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Outline

@© Introduction

© Preliminaries

© Why not PoA?

@ The case of two strategies

e Richer strategy spaces
@ Tree metrics

© Lower bounds on the PoS

@ The anchored preference game
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Discrete Preference Coordination
Introduction

Coordination with discrete preferences

@ A classic example:
o Battle of the Sexes.

@ Joseph wants to see “Unbroken”.
@ Maggie wants to see “Gone Girl".

UNBROKEN
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Discrete Preference Coordination
Introduction

Coordination with discrete preferences

@ A classic example:
o Battle of the Sexes.

@ Joseph wants to see “Unbroken”.
@ Maggie wants to see “Gone Girl".

UNBROKEN

o Characteristics:

@ conflicting internal preferences;

@ an incentive to arrive at a
compromise;

© no way to average between the
options.
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Discrete Preference Coordination
Introduction

Contribution of this paper

@ Develop model and techniques for analyzing discrete preference
games.

@ Price of stability results.

@ PoS =1 when the two effects “network coordination” and ‘unilateral
decision effects” are balance and a tree metric on the strategy set is
used.

@ PoS 2 for non-tree metrics.
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Discrete Preference Coordination
Preliminaries

Basic terminology

@ L: the strategy set.

@ G =(V,E): the undirected graph where the game play is played.

@ V' the set of players.
o E: the edge set (players’ relations on the network).

@ s; € L: the preferred strategy of player i € V.

@ d(-,-): a distance metric on L.
e d(i,i) =0 for all i;
e d(i,j)=d(j,i) forall i,j;
o d(i,j) < d(i, k) +d(k,j) forall i, j, k.
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Discrete Preference Coordination
Preliminaries

Player's cost & the social cost

All players choose strategies z = (zj : j € V); a € [0,1].
@ The cost incurred by player i:

c(z2)=a-d(s,z)+ Y (1-a) dzz).

JEN(T)

@ The social cost of the game:

c(2)=> a-d(s,z)+2 > (1-a)- d(z,z)

iev (ij)€E
@ The contribution of player i to the social cost of the game:

sci(z) = a-d(si,zi) +2 Z (1—a)-d(z,z).
jen(i)
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Why not PoA?

Why not PoA (price of anarchy)?
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Discrete Preference Coordination
Why not PoA?

PoA could be unbounded (0 < o < 1)

Assume that L = {A, B} and d(A, B) = 1.

o Consider a clique of size [{2-7 + 1.
@ All the players prefer A.

@ An equilibrium: all the players play B.
o The cost of player i for playing A: -0+ (1 —a) - [{2;] > a.

@ Optimal solution: every player plays A (cost: 0).
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Discrete Preference Coordination
Why not PoA?

PoA could be unbounded (o = 0)

Network coordination games.
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Discrete Preference Coordination
Why not PoA?

PoA could be unbounded even for strong NE

No gain from any deviation
B [3

If: “the rest players
(B) simultaneously deviate to A"

' T

For any of these players:

cost before: a < 1/2
" cost dfter: 1-a

) the cost increase by
(1-a)—a>0

Cost of this best Nash equilibrium: (n-1)a
Cost of the optimal solution: a
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Discrete Preference Coordination
Why not PoA?

The price of stability (PoS) is bounded by 2

(2)=a) dz,s)+1-a) Y d(z,z)

eV (ij)eE

@ ¢(-) is an exact potential function.
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Discrete Preference Coordination
Why not PoA?

The price of stability (PoS) is bounded by 2

(2)=a) dz,s)+1-a) Y d(z,z)

eV (ij)EE

@ ¢(-) is an exact potential function.

W(zi,z-i) — ¢(z],2-7)

= a-d(z,s)+(1—a) Z (zi,z) — (a~d(z,-',s,-)—|—(1—a) Z d(z,-',zj)>

JEN(i) JEN(i)

ci(zi,z—i) — ci(zi, z—i)-

v

s’
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Discrete Preference Coordination
Why not PoA?

The price of stability (PoS) is bounded by 2 (contd.)

@ x: the global minimizer of ¢(-).
@ x is a Nash equilibrium (. ¢ is a potential function).

@ y: the optimal solution.

c(x) <2¢(x) < 2¢(y) < 2¢(y).
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The case of two strategies

The case of two strategies
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Discrete Preference Coordination
The case of two strategies

The main results for |L| = 2

If a < % or @ = % then in any instance there exists an optimal solution
which is also a Nash equilibrium.

Theorem 3.5

For <a<1, PoS <2[% e =

«

Claim 3.7

For any 1 > « > 1/2 o # % there exists an instance achieving a PoS
ol 2t =) e ==

O
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Discrete Preference Coordination
The case of two strategies

Proof of Claim 3.4

If o < % or @ = % then in any instance there exists an optimal solution
which is also a Nash equilibrium.

@ Let y be an optimal solution minimizing ¢(+).

@ Assume that it is NOT a Nash equilibrium.

@ Player i prefers to switch to a best response x;.

@ We derive y; # s; and x; = s; (by Observations 3.1 & 3.2).

o If y; = s;, then the strategy minimizing player i's cost is also s;.
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Discrete Preference Coordination
The case of two strategies

Two observations

o L={A B}, d(AB)=1.
@ N;(i): player i's neighbors using strategy j.
@ 5 the strategy opposite to s;.

Observation 3.1
The strategy s; minimizes player i's cost (i.e., ¢i(z)) if

(1 = a)Ns(i) < a4 (1 = a)Ng (/)
That is, Ns (i) < 12 + Nq(i).

v

Observation 3.2

The strategy s; minimizes the social cost sci(z) if

2(1 — a)Ns (i) < a+2(1 — )N (i)
That is, N5 (i) < 55255 + Ne (7).

.
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Discrete Preference Coordination
The case of two strategies

Proof of Claim 3.4 (contd.)

@ y; #s;and x; = s;.

a

Ne (i) < —2 4+ N (i).

1«

@ If s; minimizes the social cost, then (s;,y_;) is also an optimal
solution.

o P(si,y—i) < dy). (=)

2y Nel) < N ()
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Discrete Preference Coordination
The case of two strategies

Proof of Claim 3.4 (contd.)

@ y; #s;and x; = s;.

Ns (i) 5 o+ Ny ().

@ If s; minimizes the social cost, then (s;,y_;) is also an optimal
solution.

o P(si,y—i) < dy). (=)

2 ey Nel) < N (0)

oSoIV|ng2( )<k<1 forlntegerk:>2<oz< ora>%
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Discrete Preference Coordination

The case of two strategies

Proof of Theorem 3.5

Starting from some initial strategy vector, the following best response
order results in a Nash equilibrium.

© While there exists a player that can reduce its cost by changing its
strategy to A, let it do the best response.

@ If there is no such player, continue to step 2.

© While there exists a player that can reduce its cost by changing its
strategy to B, let it do the best response.

@ An optimal solution y steps above an equilibrium x.
s

@ Assume: Only play the unique best response.
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Discrete Preference Coordination
The case of two strategies

Let player i's unique best response be x; when the rest play z_;, then:

(i). If x; = 5, then c(xj,z_;) — c(sj,z—i) < a—2(1 —a)[ 2% + 1] <O0.

(i). If x; = s;, then c(x;,z_;) — (5, z—i)) < —a+2(1 — a)[ 7% —1].

@ (i) + (ii) <0 (changing back-and-forth = social cost ).
* The only nodes i's capable of increasing the social cost: y; # s;.
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Discrete Preference Coordination
The case of two strategies

Let player i's unique best response be x; when the rest play z_;, then:

(i). If x; = 5, then c(xj,z_;) — c(sj,z—i) < a—2(1 —a)[ 2 +1] <O0.

(i). If x; = s;, then c(x;,z_;) — (5, z—i)) < —a+2(1 — a)[ 7% —1].

@ (i) + (ii) <0 (changing back-and-forth = social cost ).
* The only nodes i's capable of increasing the social cost: y; # s;.
@ How many of them?
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Discrete Preference Coordination
The case of two strategies

Let player i's unique best response be x; when the rest play z_;, then:

(i). If x; = 5, then c(xj,z_;) — c(sj,z—i) < a—2(1 —a)[ 2% + 1] <O0.

(i). If x; = s;, then c(x;,z_;) — (5, z—i)) < —a+2(1 — a)[ 7% —1].

@ (i) + (ii) <0 (changing back-and-forth = social cost ).
* The only nodes i's capable of increasing the social cost: y; # s;.
o How many of them? >, d(y;, si).

Joseph, C.-C. Lin (Academia Sinica, TW) Discrete Preference Coordination 6 Feb 2015 21/ 42



Discrete Preference Coordination
The case of two strategies

Let player i's unique best response be x; when the rest play z_;, then:
(i). If x; = 5, then c(xj,z_;) — c(sj,z—i) < a—2(1 —a)[ 2% + 1] <O0.

(i). If x; = s;, then c(x;,z_;) — (5, z—i)) < —a+2(1 — a)[ 7% —1].

@ (i) + (ii) <0 (changing back-and-forth = social cost ).

* The only nodes i's capable of increasing the social cost: y; # s;.
o How many of them? Y, d(y;, si).

@ Thus,

c(x)

IN

c(y) + <a+2(1a) [1})2«1 Vi Si)

iev

= 2(1-a) Z d(yi,y;) +2(1 — ) {1604 1—‘ Zd()/hsi -

(i.j)EE iev
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Discrete Preference Coordination
The case of two strategies

Let player i's unique best response be x; when the rest play z_;, then:
(i). If x; = 5, then c(xj,z_;) — c(sj,z—i) < a—2(1 —a)[ 2% + 1] <O0.

(i). If x; = s;, then c(x;,z_;) — (5, z—i)) < —a+2(1 — a)[ 7% —1].

@ (i) + (ii) <0 (changing back-and-forth = social cost ).

* The only nodes i's capable of increasing the social cost: y; # s;.
o How many of them? Y, d(y;, si).

@ Thus,

c(x)

IN

c(y)+<a+2(1a) [4)2(1 ViySi)

iev

= 2(1-a) Z d(yi,y;) +2(1 — ) {1604 1—‘ Zd()/hsi -

(i.j)EE iev
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Discrete Preference Coordination
The case of two strategies

Proof of Theorem 3.5 (contd.)

For i <a <1, PoS<2[;2 —1] =2

2] 12 = 1] - (1= 0) Liey Ao s) +2(1 = @) Sy 40 )
a ey d(yi,si) +2(1 - a) Z(i,j)eE d(vi, y;)
2[5 1] =2 (0 Sy dn ) + 21— ) S per A0 )

PoS <

<
B iy dyisi)+2(1—a) Z(i,j)eE d(yi, y)

< 2[ Q _1-‘.1—a'
l—« a
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Richer strategy spaces

Richer strategy spaces
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Discrete Preference Coordination
Richer strategy spaces
Tree metrics

Tree metrics

@ A tree metric (the distance function on the strategy set):
@ the shortest-path among the nodes in a tree.

card
money
flower gift
gift ‘ freedom
money
card flower
freedom

Strategies for spending the Valentine's day
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Discrete Preference Coordination

Richer strategy spaces

Tree metrics

Ci(z) & SCi(z) of player i

@ Cj(z): the strategies z;'s of player i that minimize

ci(z)=a-d(z,s)+ (1 —a) Z d(z,-,zJ-).

JeN(i)
@ SCi(z): the strategies z;'s of player i that minimize

sci(z) = a- d(zi, s;) + 2(1 — ) Z d(z, zj).
JEN()

If for every player i and strategy vector z, C;j(z) N SC;(z) # (), then PoS = 1.

Joseph, C.-C. Lin (Academia Sinica, TW) Discrete Preference Coordination 6 Feb 2015 25 / 42



Discrete Preference Coordination
Richer strategy spaces

Tree metrics

The proof of Claim 4.1

If for every player i and strategy vector z, Cj(z) N SC;(z) # 0, then PoS = 1.

@ Consider y: an optimal solution minimizing ¢(+).
@ Assume that y is not a Nash equilibrium.

@ Ji € V that can strictly reduce its cost by performing a best response.
@ Choose a strategy x; € Ci(z) N SCi(z).

e (xj,y—;) is also an optimal solution & ¢(y) > @(x;, y—i). (=)

Joseph, C.-C. Lin (Academia Sinica, TW) Discrete Preference Coordination 6 Feb 2015 26 / 42



Discrete Preference Coordination
Richer strategy spaces
Tree metrics

The intuition

@ a strategy as a player’'s best response <+ a node on the tree not too far away
from all the rest nodes from its point of view.
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Discrete Preference Coordination

Richer strategy spaces

Tree metrics

The intuition

@ a strategy as a player’'s best response <+ a node on the tree not too far away
from all the rest nodes from its point of view.

@ The concept of medians of a tree.

Definition 4.2

Given a tree T where the weight of node v is denoted by w(v), the set of T's medians
is M(T) =argmin,c, {3,y w(v) - d(u,v)}.
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Richer strategy spaces

Tree metrics

The intuition

@ a strategy as a player’'s best response <+ a node on the tree not too far away
from all the rest nodes from its point of view.

@ The concept of medians of a tree.

Definition 4.2

Given a tree T where the weight of node v is denoted by w(v), the set of T's medians
is M(T) =argmin,c, {3,y w(v) - d(u,v)}.

@ The detailed proof is based on the following claim:

Claim 4.8

A node u is a median of a tree T iff it is a separator of T.

@ A separator of a node-weighted tree T: a node v such that each connected
component of T — v is < half of the total weight of T.

The proof is omitted here.
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Richer strategy spaces
Tree metrics
money (1)
gift

freedom (2) » O

freedom

gift (1)

d fl
card (1) flower (1) car owet

14
A1)
14
B(1) c@)
D (1)
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Discrete Preference Coordination

Richer strategy spaces

Tree metrics

Medians of a node-weighted tree

Definition 4.3

@ G: a network,

@ T: a tree metric,

@ z: a strategy vector,

@ /: a player,

@ g, r: two non-negative integers,

Denote by T; (g, r) the tree T with the following node weights:

o= { TGN 5] o=
L r- [ EeNG) |z = vy for v # s;.
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Discrete Preference Coordination
Richer strategy spaces
Tree metrics

The correspondence...

Node weight on T; ,(q, r):

W(V):{ qt+r-|[JeEN(i)|[z=v}, forv=s;

r-|{j e N(i) | z = v}, for v # s;.
Let's see:
M(T; ;(a, b)) = arg min {Z w(v) - d(u, v)}
ugv vev

argmin{(a+b|{jerv(f)|z,-=s,-}|)-d(u,s,-)+ S b{jeN(i)|z,-:v}|-d<u,v)}

ueV vsiEV

= argmin{ a-d(u,s;)+ b- Z d(u, z)
uev JEN()
Ci(z).

Similarly, M(T; ,(a,2b)) = SCi(z).
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Richer strategy spaces
Tree metrics

Proposition 4.4

Let T; and T, be two node-weighted trees with the same edges and
nodes, then:

@ If ther exists a node v such that for every u # v € V, we have
wi(u) = wo(u) and for v we have |wi(v) — wo(v)| =1, then T; and
T> share a median.

@ If T; and T» share a median, then it is also a median of their union
T1 U Ty (i.e., the same nodes and edges yet the weight of v becomes
wit2(v) := wi(v) + wa(v)).

The proof is omitted here.
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Discrete Preference Coordination
Richer strategy spaces
Tree metrics

For a = aj_b < % every player i and strategy vector z,

M(T;z(a, b) N M(T;-(a,2b)) # 0.

Proof: (mainly by Proposition 4.4)
@ T;,(0,1) and T;,(1,1) share a median u.
@ T;,(0,b—a) and T;,(a,a) share a median wv.
@ Medians are invariant to scaling.

@ The median above is also a median of their union T;,(a, b), and of
T -(0, b).

e uis also a median of T; ,(a,2b).

Theorem 4.6 (concluding)

If the distance metric is a tree metric, then for a < % there exists an optimal
solution which is also a Nash equilibrium (i.e., PoS = 1).
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Lower bounds on the PoS

Lower bounds on the PoS
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Lower bounds on the PoS

What if the metric is a cycle?

B k+1

C
The distance metric
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Lower bounds on the PoS

What if the metric is a cycle?

B k+1

C
The distance metric

@ The best Nash equilibrium has social cost 2k.
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Discrete Preference Coordination

Lower bounds on the PoS

What if the metric is a cycle?

B k+1

The distance metric

@ The best Nash equilibrium has social cost 2k

@ The optimal solution has social cost

1
Loky2t(kt1)=
Joseph, C.-C. Lin (Academia Sinica, TW)

3k+1.
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Discrete Preference Coordination

Lower bounds on the PoS

What if the metric is a cycle?

B k+1

The distance metric

@ The best Nash equilibrium has social cost 2k

@ The optimal solution has social cost
@ PoS 7 % as k /oo

1
Loky2t(kt1)=
Joseph, C.-C. Lin (Academia Sinica, TW)

3k+1.
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Discrete Preference Coordination

Lower bounds on the PoS

An example of Pos 2 («

000 OO

Node i: prefer strategy s;
@ : two cliques of size n?

ds,s)=1+i—j—1le

@ The best Nash equilibrium: all players play their preferred strategies.
@ The social cost: % -2 Z,’-’:O d(si,sit1) =n+1.
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Discrete Preference Coordination
Lower bounds on the PoS

An example of Pos 2 («

Node i: prefer strategy s;
@ : two dliques of size n2

dis,s)=1+i—j—1le

@ The social cost of this assignment: 3(n+ 2+ O(n%)).
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The anchored preference game

The Anchored Preference Game
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Discrete Preference Coordination
The anchored preference game

The anchored preference game

@ Nodes are partitioned into two types:
@ F: fixed nodes.
@ Always playing their preferred strategy.
@ S: strategic nodes.
@ Having no strategy as preferred.

@ The social cost:

Z d(zi,sj) +2 Z d(z, zj).

(ij)€EE; (ij)EE;
i€S;jeF i,jeES
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Discrete Preference Coordination
The anchored preference game

Generalization of the discrete preference game

@ A discrete preference game instance — an anchored preference game
instance.
@ For each node 7, none of the strategies is preferred.
@ Add a new fixed node i’ that has preferred strategy s; and is connected
only to node i by an edge (i, ).
@ Discrete preference games are a special case of anchored preference
games.

o One fixed neighbor per node.
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Discrete Preference Coordination
The anchored preference game

@ Consider the parameter k:
@ The maximum number of fixed neighbors of any strategic node.

For the anchored preference game, if the distance function is a tree metric,
then the following holds.

@ If k <2, then the optimal solution is also a Nash equilibrium.
o If k > 2, then PoS < 21,

@ The bond for k > 2 is tight.
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Discrete Preference Coordination
The anchored preference game

@ Node / is connected to:

o k fixed nodes that prefer
strategy A.
@ k — 1 strategic nodes that form a
k-clique.
@ Each one is connected to k
fixed nodes that prefer
strategy B.

@ The best NE: node / plays A and
the rest of the strategic nodes play
B (the social cost: 2(k — 1)).

@ Yet, in the optimal solution node /
also plays B (the social cost: k).
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Thank you.
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