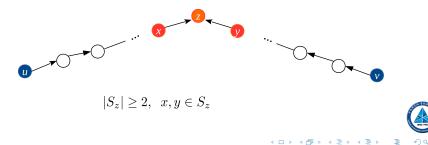
• there is more than one vertex $u \in V$ s.t. $\alpha > W - w_u$.

Celebrity Games Social optimum and Nash equilibria

Proof of Proposition 5

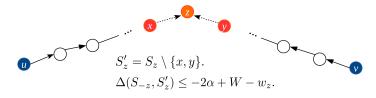
- Assume that $\exists u, v \in V, \alpha > W w_u$ and $\alpha > W w_v$, and there is a NE graph $G = G[S] \neq I_n$.
- *G* is connected (by Proposition 3).

•
$$S_u = S_v = \emptyset$$
 (:: $\alpha > W - w_u$ and $\alpha > W - w_v$).



Proof of Proposition 5

- Assume that $\exists u, v \in V$, $\alpha > W w_u$ and $\alpha > W w_v$, and there is a NE graph $G = G[S] \neq I_n$.
- *G* is connected (by Proposition 3).
- $S_u = S_v = \emptyset$ (:: $\alpha > W w_u$ and $\alpha > W w_v$).



 $\therefore G$ is a NE graph and $2\alpha > W - w_u + W - w_v$

$$\therefore W - w_z \ge 2\alpha > W - W_u + W - w_v.$$

 $\Rightarrow W < w_u + w_v - w_z < w_u + w_v \text{ (impossible)}$

Celebrity Games Social optimum and Nash equilibria

Proof of Proposition 5 (contd.)

• Case II: at most one vertex u with $\alpha > W - w_u$.

• S:
$$S_u = \emptyset$$
, and $S_v = \{u\}$, $\forall v \neq u$.

• S is NE &
$$G[S] = ST_n$$
.

Star Celebrity Game

 Γ is a star celebrity game if Γ has a NE graph that is connected.

Corollary 2

For a celebrity game $\boldsymbol{\Gamma},$ the following statements are equivalent.

- Γ is a star celebrity game;
- Either α < w_{max} or α ≥ w_{max} and there is at most one vertex u ∈ V for which α > W − w_u.
- ST_n is a NE graph of Γ .

Let Γ be a celebrity game. Then we have

- If Γ is a star celebrity game, $PoS(\Gamma) = 1$.
- If Γ is NOT a star celebrity game and α ≥ W, then PoS(Γ) = PoA(Γ) = 1.
- If Γ is NOT a star celebrity game and $\alpha < W$, then $PoS(\Gamma) = PoA(\Gamma) = W/\alpha > 1$.

•
$$\mathsf{opt}(\Gamma) = W(n-1)$$
 if $\alpha \geq W$;

opt $(\Gamma) = lpha(n-1)$ if lpha < W (by Proposition 2).

- ST_n is a NE graph (by Corollary 2).
- If $\alpha < w_{\max} \Rightarrow \alpha < W$ (done).
- Otherwise, \exists at most one $u \in V$ s.t. $\alpha > W w_u$.
- Assume that $w_{u_1} \leq \ldots \leq w_{u_{n-1}} \leq w_{u_n}$ $\Rightarrow W > W - w_{u_1} \geq \ldots \geq W - w_{u_{n-1}} \geq W - w_{u_n}.$

Let Γ be a celebrity game. Then we have

- If Γ is a star celebrity game, $PoS(\Gamma) = 1$.
- If Γ is NOT a star celebrity game and α ≥ W, then PoS(Γ) = PoA(Γ) = 1.
- If Γ is NOT a star celebrity game and $\alpha < W$, then $PoS(\Gamma) = PoA(\Gamma) = W/\alpha > 1$.

•
$$opt(\Gamma) = W(n-1)$$
 if $\alpha \ge W$;
 $opt(\Gamma) = \alpha(n-1)$ if $\alpha < W$ (by Proposition 2).

If Γ is a star celebrity game (note: α < W):
ST_n is a NE graph (by Corollary 2).
If α < w_{max} ⇒ α < W (done).
Otherwise, ∃ at most one u ∈ V s.t. α > W - w_u
Assume that w_{u1} ≤ ... ≤ w_{un-1} ≤ w_{un} ⇒ W > W - w_{u1} ≥ ... ≥ W - w_{un-1} ≥ W - w_u

Let Γ be a celebrity game. Then we have

- If Γ is a star celebrity game, $PoS(\Gamma) = 1$.
- If Γ is NOT a star celebrity game and α ≥ W, then PoS(Γ) = PoA(Γ) = 1.
- If Γ is NOT a star celebrity game and $\alpha < W$, then $PoS(\Gamma) = PoA(\Gamma) = W/\alpha > 1$.

• opt(
$$\Gamma$$
) = $W(n-1)$ if $\alpha \ge W$;
opt(Γ) = $\alpha(n-1)$ if $\alpha < W$ (by Proposition 2)

- ST_n is a NE graph (by Corollary 2).
- If $\alpha < w_{\max} \Rightarrow \alpha < W$ (done).
- Otherwise, \exists at most one $u \in V$ s.t. $\alpha > W w_u$.
- Assume that $w_{u_1} \leq \ldots \leq w_{u_{n-1}} \leq w_{u_n}$ $\Rightarrow W > W - w_{u_1} \geq \ldots \geq W - w_{u_{n-1}} \geq W - w_{u_n}.$

Let Γ be a celebrity game. Then we have

- If Γ is a star celebrity game, $PoS(\Gamma) = 1$.
- If Γ is NOT a star celebrity game and α ≥ W, then PoS(Γ) = PoA(Γ) = 1.
- If Γ is NOT a star celebrity game and $\alpha < W$, then $PoS(\Gamma) = PoA(\Gamma) = W/\alpha > 1$.

• opt(
$$\Gamma$$
) = $W(n-1)$ if $\alpha \ge W$;
opt(Γ) = $\alpha(n-1)$ if $\alpha < W$ (by Proposition 2)

- *ST_n* is a NE graph (by Corollary 2).
- If $\alpha < w_{\max} \Rightarrow \alpha < W$ (done).
- Otherwise, \exists at most one $u \in V$ s.t. $\alpha > W w_u$.
- Assume that $w_{u_1} \leq \ldots \leq w_{u_{n-1}} \leq w_{u_n}$ $\Rightarrow W > W - w_{u_1} \geq \ldots \geq W - w_{u_{n-1}} \geq W - w_{u_n}.$
- Thus PoS = 1.

Let Γ be a celebrity game. Then we have

- If Γ is a star celebrity game, $PoS(\Gamma) = 1$.
- If Γ is NOT a star celebrity game and α ≥ W, then PoS(Γ) = PoA(Γ) = 1.
- If Γ is NOT a star celebrity game and $\alpha < W$, then $PoS(\Gamma) = PoA(\Gamma) = W/\alpha > 1$.

• opt(
$$\Gamma$$
) = $W(n-1)$ if $\alpha \ge W$;
opt(Γ) = $\alpha(n-1)$ if $\alpha < W$ (by Proposition 2)

- *ST_n* is a NE graph (by Corollary 2).
- If $\alpha < w_{\max} \Rightarrow \alpha < W$ (done).
- Otherwise, \exists at most one $u \in V$ s.t. $\alpha > W w_u$.
- Assume that $w_{u_1} \leq \ldots \leq w_{u_{n-1}} \leq w_{u_n}$ $\Rightarrow W > W - w_{u_1} \geq \ldots \geq W - w_{u_{n-1}} \geq W - w_{u_n}.$

Let Γ be a celebrity game. Then we have

- If Γ is a star celebrity game, $PoS(\Gamma) = 1$.
- If Γ is NOT a star celebrity game and α ≥ W, then PoS(Γ) = PoA(Γ) = 1.
- If Γ is NOT a star celebrity game and $\alpha < W$, then $PoS(\Gamma) = PoA(\Gamma) = W/\alpha > 1$.

• opt(
$$\Gamma$$
) = $W(n-1)$ if $\alpha \ge W$;
opt(Γ) = $\alpha(n-1)$ if $\alpha < W$ (by Proposition 2)

- *ST_n* is a NE graph (by Corollary 2).
- If $\alpha < w_{\max} \Rightarrow \alpha < W$ (done).
- Otherwise, \exists at most one $u \in V$ s.t. $\alpha > W w_u$.
- Assume that $w_{u_1} \leq \ldots \leq w_{u_{n-1}} \leq w_{u_n}$ $\Rightarrow W > W - w_{u_1} \geq \ldots \geq W - w_{u_{n-1}} \geq W - w_{u_n}.$

• Thus PoS = 1

Let Γ be a celebrity game. Then we have

- If Γ is a star celebrity game, $PoS(\Gamma) = 1$.
- If Γ is NOT a star celebrity game and α ≥ W, then PoS(Γ) = PoA(Γ) = 1.
- If Γ is NOT a star celebrity game and $\alpha < W$, then $PoS(\Gamma) = PoA(\Gamma) = W/\alpha > 1$.

• opt(
$$\Gamma$$
) = $W(n-1)$ if $\alpha \ge W$;
opt(Γ) = $\alpha(n-1)$ if $\alpha < W$ (by Proposition 2)

- *ST_n* is a NE graph (by Corollary 2).
- If $\alpha < w_{\max} \Rightarrow \alpha < W$ (done).
- Otherwise, \exists at most one $u \in V$ s.t. $\alpha > W w_u$.
- Assume that $w_{u_1} \leq \ldots \leq w_{u_{n-1}} \leq w_{u_n}$ $\Rightarrow W > W - w_{u_1} \geq \ldots \geq W - w_{u_{n-1}} \geq W - w_{u_n}.$
- Thus PoS = 1.

Let Γ be a celebrity game. Then we have

- If Γ is a star celebrity game, $PoS(\Gamma) = 1$.
- If Γ is NOT a star celebrity game and $\alpha \geq W$, then $PoS(\Gamma) = PoA(\Gamma) = 1$.
- If Γ is NOT a star celebrity game and $\alpha < W$, then $PoS(\Gamma) = PoA(\Gamma) = W/\alpha > 1$.

• opt(
$$\Gamma$$
) = $W(n-1)$ if $\alpha \ge W$;
opt(Γ) = $\alpha(n-1)$ if $\alpha < W$ (by Proposition 2)

• If Γ is NOT a star celebrity game:

• I_n is the UNIQUE NE graph (by Corollary 2 & Proposition 5).

• When
$$\alpha \ge W$$
: PoS(Γ) = PoA(Γ) = 1.

• When
$$\alpha < W$$
: PoS(Γ) = PoA(Γ) = $\frac{W(n-1)}{\alpha(n-1)} = \frac{W}{\alpha} > 1$

Let Γ be a celebrity game. Then we have

- If Γ is a star celebrity game, $PoS(\Gamma) = 1$.
- If Γ is NOT a star celebrity game and $\alpha \geq W$, then $PoS(\Gamma) = PoA(\Gamma) = 1$.
- If Γ is NOT a star celebrity game and $\alpha < W$, then $PoS(\Gamma) = PoA(\Gamma) = W/\alpha > 1$.

•
$$opt(\Gamma) = W(n-1)$$
 if $\alpha \ge W$;
 $opt(\Gamma) = \alpha(n-1)$ if $\alpha < W$ (by Proposition 2).

- If Γ is NOT a star celebrity game:
 - *I_n* is the UNIQUE NE graph (by Corollary 2 & Proposition 5).

• When
$$\alpha \ge W$$
: PoS(Γ) = PoA(Γ) = 1.
• When $\alpha < W$: PoS(Γ) = PoA(Γ) = $\frac{W(n-1)}{\alpha(n-1)} = \frac{W}{\alpha} > 1$

Let Γ be a celebrity game. Then we have

- If Γ is a star celebrity game, $PoS(\Gamma) = 1$.
- If Γ is NOT a star celebrity game and $\alpha \geq W$, then $PoS(\Gamma) = PoA(\Gamma) = 1$.
- If Γ is NOT a star celebrity game and $\alpha < W$, then $PoS(\Gamma) = PoA(\Gamma) = W/\alpha > 1$.

- If Γ is NOT a star celebrity game:
 - *I_n* is the UNIQUE NE graph (by Corollary 2 & Proposition 5).

• When
$$\alpha \ge W$$
: PoS(Γ) = PoA(Γ) = 1.
• When $\alpha < W$: PoS(Γ) = PoA(Γ) = $\frac{W(n-1)}{\alpha(n-1)} = \frac{W}{\alpha} > 1$.

Bounding the PoA of Star Celebrity Games

Joseph C.-C. Lin (Academia Sinica, TW)

Celebrity Games

9 Sep 2016 28 / 55

Lemma 2

For a star celebrity game Γ , $PoA(\Gamma) \leq W/\alpha$.

- Let S be a NE of Γ and let G = G[S] = (V, E).
- $0 \leq \Delta(S_{-u}, \emptyset) \leq -lpha |S_u| + w(\{v \mid d(u, v) \leq \beta\}) w_u.$
- Thus, for all $u \in V$,

$$0 \leq \sum_{u \in V} (-\alpha |S_u| + \sum_{\{v \mid d(u,v) \leq \beta\}} w_v - w_u) = -\alpha |E| + \sum_{u \in V} \sum_{\{v \mid d(u,v) \leq \beta\}} w_v - W.$$

• Therefore

$$[G] = \alpha |E| + \sum_{u \in V} \sum_{\{v | d(u,v) > \beta\}} w_v$$

$$\leq \sum_{u \in V} \left(\sum_{\{v \mid d(u,v) \leq \beta\}} w_v + \sum_{\{v \mid d(u,v) > \beta\}} w_v \right) - W = (n-1)^{1/2}$$

Lemma 2

For a star celebrity game Γ , $PoA(\Gamma) \leq W/\alpha$.

- Let S be a NE of Γ and let G = G[S] = (V, E).
 0 < Δ(S_{-u}, Ø) < -α|S_u| + w({v | d(u, v) < β}) w_u.
- Thus, for all $u \in V$,

$$0 \leq \sum_{u \in V} (-\alpha |S_u| + \sum_{\{v \mid d(u,v) \leq \beta\}} w_v - w_u) = -\alpha |E| + \sum_{u \in V} \sum_{\{v \mid d(u,v) \leq \beta\}} w_v - W.$$

Therefore

$$(G) = \alpha |E| + \sum_{u \in V} \sum_{\{v \mid d(u,v) > \beta\}} w_v$$

$$\leq \sum_{u \in V} \left(\sum_{\{v \mid d(u,v) \leq \beta\}} w_v + \sum_{\{v \mid d(u,v) > \beta\}} w_v \right) - W = (n-1)W$$

Lemma 2

For a star celebrity game Γ , $PoA(\Gamma) \leq W/\alpha$.

- Let S be a NE of Γ and let G = G[S] = (V, E).
- $0 \leq \Delta(S_{-u}, \emptyset) \leq -\alpha |S_u| + w(\{v \mid d(u, v) \leq \beta\}) w_u.$
- Thus, for all $u \in V$,

$$0 \leq \sum_{u \in V} (-\alpha |S_u| + \sum_{\{v \mid d(u,v) \leq \beta\}} w_v - w_u) = -\alpha |E| + \sum_{u \in V} \sum_{\{v \mid d(u,v) \leq \beta\}} w_v - W.$$

Therefore

$$\begin{aligned} F) &= & \alpha |E| + \sum_{u \in V} \sum_{\{v \mid d(u,v) > \beta\}} w_v \\ &\leq & \sum_{u \in V} \left(\sum_{\{v \mid d(u,v) \le \beta\}} w_v + \sum_{\{v \mid d(u,v) > \beta\}} w_v \right) - W = (n-1)W. \end{aligned}$$

Lemma 2

For a star celebrity game Γ , $PoA(\Gamma) \leq W/\alpha$.

- Let S be a NE of Γ and let G = G[S] = (V, E).
- $0 \leq \Delta(S_{-u}, \emptyset) \leq -\alpha |S_u| + w(\{v \mid d(u, v) \leq \beta\}) w_u.$
- Thus, for all $u \in V$,

$$0 \leq \sum_{u \in V} (-\alpha |S_u| + \sum_{\{v \mid d(u,v) \leq \beta\}} w_v - w_u) = -\alpha |E| + \sum_{u \in V} \sum_{\{v \mid d(u,v) \leq \beta\}} w_v - W.$$

Therefore,

$$C(G) = \alpha |E| + \sum_{u \in V} \sum_{\{v | d(u,v) > \beta\}} w_v$$

$$\leq \sum_{u \in V} \left(\sum_{\{v | d(u,v) \le \beta\}} w_v + \sum_{\{v | d(u,v) > \beta\}} w_v \right) - W = (n-1)W.$$

• Hence,
$$\operatorname{PoA}(\Gamma) \leq \frac{(n-1)W}{(\alpha(n-1))} = \frac{W}{\alpha}$$
.

Lemma 2

For a star celebrity game Γ , $PoA(\Gamma) \leq W/\alpha$.

- Let S be a NE of Γ and let G = G[S] = (V, E).
- $0 \leq \Delta(S_{-u}, \emptyset) \leq -\alpha |S_u| + w(\{v \mid d(u, v) \leq \beta\}) w_u.$
- Thus, for all $u \in V$,

$$0 \leq \sum_{u \in V} (-\alpha |S_u| + \sum_{\{v \mid d(u,v) \leq \beta\}} w_v - w_u) = -\alpha |E| + \sum_{u \in V} \sum_{\{v \mid d(u,v) \leq \beta\}} w_v - W.$$

Therefore,

$$C(G) = \alpha |E| + \sum_{u \in V} \sum_{\{v | d(u,v) > \beta\}} w_v$$

$$\leq \sum_{u \in V} \left(\sum_{\{v | d(u,v) \le \beta\}} w_v + \sum_{\{v | d(u,v) > \beta\}} w_v \right) - W = (n-1)W.$$

• Hence,
$$\operatorname{PoA}(\Gamma) \leq \frac{(n-1)W}{(\alpha(n-1))} = \frac{W}{\alpha}$$
.

Lemma 2

For a star celebrity game Γ , $PoA(\Gamma) \leq W/\alpha$.

- Let S be a NE of Γ and let G = G[S] = (V, E).
- $0 \leq \Delta(S_{-u}, \emptyset) \leq -\alpha |S_u| + w(\{v \mid d(u, v) \leq \beta\}) w_u.$
- Thus, for all $u \in V$,

$$0 \leq \sum_{u \in V} (-\alpha |S_u| + \sum_{\{v \mid d(u,v) \leq \beta\}} w_v - w_u) = -\alpha |E| + \sum_{u \in V} \sum_{\{v \mid d(u,v) \leq \beta\}} w_v - W.$$

Therefore,

$$C(G) = \alpha |E| + \sum_{u \in V} \sum_{\{v \mid d(u,v) > \beta\}} w_v$$

$$\leq \sum_{u \in V} \left(\sum_{\{v \mid d(u,v) \le \beta\}} w_v + \sum_{\{v \mid d(u,v) > \beta\}} w_v \right) - W = (n-1)W.$$

• Hence,
$$\operatorname{PoA}(\Gamma) \leq \frac{(n-1)W}{(\alpha(n-1))} = \frac{W}{\alpha}$$
.

Bounding the PoA (contd.)

Weight component

$$W(G,\beta) = \sum_{u \in V} \sum_{\{v | d(u,v) > \beta\}} w_v = \sum_{\{\{u,v\} | d(u,v) > \beta\}} (w_u + w_v).$$

Lemma 3

Let Γ be a star celebrity game. In a NE graph G,

$$W(G,\beta) = O(\alpha n^2/\beta).$$

- Let S be a NE and G = G[S] be a NE graph.
- Let $b = \operatorname{diam}(u)$ for $u \in V$.
 - $b \leq 2\beta + 1$ (by Proposition 6; we prove it later).
- Consider the following three cases.

Bounding the PoA (contd.)

Weight component

$$W(G,\beta) = \sum_{u \in V} \sum_{\{v | d(u,v) > \beta\}} w_v = \sum_{\{\{u,v\} | d(u,v) > \beta\}} (w_u + w_v).$$

Lemma 3

Let Γ be a star celebrity game. In a NE graph G,

$$W(G,\beta) = O(\alpha n^2/\beta).$$

- Let S be a NE and G = G[S] be a NE graph.
- Let $b = \operatorname{diam}(u)$ for $u \in V$.
 - $b \leq 2\beta + 1$ (by Proposition 6; we prove it later).
- Consider the following three cases.

Bounding the PoA (contd.)

Weight component

$$W(G,\beta) = \sum_{u \in V} \sum_{\{v | d(u,v) > \beta\}} w_v = \sum_{\{\{u,v\} | d(u,v) > \beta\}} (w_u + w_v).$$

Lemma 3

Let Γ be a star celebrity game. In a NE graph G,

$$W(G,\beta) = O(\alpha n^2/\beta).$$

- Let S be a NE and G = G[S] be a NE graph.
- Let $b = \operatorname{diam}(u)$ for $u \in V$.
 - $b \leq 2\beta + 1$ (by Proposition 6; we prove it later).
- Consider the following three cases.

- Case 1: b < β:
 - For any $v \in V \setminus \{u\}$, consider $S'_v = S_v \cup \{u\}$ and let $G' = G[S_{-v}, S'_v]$.
 - diam $(G') \leq \beta$.
 - $\Delta(S_{-\nu}, S'_{\nu}) = \alpha \sum_{\{x \mid d_{\mathcal{G}}(x, \nu) > \beta\}} w_x \ge 0.$

$$\therefore \sum_{\{x \mid d_{\mathcal{G}}(x,v) > \beta\}} w_x \leq \alpha.$$

• Hence, $W(G,\beta) \leq n\alpha \leq \alpha n^2/\beta$ (note: $1 < \beta \leq n-1$).

東ト

∃ >

- Case 1: b < β:
 - For any $v \in V \setminus \{u\}$, consider $S'_v = S_v \cup \{u\}$ and let $G' = G[S_{-v}, S'_v]$.
 - diam $(G') \leq \beta$.
 - $\Delta(S_{-v}, S'_v) = \alpha \sum_{\{x \mid d_G(x,v) > \beta\}} w_x \ge 0.$

$$\therefore \sum_{\{x \mid d_G(x,v) > \beta\}} w_x \leq \alpha.$$

• Hence, $W(G,\beta) \le n\alpha \le \alpha n^2/\beta$ (note: $1 < \beta \le n-1$).

12 N

.

Case 1: b < β:

- For any $v \in V \setminus \{u\}$, consider $S'_v = S_v \cup \{u\}$ and let $G' = G[S_{-v}, S'_v]$.
- diam $(G') \leq \beta$.
- $\Delta(S_{-\nu}, S'_{\nu}) = \alpha \sum_{\{x \mid d_G(x, \nu) > \beta\}} w_x \ge 0.$

$$\therefore \sum_{\{x|d_G(x,v)>\beta\}} W_x \leq \alpha.$$

• Hence, $W(G,\beta) \leq n\alpha \leq \alpha n^2/\beta$ (note: $1 < \beta \leq n-1$).

• • = • • = •

Case 1: b < β:

• For any $v \in V \setminus \{u\}$, consider $S'_v = S_v \cup \{u\}$ and let $G' = G[S_{-v}, S'_v]$.

• diam
$$(G') \leq \beta$$
.
• $\Delta(S_{-\nu}, S'_{\nu}) = \alpha - \sum_{\{x \mid d_G(x, \nu) > \beta\}} w_x \geq 0$.
 $\therefore \sum_{\{x \mid d_G(x, \nu) > \beta\}} w_x \leq \alpha$.

• Hence, $W(G,\beta) \le n\alpha \le \alpha n^2/\beta$ (note: $1 < \beta \le n-1$).

Case 1: b < β:

• For any $v \in V \setminus \{u\}$, consider $S'_v = S_v \cup \{u\}$ and let $G' = G[S_{-v}, S'_v]$.

• diam
$$(G') \leq \beta$$
.
• $\Delta(S_{-\nu}, S'_{\nu}) = \alpha - \sum_{\{x \mid d_G(x, \nu) > \beta\}} w_x \geq 0$.
 $\therefore \sum_{\{x \mid d_G(x, \nu) > \beta\}} w_x \leq \alpha$.

• Hence, $W(G,\beta) \le n\alpha \le \alpha n^2/\beta$ (note: $1 < \beta \le n-1$).

(

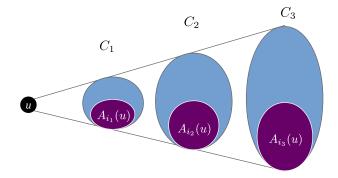
Proof of Lemma 3 (contd.)

• Case 2:
$$b \ge \beta$$
 and $b \ge 6$:
• $A_i(u) := \{ v \mid d(u, v) = i \}$, and
 $C_1 = \{ v \in V \mid 1 \le d(u, v) \le b/3 \} = \bigcup_{1 \le i \le b/3} A_i(u),$
 $C_2 = \{ v \in V \mid b/3 \le d(u, v) \le 2b/3 \} = \bigcup_{b/3 \le i \le 2b/3} A_i(u),$
 $C_3 = \{ v \in V \mid 2b/3 \le d(u, v) \le b \} = \bigcup_{2b/3 \le i \le b} A_i(u).$

- Each C_{ℓ} contains vertices at $b/3 \ge 2$ different distances.
- For each $1 \le \ell \le 3$, there must exist i_{ℓ} s.t. $A_{i_{\ell}} \subseteq C_{\ell}$ and $|A_{i_{\ell}}| \le 3n/b$.

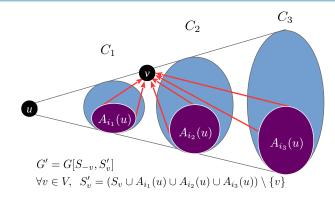
Celebrity Games Bounding the PoA

Proof of Lemma 3 (Case 2: $b \ge \beta$ and $b \ge 6$)



Celebrity Games Bounding the PoA

Proof of Lemma 3 (Case 2: $b \ge \beta$ and $b \ge 6$)



• Note: $b/3 < \beta$ (: $b \le 2\beta + 1$). • $\operatorname{diam}_{G'}(v) \le \beta$. • $0 \le \Delta(S_{-v}, S'_v) \le \frac{9n\alpha}{\beta} - \sum_{\{x \mid d_G(x,v) > \beta\}} w_x \Rightarrow W(G, \beta) \le \frac{9n^2\alpha}{\beta}$.

э

Celebrity Games Bounding the PoA

Proof of Lemma 3 (contd.)

- Case 3: $b \ge \beta$ and $b \le 6$:
 - Similar to case 2.

Joseph C.-C. Lin (Academia Sinica, TW)

Celebrity Games Bounding the PoA

Bounding the PoA (contd.)

Lemma 4

Let Γ be a star celebrity game. In a NE graph G,

$$|E(G)| \leq n-1+\frac{3n^2}{\beta}.$$

Joseph C.-C. Lin (Academia Sinica, TW)

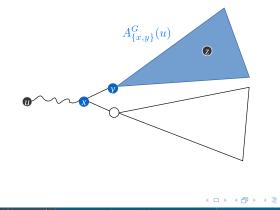
Celebrity Games

9 Sep 2016 36 / 55

Critical nodes

Critical nodes

 $A^{\mathcal{G}}_{\{x,y\}}(u) = \{z \in V \mid \textbf{all the shortest paths in } G \text{ from } u \text{ to } z \text{ use } \{x,y\}\}.$



Bridge (cut edge)

An edge whose deletion increases # connected components of the graph.

•
$$\bar{B}(u) = \{x \in S_u \mid \{u, x\} \notin B(G)\}.$$

• $|E| = |B(G) + \sum_{u \in V} |\bar{B}(u)|$

• Claim: for any $v \in S_u$ s.t. $\{u, v\}$ is NOT a bridge, there exists $z \in A_{\{u,v\}}(u)$ s.t. $d(u, z) > \beta/3$.

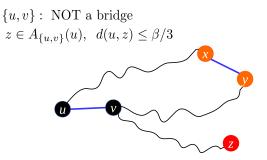
Bridge (cut edge)

An edge whose deletion increases # connected components of the graph.

•
$$\bar{B}(u) = \{x \in S_u \mid \{u, x\} \notin B(G)\}.$$

•
$$|E| = |B(G) + \sum_{u \in V} |\bar{B}(u)|$$

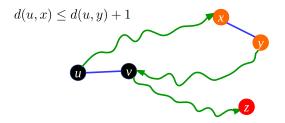
• Claim: for any $v \in S_u$ s.t. $\{u, v\}$ is NOT a bridge, there exists $z \in A_{\{u,v\}}(u)$ s.t. $d(u,z) > \beta/3$.



There must exist some edge $\{x, y\}$, such that

$$x \notin A_{\{u,v\}}(u), \ y \in A_{\{u,v\}}(u)$$

Select $x \neq u$ s.t. there is a shortest path from u to x using only vertices in $V \setminus A_{\{u,v\}}(u)$.



The new path (not using $\{u, v\}$) from u to z is of distance $\leq (\beta/3+1) + 1 + (\beta/3-1) + (\beta/3-1) = \beta.$ $\Delta(S_{-u}, S_u \setminus \{v\}) = -\alpha < 0 \iff$

• For $v \in \overline{B}(u)$, there exists $z \in A_{\{u,v\}}(u)$ s.t. $d(u,z) > \beta/3$. $\therefore |A_{\{u,v\}}(u)| > \beta/3$.

•
$$n \geq \sum_{\{v \in S_u | v \in \overline{B}(u)\}} |A_{u,v}(u)| \geq |\overline{B}(u)| \cdot (\beta/3).$$

$$\therefore |\overline{B}(u)| \leq \frac{3n}{\beta}.$$

•
$$|E| = |B(G)| + \sum_{u \in V} |\overline{B}(u)| \le (n-1) + \frac{3n^2}{\beta}$$
.

Celebrity Games Bounding the PoA

Bounding the PoA (contd.)

Theorem 2

For a star celebrity game Γ , $PoA(\Gamma) = O(min\{n/\beta, W/\alpha\})$.

•
$$C(G) \leq \alpha \cdot |E| + W(G, \beta) = O\left(\alpha \cdot \left((n-1) + \frac{3n^2}{\beta}\right) + \frac{\alpha n^2}{\beta}\right)$$

$$\therefore \frac{C(G)}{\alpha(n-1)} = O\left(\frac{n}{\beta}\right).$$

Proposition 6

If G is a NE graph of a star celebrity game Γ , then diam $(G) \leq 2\beta + 1$.

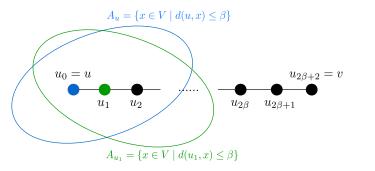
• Let S be a NE of Γ , G = G[S], and assume that diam $(G) \ge 2\beta + 2$.

•
$$\exists u, v \in V \text{ s.t. } d(u, v) = 2\beta + 2.$$

Proposition 6

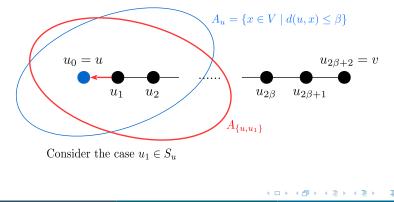
If G is a NE graph of a star celebrity game Γ , then diam $(G) \leq 2\beta + 1$.

• If $x \in A_u \cup A_{u_1}$, then $d(x, v) > \beta$.



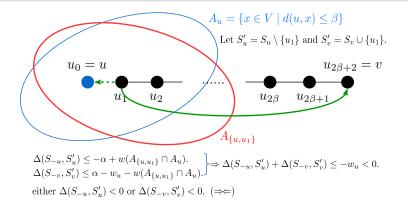
Proposition 6

If G is a NE graph of a star celebrity game Γ , then diam $(G) \leq 2\beta + 1$.



Proposition 6

If G is a NE graph of a star celebrity game Γ , then diam $(G) \leq 2\beta + 1$.

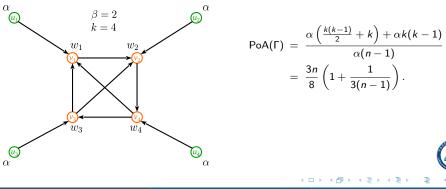


∃ ▶ ∢

Bounding the PoA (a lower bound)

Lemma 5

Let k > 2, $\alpha > 0$, and let $w = (w_1, \ldots, w_k)$ be a positive weight assignment. There is a start celebrity game Γ with n = 2k and $\beta = 2$, s.t. $PoA(\Gamma) > \frac{3n}{2}$.



Celebrity Games Bounding the PoA

PoA on NE trees

Theorem 5

The PoA on NE trees of star celebrity games is $\leq 5/3$, and there are games for which a NE tree has cost $5 \cdot \text{opt}/3$.

Celebrity Games for $\beta = 1$

Joseph C.-C. Lin (Academia Sinica, TW)

Celebrity Games

9 Sep 2016 49 / 55

For $\beta = 1$

- Every $u \in V$ pays
 - w_v for each non-adjacent $v \in V \setminus \{u\}$.
 - α for each adjacent $v \in V \setminus \{u\}$ if he buys the link.

Proposition 10

The problem of computing a best response of a player to a strategy profile in celebrity games is polynomial time solvable when $\beta = 1$.

Theorem 6

Let Γ be a celebrity game with $\beta = 1$. We have $PoA(\Gamma) \leq 2$.

For $\beta = 1$ (PoA)

Proposition 11

Let G = (V, E) be an NE graph of a celebrity game Γ with $\beta = 1$. For each $u, v \in V$, we have

- if either $w_u > \alpha$ or $w_v > \alpha$, then $\{u, v\} \in E$,
- if both $w_u < \alpha$ and $w_v < \alpha$, then $\{u, v\} \notin E$,
- otherwise $\{u, v\}$ might or might not belong to E.

Proposition 12

Let G = (V, E) be an OPT graph of a celebrity game Γ with $\beta = 1$. For any $u, v \in V$, we have

- if $w_u + w_v < \alpha$, then $\{u, v\} \notin E$,
- if $w_u + w_v > \alpha$, then $\{u, v\} \in E$,
- if $w_u + w_v = \alpha$, then $\{u, v\}$ might or might not belong to E.

(4) (5) (4) (5)

Image: Image:

DQA

Proof of Theorem 6

• The social cost of an OPT graph:

$$\sum_{\{\{u,v\}|w_u+w_v \ge \alpha\}} \alpha + \sum_{\{\{u,v\}|w_u+w_v < \alpha\}} (w_u + w_v).$$

• The social cost of a NE graph (with fewest edges):

$$\sum_{\{\{u,v\}|w_{u}>\alpha \text{ or } w_{v}>\alpha\}} \alpha + \sum_{\{\{u,v\}|w_{u},w_{v}\leq\alpha\}} (w_{u} + w_{v})$$

$$= \sum_{\{\{u,v\}|w_{u}>\alpha \text{ or } w_{v}>\alpha\}} \alpha + \sum_{\{\{u,v\}|w_{u},w_{v}\leq\alpha \text{ and } w_{u}+w_{v}=\alpha\}} \alpha$$

$$+ \sum_{\{\{u,v\}|w_{u},w_{v}\leq\alpha \text{ and } w_{u}+w_{v}<\alpha\}} (w_{u} + w_{v}) + \sum_{\{\{u,v\}|w_{u},w_{v}\leq\alpha \text{ and } w_{u}+w_{v}>\alpha\}} (w_{u} + w_{v}).$$

Proof of Theorem 6

• The social cost of an OPT graph:

$$\sum_{\{\{u,v\}|w_u+w_v \ge \alpha\}} \alpha + \sum_{\{\{u,v\}|w_u+w_v < \alpha\}} (w_u + w_v).$$

• The social cost of a NE graph (with fewest edges):

$$\sum_{\{\{u,v\}|w_u>\alpha \text{ or } w_v>\alpha\}} \alpha + \sum_{\{\{u,v\}|w_u,w_v\leq\alpha\}} (w_u + w_v)$$

$$= \sum_{\{\{u,v\}|w_u>\alpha \text{ or } w_v>\alpha\}} \alpha + \sum_{\{\{u,v\}|w_u,w_v\leq\alpha \text{ and } w_u+w_v=\alpha\}} \alpha$$

$$+ \sum_{\{\{u,v\}|w_u,w_v\leq\alpha \text{ and } w_u+w_v<\alpha\}} (w_u + w_v) + \sum_{\{\{u,v\}|w_u,w_v\leq\alpha \text{ and } w_u+w_v>\alpha\}} (w_u + w_v).$$

Proof of Theorem 6 (contd.)

- $D := \{\{u, v\} \mid w_u, w_v \le \alpha \text{ and } w_u + w_v > \alpha\}.$
- $\{u, v\}$ contributes:
 - α to the cost of an OPT graph;
 - $w_u + w_v$ to the cost of a NE graph.
- Taking $w_u = \alpha$ for any $u \in V$ to maximize |D|.

$$\mathsf{PoA}(\Gamma) \leq \frac{n(n-1)\alpha}{\alpha n(n-1)/2} = 2.$$

Open problems

- Shorten the gap b/w LB and UB on the PoA of the celebrity games (for constant β).
- Variations of the framework:
 - Max-cost model (authors' work in progress).
 - Other definitions of the social cost.
 - Each player u can have its own critical distance β_u .

Thank you.

Joseph C.-C. Lin (Academia Sinica, TW)

Celebrity Games

9 Sep 2016 55

୬ ଏ ୯ 55 / 55