A Sketch of Nash's Theorem from Fixed Point Theorems

Joseph Chuang-Chieh Lin

Dept. CSIE, Tamkang University, Taiwan

Reference

- ▶ Lecture Notes in 6.853 Topics in Algorithmic Game Theory [link].
- ► Fixed Point Theorems and Applications to Game Theory. Allen Yuan. The University of Chicago Mathematics REU 2017. [link].
 - ▶ REU = Research Experience for Undergraduate students.

<ロ > < 面 > < 置 > < 置 > を 量 > < で

Outline

Brouwer's Fixed Point Theorem

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Kakutani's Fixed Point Theorem

Pure Nash Equilibria of Pure Strategic Games

Preliminaries

Main Theorem I & The Proof

Mixed Nash Equilibria of Finite Strategies Games

Preliminaries & Assumptions

Main Theorem II & the Proof

Outline

Brouwer's Fixed Point Theorem

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Kakutani's Fixed Point Theorem

Pure Nash Equilibria of Pure Strategic Games

Preliminaries

Main Theorem I & The Proof

Mixed Nash Equilibria of Finite Strategies Games

Preliminaries & Assumptions

Main Theorem II & the Proof

The Setting

- \triangleright A set N of n players.
- ▶ Strategy set $S_i = \{s_{i,1}, \dots, s_{i,k_i}\}$ for each player $i \in N$, k_i is bounded.
- ▶ Utility function: u_i for each player i.
- $lackbox{\Delta} := \Delta_1 \times \Delta_2 \times \cdots \Delta_n$: a Cartesian product of $(\Delta_i)_{i \in N}$.
 - ▶ For $x \in \Delta$, $x_i(s)$ denotes the probability mass on strategy $s \in S_i$.

 - \triangleright $x_i \in \Delta_i$: a mixed strategy.

Nash's Theorem

Nash (1950)

Every game $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ has a Nash equilibrium.

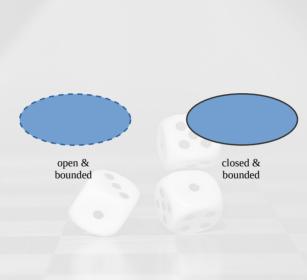
▶ Note: $u_i(x) := \sum_{s \in S_i} x_i(s) \cdot u_i(s; x_{-i}).$

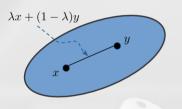
Nash's Theorem

Nash (1950)

Every game $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ has a Nash equilibrium.

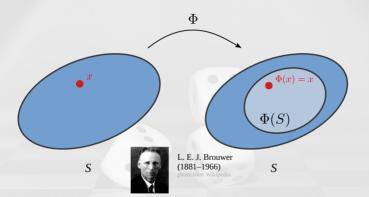
- ▶ Note: $u_i(x) := \sum_{s \in S_i} x_i(s) \cdot u_i(s; x_{-i}).$
- ▶ No player wants to deviate to the other strategy unilaterally.





not convex

Fixed Point



Brouwer's Fixed Point Theorem

Brouwer's Fixed-Point Theorem

Let D be a convex, compact (closed and bounded) subset of the Euclidean space. If $f: D \mapsto D$ is continuous, then there exists $x \in D$ such that

$$f(x) = x$$
.

▶ **Idea:** We want the function *f* to satisfy the conditions of Brouwer's fixed point theorem.

4 D > 4 D > 4 E > 4 E > 9 Q C

Brouwer's Fixed Point Theorem

Brouwer's Fixed-Point Theorem

Let D be a convex, compact (closed and bounded) subset of the Euclidean space. If $f: D \mapsto D$ is continuous, then there exists $x \in D$ such that

$$f(x) = x$$
.

- ▶ **Idea:** We want the function *f* to satisfy the conditions of Brouwer's fixed point theorem.
- ▶ Try to relate utilities of players to a function f like above.

The Gain function

Gain

Suppose that $x' \in \Delta$ is given. For a player i and strategy $s_i \in S_i$ (or $s_i \in \Delta_i$), we define the gain as

$$Gain_{i,s_i}(\mathbf{x}') = \max\{u_i(s_i; \mathbf{x}'_{-i}) - u_i(\mathbf{x}), 0\},\$$

which is non-negative.

- ▶ It's equal to the increase in payoff for player *i* if he/she were to switch to pure strategy *s_i*.

Proof of Nash's Theorem (Define a response function)

- ▶ Define a function $f: \Delta \mapsto \Delta$ that satisfies the conditions of Brouwer's fixed point theorem.
- ▶ For all $x \in \Delta$, y = f(x) where for all $i \in N$ and $s_i \in S_i$,

$$y_i(s_i) := \frac{x_i(s_i) + \mathsf{Gain}_{i;s_i}(\mathbf{x})}{1 + \sum_{s_i' \in S_i} \mathsf{Gain}_{i;s_i'}(\mathbf{x})}.$$

• *f* tries to boost the probability mass where strategy switching results in gains in payoff.

Proof of Nash's Theorem (Define a response function)

- ▶ Define a function $f: \Delta \mapsto \Delta$ that satisfies the conditions of Brouwer's fixed point theorem.
- ▶ For all $x \in \Delta$, y = f(x) where for all $i \in N$ and $s_i \in S_i$,

$$y_i(s_i) := \frac{x_i(s_i) + \mathsf{Gain}_{i;s_i}(\mathbf{x})}{1 + \sum_{s_i' \in S_i} \mathsf{Gain}_{i;s_i'}(\mathbf{x})}.$$

- $ightharpoonup f: \Delta \mapsto \Delta$ is continuous (verify this by yourself).
- $ightharpoonup \Delta$ is a product of simplicies so it is convex (verify this by yourself).
- $ightharpoonup \Delta$ is closed and bounded, so it is compact.

Proof of Nash's Theorem (Define a response function)

- ▶ Define a function $f: \Delta \mapsto \Delta$ that satisfies the conditions of Brouwer's fixed point theorem.
- ▶ For all $x \in \Delta$, y = f(x) where for all $i \in N$ and $s_i \in S_i$,

$$y_i(s_i) := \frac{x_i(s_i) + \mathsf{Gain}_{i;s_i}(\mathbf{x})}{1 + \sum_{s_i' \in S_i} \mathsf{Gain}_{i;s_i'}(\mathbf{x})}.$$

- ▶ $f: \Delta \mapsto \Delta$ is continuous (verify this by yourself).
- $ightharpoonup \Delta$ is a product of simplicies so it is convex (verify this by yourself).
- Δ is closed and bounded, so it is compact.
- \star Brouwer's fixed point theorem guarantees the existence of a fixed point of f.

- lt suffices to prove that a fixed point x = f(x) satisfies:
 - ▶ Gain_{$i:s_i$}(x) = 0, for each $i \in N$ and each $s_i \in S_i$.

<ロ > < 面 > < 置 > < 置 > を 量 > を を の へ で

Prove it by contradiction.

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p :
 - $\qquad \qquad \mathsf{Gain}_{p;s_p}(\pmb{x}) > 0.$

Prove it by contradiction.

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p :
- Note that we must have $x_p(s_p) > 0$, otherwise x cannot be a fixed point of f.
 - From the definition of f; the numerator would be > 0.

$$y_p(s_p) := \frac{x_p(s_p) + \mathsf{Gain}_{p;s_p}(\mathbf{x})}{1 + \sum_{s_p' \in S_p} \mathsf{Gain}_{p;s_p'}(\mathbf{x})}.$$

Prove it by contradiction.

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p :
 - ightharpoonup Gain $_{p;s_p}(x)>0$

Claim: Any fixed point of f is a Nash equilibrium Prove it by contradiction.

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p :

Prove it by contradiction.

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p :
- We argue that there must be some other pure strategy \hat{s}_p such that:
 - $ightharpoonup x_p(\hat{s}_p) > 0$ and
 - $u_p(\hat{s}_p; \mathbf{x}_{-p}) u_p(\mathbf{x}) < 0$
 - * Notice that

$$u_p(\mathbf{x}) := \sum_{\mathbf{s} \in S_p} x_p(\mathbf{s}) \cdot u_p(\mathbf{s}; \mathbf{x}_{-p}).$$

Prove it by contradiction.

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p :
- We argue that there must be some other pure strategy \hat{s}_p such that:
 - $ightharpoonup x_p(\hat{s}_p) > 0$ and
 - $\qquad \qquad u_p(\hat{s}_p; \mathbf{x}_{-p}) u_p(\mathbf{x}) < 0 \quad \Rightarrow \quad \mathsf{Gain}_{p,\hat{s}_p}(\mathbf{x}) = 0.$
 - ⋆ Notice that

$$u_p(\mathbf{x}) := \sum_{\mathbf{s} \in S_p} x_p(\mathbf{s}) \cdot u_p(\mathbf{s}; \mathbf{x}_{-p}).$$

 \blacktriangleright We obtain that (x is not a fixed point $\Rightarrow \Leftarrow$)

$$y_p(\hat{s}_p) := \frac{x_p(\hat{s}_p) + \mathsf{Gain}_{p;\hat{s}_p}(\mathbf{x})}{1 + \sum_{s_p' \in S_p} \mathsf{Gain}_{p;s_p'}(\mathbf{x})} < x_p(\hat{s}_p).$$

Outline

Brouwer's Fixed Point Theorem

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Kakutani's Fixed Point Theorem

Pure Nash Equilibria of Pure Strategic Games

Preliminaries

Main Theorem I & The Proof

Mixed Nash Equilibria of Finite Strategies Games

Preliminaries & Assumptions

Main Theorem II & the Proof

An Extension of Brouwer's work

- Focus: set-valued functions.
 - ► Refer here for further readings.
 - ▶ Why do we consider set-valued functions?

An Extension of Brouwer's work

- Focus: set-valued functions.
 - ► Refer here for further readings.
 - ▶ Why do we consider set-valued functions?
 - Best-responses.

Upper Semi-Continuous (having a closed graph)

Upper semi-continuous functions

Let

- $ightharpoonup \mathbb{P}(X)$: all nonempty, closed, convex subsets of X.
- ► S: a nonempty, compact, and convex set.

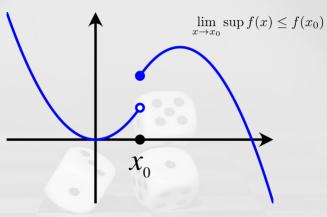
Then the set-valued function $\Phi: S \mapsto \mathbb{P}(S)$ is upper semi-continuous if

for arbitrary sequences $(\boldsymbol{x}_n)_{n\in\mathbb{N}}, (\boldsymbol{y}_n)_{n\in\mathbb{N}}$ in S, we have

- $ightharpoonup \lim_{n\to\infty} \mathbf{x}_n = \mathbf{x}_0,$
- $\blacktriangleright \lim_{n\to\infty} \mathbf{y}_n = \mathbf{y}_0,$
- $\mathbf{y}_n \in \Phi(\mathbf{x}_n)$ for all $n \in \mathbb{N}$,

imply that $\mathbf{y}_0 \in \Phi(\mathbf{x}_0)$.

Removable discontinuity, Sequentially compact, Bolzano-Weierstrass theorem.



Fixed Point of Set-Valued Functions

Fixed Point (Set-Valued)

A fixed point of a set-valued function $\Phi: S \mapsto \mathbb{P}(S)$ is a point $\mathbf{x}^* \in S$ such that $\mathbf{x}^* \in \Phi(\mathbf{x}^*)$.

Kakutani's Theorem for Simplices

Kakutani's Theorem for Simplices (1941)

If S is an r-dimensional closed simplex in a Euclidean space and $\Phi: S \mapsto \mathbb{P}(S)$ is upper semi-continuous, then Φ has a fixed point.

Kakutani's Fixed-Point Theorem

Kakutani's Fixed-Point Theorem (1941)

If S is a nonempty, compact, convex set in a Euclidean space and $\Phi: S \mapsto \mathbb{P}(S)$ is upper semi-continuous, then Φ has a fixed point.

Kakutani's Fixed-Point Theorem

Kakutani's Fixed-Point Theorem (1941)

If S is a nonempty, compact, convex set in a Euclidean space and $\Phi: S \mapsto \mathbb{P}(S)$ is upper semi-continuous, then Φ has a fixed point.

- ► We won't go over its proof.
- ▶ Instead, we will delve into how it can be used to prove Nash's Theorem from the perspectives of set-valued functions and best-responses.

Outline

Brouwer's Fixed Point Theorem

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Kakutani's Fixed Point Theorem

Pure Nash Equilibria of Pure Strategic Games

Preliminaries

Main Theorem I & The Proof

Mixed Nash Equilibria of Finite Strategies Games

Preliminaries & Assumptions

Main Theorem II & the Proof

Cartesian product of Sets

Cartesian Product

For a family of sets $\{A_i\}_{i\in N}$, $\prod_{i\in N}A_i=A_1\times A_2\times\cdots\times A_n$ denotes the Cartesian product of A_i for $i\in N$.

Profile

for $x_i \in A_i$, then $(x_i)_{i \in N}$ is called a (strategy) profile.

Binary Relation

Binary Relation

- ightharpoonup A binary relation on a set A is a subset of $A \times A$ consisting of all pairs of elements.
- For $a, b \in A$, we denote by R(a, b) if a is related to b.

Binary Relation

Binary Relation

- ightharpoonup A binary relation on a set A is a subset of $A \times A$ consisting of all pairs of elements.
- For $a, b \in A$, we denote by R(a, b) if a is related to b.

Properties on Binary Relations

- ▶ **Completeness**: For all $a, b \in A$, we have R(a, b), R(b, a), or both.
- ▶ **Reflexivity**: For all $a \in A$, we have R(a, a).
- ▶ **Transitivity**: For $a, b, c \in A$, if R(a, b) and R(b, c), then we have R(a, c).

Preference Relation

Preference Relation

A preference relation is a complete, reflexive, and transitive binary relation.

- ▶ Denote by $a \succeq b$ if a is related to b.
- ▶ Denote by $a \succ b$ if $a \succsim b$ but $b \not\succsim a$.
- ▶ Denote by $a \sim b$ if $a \succeq b$ and $b \succeq a$.



Preference Relation

Preference Relation

A preference relation is a complete, reflexive, and transitive binary relation.

- ▶ Denote by $a \succeq b$ if a is related to b.
- ▶ Denote by $a \succ b$ if $a \succsim b$ but $b \not\succsim a$.
- ▶ Denote by $a \sim b$ if $a \succeq b$ and $b \succeq a$.
- ▶ $a \succeq b$: a is weakly preferred to b.
- ightharpoonup $a \sim b$: agent is indifferent between a and b.

Continuity on a Preference relation

Continuous Preference Relation

A preference relation is continuous if:

whenever there exist sequences $(a_k)_{k\in\mathbb{N}}$ and $(b_k)_{k\in\mathbb{N}}$ in A such that

- $ightharpoonup \lim_{k\to\infty}a_k=a$,
- $\blacktriangleright \ \lim_{k\to\infty} b_k = b,$
- ▶ and $a_k \succsim b_k$ for all $k \in \mathbb{N}$

we have $a \succeq b$.

Strategic Games

Strategic Games

A strategic game is a tuple $\langle N, (A_i), (\succeq_i) \rangle$ consisting of

- ▶ a finite set of **players** *N*.
- ▶ for each player $i \in N$, a nonempty set of **actions** A_i .
- ▶ for each player $i \in N$, a **preference relation** \succsim_i on $A = \prod_{j \in N} A_j$.
- ▶ A strategic is finite if A_i is finite for all $i \in N$.

Strategic Games

Strategic Games

A strategic game is a tuple $\langle N, (A_i), (\succsim_i) \rangle$ consisting of

- ▶ a finite set of **players** *N*.
- ▶ for each player $i \in N$, a nonempty set of **actions** A_i .
- ▶ for each player $i \in N$, a **preference relation** \succsim_i on $A = \prod_{i \in N} A_i$.
- ▶ A strategic is finite if A_i is finite for all $i \in N$.
- ▶ **Note**: \succeq_i is not defined on A_i only, but instead on the set of all $(A_j)_{j \in N}$.

PNE w.r.t. a Preference Relation

Pure Nash Equilibrium (PNE) with (\succeq_i)

A (pure) Nash equilibrium (PNE) of a strategic game $\langle N, (A_i), (\succsim_i) \rangle$ is a profile $\mathbf{a}^* := (a_i)_{i \in N}$ such that for all $i \in N$, we have

$$(\boldsymbol{a}_{-i}^*, a_i^*) \succsim_i (\boldsymbol{a}_{-i}^*, a_i')$$
 for all $a_i' \in A$.

Best-Response Function

Best-Response Functions

The best-response function of player i,

$$BR_i: \prod_{j\in N\setminus\{i\}} A_j \mapsto \mathbb{P}(A_i),$$

is given by

$$BR_i(\boldsymbol{a}_{-i}) = \{a_i \in A_i \mid (\boldsymbol{a}_{-i}, a_i) \succsim_i (\boldsymbol{a}_{-i}, a_i') \text{ for all } a_i' \in A_i\}.$$

Best-Response Function

Best-Response Functions

The best-response function of player i,

$$BR_i: \prod_{j\in N\setminus\{i\}} A_j \mapsto \mathbb{P}(A_i),$$

is given by

$$BR_i(\boldsymbol{a}_{-i}) = \{a_i \in A_i \mid (\boldsymbol{a}_{-i}, a_i) \succsim_i (\boldsymbol{a}_{-i}, a_i') \text{ for all } a_i' \in A_i\}.$$

► BR; is set-valued.

PNE w.r.t. a Preference Relation

Alternative definition of NE.

Pure Nash Equilibrium (PNE) with (\succeq_i)

A Nash equilibrium of a strategic game $\langle N, (A_i), (\succsim_i) \rangle$ is a profile $\mathbf{a}^* := (a_i)_{i \in N}$ such that $\mathbf{a}_i^* \in BR_i(\mathbf{a}_{-i}^*)$ for all $i \in N$.

▶ Thus, to prove the existence of a PNE for a strategic game $\langle N, (A_i), (\succsim_i) \rangle$, it suffices to show that:

PNE w.r.t. a Preference Relation

► Alternative definition of NE.

Pure Nash Equilibrium (PNE) with (\succeq_i)

A Nash equilibrium of a strategic game $\langle N, (A_i), (\succsim_i) \rangle$ is a profile $\mathbf{a}^* := (a_i)_{i \in N}$ such that $\mathbf{a}_i^* \in BR_i(\mathbf{a}_{-i}^*)$ for all $i \in N$.

- ▶ Thus, to prove the existence of a PNE for a strategic game $\langle N, (A_i), (\succsim_i) \rangle$, it suffices to show that:
 - ▶ There exists a profile $\mathbf{a}^* \in A$ such that for all $i \in N$ we have $\mathbf{a}_i^* \in BR_i(\mathbf{a}_{-i}^*)$.

《ロト《御》《書》《書》 書 めので

Outline

Brouwer's Fixed Point Theorem

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Kakutani's Fixed Point Theorem

Pure Nash Equilibria of Pure Strategic Games

Preliminaries

Main Theorem I & The Proof

Mixed Nash Equilibria of Finite Strategies Games Preliminaries & Assumptions

General Idea

▶ Let $BR : A \mapsto \mathbb{P}(A)$ be

$$BR(\boldsymbol{a}) = \prod_{i \in N} BR_i(\boldsymbol{a}_{-i}).$$

▶ We seek for some $a^* \in A$ such that $a^* \in BR(a^*)$.

(ロ) (団) (置) (置) (置) り(()

General Idea

▶ Let $BR : A \mapsto \mathbb{P}(A)$ be

$$BR(\boldsymbol{a}) = \prod_{i \in N} BR_i(\boldsymbol{a}_{-i}).$$

- ▶ We seek for some $a^* \in A$ such that $a^* \in BR(a^*)$.
- ▶ We can then use Kakutani's Fixed-Point Theorem to show that a* exists.

General Idea

▶ Let $BR : A \mapsto \mathbb{P}(A)$ be

$$BR(\boldsymbol{a}) = \prod_{i \in N} BR_i(\boldsymbol{a}_{-i}).$$

- ▶ We seek for some $a^* \in A$ such that $a^* \in BR(a^*)$.
- ▶ We can then use Kakutani's Fixed-Point Theorem to show that **a*** exists.
- ➤ Yet, we need to verify the conditions under which Kakutani's Fixed-Point Theorem holds.

Quasi-Concave

Quasi-Concave of \succeq_i

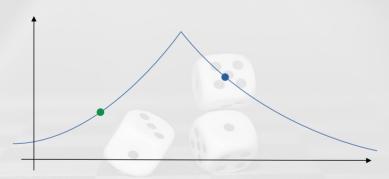
A preference relation \succeq_i over A is quasi-concave on A_i if for all $a \in A$, the set

$$\{a_i' \in A_i \mid (\boldsymbol{a}_{-i}, a_i') \succsim_i (\boldsymbol{a}_{-i}, a_i)\}$$

is convex.

► Then, we can consider the following theorem which guarantees the condition of a PNE.

An example of quasi-concave function.



$$f(\lambda x + (1 - \lambda y)) \ge \min\{f(x), f(y)\}, \text{ for } \lambda \in [0, 1]$$

(ロ) (個) (差) (差) 差 かく()

Joseph C.-C. Lin $\,$ CSIE, TKU, TW $\,$ 35 / 55 $\,$

The Main Theorem I

Main Theorem I

The strategic game $\langle N, (A_i), (\succsim_i) \rangle$ has a (pure) Nash equilibrium if

- $ightharpoonup A_i$ is a nonempty, compact, and convex subset of a Euclidean space
- $\triangleright \succeq_i$ is continuous and quasi-concave on A_i for all $i \in \mathbb{N}$.
- ▶ We will show that A (cf. S) and BR (cf. Φ) satisfy the conditions to apply Kakutani's Fixed-Point Theorem.

▶ A_i is nonempty, compact and convex for all $i \in N$, so their Cartesian product (i.e., A) must also be nonempty, compact and convex.

- ▶ A_i is nonempty, compact and convex for all $i \in N$, so their Cartesian product (i.e., A) must also be nonempty, compact and convex.
- Note that in Kakutani's Theorem, $\Phi: S \mapsto \mathbb{P}(S)$, where $\mathbb{P}(S)$ denotes all nonempty, closed, and convex subsets of S.

4 D > 4 D > 4 E > 4 E > 9 Q @

- ▶ A_i is nonempty, compact and convex for all $i \in N$, so their Cartesian product (i.e., A) must also be nonempty, compact and convex.
- Note that in Kakutani's Theorem, $\Phi: S \mapsto \mathbb{P}(S)$, where $\mathbb{P}(S)$ denotes all nonempty, closed, and convex subsets of S.
- ▶ We need to show that $BR_i(\mathbf{a}_{-i})$ is nonempty, closed, and convex for all $\mathbf{a}_{-i} \in \prod_{i \in N \setminus \{i\}} A_i$.

4 D F 4 DF F 7 D F F F F F 7 Q (*

- ▶ A_i is nonempty, compact and convex for all $i \in N$, so their Cartesian product (i.e., A) must also be nonempty, compact and convex.
- Note that in Kakutani's Theorem, $\Phi: S \mapsto \mathbb{P}(S)$, where $\mathbb{P}(S)$ denotes all nonempty, closed, and convex subsets of S.
- We need to show that $BR_i(\mathbf{a}_{-i})$ is nonempty, closed, and convex for all $\mathbf{a}_{-i} \in \prod_{j \in N \setminus \{i\}} A_j$.
 - ▶ Their Cartesian product BR(a) is then nonempty, closed and convex, too.
 - ightharpoonup We then have $BR:A\mapsto \mathbb{P}(A)$.

Assume that we can construct a continuous function (utility function) $u_i: A_i \mapsto \mathbb{R}$ such that for $a_i, a_i' \in A_i$, $(\mathbf{a}_{-i}, a_i) \succsim (\mathbf{a}_{-i}, a_i')$ if and only if $u_i(a_i) \ge u_i(a_i')$.

- Assume that we can construct a continuous function (utility function) $u_i: A_i \mapsto \mathbb{R}$ such that for $a_i, a_i' \in A_i$, $(\mathbf{a}_{-i}, a_i) \succeq (\mathbf{a}_{-i}, a_i')$ if and only if $u_i(a_i) \geq u_i(a_i')$.
- ▶ Since A_i is compact and u_i is continuous, $u_i(A_i)$ is compact as well.
- ▶ By the Extreme Value Theorem, there must exist some $a_i^* \in A_i$ such that $u_i(a_i^*) \ge u_i(a_i)$ for all $a_i \in A_i$.

- Assume that we can construct a continuous function (utility function) $u_i: A_i \mapsto \mathbb{R}$ such that for $a_i, a_i' \in A_i$, $(\mathbf{a}_{-i}, a_i) \succsim (\mathbf{a}_{-i}, a_i')$ if and only if $u_i(a_i) \ge u_i(a_i')$.
- ▶ Since A_i is compact and u_i is continuous, $u_i(A_i)$ is compact as well.
- ▶ By the Extreme Value Theorem, there must exist some $a_i^* \in A_i$ such that $u_i(a_i^*) \ge u_i(a_i)$ for all $a_i \in A_i$.
- ▶ By definition of u_i , it follows that $(\mathbf{a}_{-i}, a_i^*) \succsim (\mathbf{a}_{-i}, a_i)$ for all $a_i \in A_i$, thus $a_i^* \in BR_i(\mathbf{a}_{-i})$.

- Assume that we can construct a continuous function (utility function) $u_i: A_i \mapsto \mathbb{R}$ such that for $a_i, a_i' \in A_i$, $(\mathbf{a}_{-i}, a_i) \succsim (\mathbf{a}_{-i}, a_i')$ if and only if $u_i(a_i) \ge u_i(a_i')$.
- ▶ Since A_i is compact and u_i is continuous, $u_i(A_i)$ is compact as well.
- ▶ By the Extreme Value Theorem, there must exist some $a_i^* \in A_i$ such that $u_i(a_i^*) \ge u_i(a_i)$ for all $a_i \in A_i$.
- ▶ By definition of u_i , it follows that $(\mathbf{a}_{-i}, a_i^*) \succsim (\mathbf{a}_{-i}, a_i)$ for all $a_i \in A_i$, thus $a_i^* \in BR_i(\mathbf{a}_{-i})$.
- ► So $BR_i(\mathbf{a}_{-i})$ is nonempty.

- ▶ Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.
- ▶ There must exist some sequence $(p_k)_{k \in \mathbb{N}}$ such that $p_k \in BR_i(\mathbf{a}_{-i})$ for all $k \in \mathbb{N}$ and $\lim_{k \to \infty} p_k = p$.

(ロ) (西) (音) (音) (日)

- ▶ Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.
- There must exist some sequence $(p_k)_{k\in\mathbb{N}}$ such that $p_k\in BR_i(\boldsymbol{a}_{-i})$ for all $k\in\mathbb{N}$ and $\lim_{k\to\infty}p_k=p$.
- ▶ By the definition of BR_i , we know that $(a_{-i}, p_k) \succsim_i (a_{-i}, a_i)$ for all $a_i \in A_i$.

(ロ) (西) (音) (音) (日)

- ▶ Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.
- There must exist some sequence $(p_k)_{k\in\mathbb{N}}$ such that $p_k\in BR_i(\boldsymbol{a}_{-i})$ for all $k\in\mathbb{N}$ and $\lim_{k\to\infty}p_k=p$.
- ▶ By the definition of BR_i , we know that $(a_{-i}, p_k) \succsim_i (a_{-i}, a_i)$ for all $a_i \in A_i$.
- ▶ For each $a_i \in A_i$, we can construct
 - ightharpoonup a sequence $((\boldsymbol{a}_{-i},p_k))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\boldsymbol{a}_{-i},p_k)=(\boldsymbol{a}_{-i},p)$.
 - ▶ a sequence $((\boldsymbol{a}_{-i}, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\boldsymbol{a}_{-i}, a_i) = (\boldsymbol{a}_{-i}, a_i)$.

- ▶ Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.
- There must exist some sequence $(p_k)_{k\in\mathbb{N}}$ such that $p_k\in BR_i(\boldsymbol{a}_{-i})$ for all $k\in\mathbb{N}$ and $\lim_{k\to\infty}p_k=p$.
- ▶ By the definition of BR_i , we know that $(a_{-i}, p_k) \succsim_i (a_{-i}, a_i)$ for all $a_i \in A_i$.
- ▶ For each $a_i \in A_i$, we can construct
 - ightharpoonup a sequence $((\boldsymbol{a}_{-i},p_k))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\boldsymbol{a}_{-i},p_k)=(\boldsymbol{a}_{-i},p)$.
 - lacktriangle a sequence $((m{a}_{-i},a_i))_{k\in\mathbb{N}}$ such that $\lim_{k o\infty}(m{a}_{-i},a_i)=(m{a}_{-i},a_i)$.
- ▶ Note that $(\mathbf{a}_{-i}, p_k) \succsim_i (\mathbf{a}_{-i}, a_i)$ for all $k \in \mathbb{N}$.
 - ▶ By the continuity of \succsim_i , we have $(\mathbf{a}_{-i}, p) \succsim_i (\mathbf{a}_{-i}, a_i)$ for all $a_i \in A_i$.

- ▶ Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.
- There must exist some sequence $(p_k)_{k\in\mathbb{N}}$ such that $p_k\in BR_i(\boldsymbol{a}_{-i})$ for all $k\in\mathbb{N}$ and $\lim_{k\to\infty}p_k=p$.
- ▶ By the definition of BR_i , we know that $(a_{-i}, p_k) \succsim_i (a_{-i}, a_i)$ for all $a_i \in A_i$.
- ▶ For each $a_i \in A_i$, we can construct
 - lacktriangle a sequence $((m{a}_{-i},p_k))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(m{a}_{-i},p_k)=(m{a}_{-i},p)$.
 - lacktriangle a sequence $((m{a}_{-i},a_i))_{k\in\mathbb{N}}$ such that $\lim_{k o\infty}(m{a}_{-i},a_i)=(m{a}_{-i},a_i)$.
- ▶ Note that $(\mathbf{a}_{-i}, p_k) \succsim_i (\mathbf{a}_{-i}, a_i)$ for all $k \in \mathbb{N}$.
 - ▶ By the continuity of \succeq_i , we have $(a_{-i}, p) \succeq_i (a_{-i}, a_i)$ for all $a_i \in A_i$.
 - $\Rightarrow p \in BR_i(\mathbf{a}_{-i})$

- ▶ Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.
- There must exist some sequence $(p_k)_{k\in\mathbb{N}}$ such that $p_k\in BR_i(\boldsymbol{a}_{-i})$ for all $k\in\mathbb{N}$ and $\lim_{k\to\infty}p_k=p$.
- ▶ By the definition of BR_i , we know that $(a_{-i}, p_k) \succsim_i (a_{-i}, a_i)$ for all $a_i \in A_i$.
- ▶ For each $a_i \in A_i$, we can construct
 - lacktriangle a sequence $((m{a}_{-i},p_k))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(m{a}_{-i},p_k)=(m{a}_{-i},p)$.
 - lacktriangle a sequence $((\boldsymbol{a}_{-i},a_i))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\boldsymbol{a}_{-i},a_i)=(\boldsymbol{a}_{-i},a_i)$.
- ▶ Note that $(a_{-i}, p_k) \succsim_i (a_{-i}, a_i)$ for all $k \in \mathbb{N}$.
 - ▶ By the continuity of \succsim_i , we have $(a_{-i}, p) \succsim_i (a_{-i}, a_i)$ for all $a_i \in A_i$.
 - $\Rightarrow p \in BR_i(\mathbf{a}_{-i}) (:.BR_i(\mathbf{a}_{-i}) \text{ is closed}).$

- ▶ Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- $ightharpoonup \succsim_i$ is quasi-concave on $A_i \Rightarrow$

- ▶ Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- $ightharpoonup \gtrsim_i$ is quasi-concave on $A_i \Rightarrow$

$$S = \{a'_i \in A_i \mid (\boldsymbol{a}_{-i}, a'_i) \succsim_i (\boldsymbol{a}_{-i}, a_i)\}$$
 is convex

▶ Since a_i is a best response, the responses a'_i weakly preferable to a_i must be also best responses.

- ▶ Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- $ightharpoonup \succsim_i$ is quasi-concave on $A_i \Rightarrow$

$$S = \{a'_i \in A_i \mid (\boldsymbol{a}_{-i}, a'_i) \succsim_i (\boldsymbol{a}_{-i}, a_i)\}$$
 is convex

▶ Since a_i is a best response, the responses a_i' weakly preferable to a_i must be also best responses. $\Rightarrow S \subseteq BR_i(\mathbf{a}_{-i})$.

- ▶ Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- $ightharpoonup \succsim_i$ is quasi-concave on $A_i \Rightarrow$

$$S = \{a'_i \in A_i \mid (\boldsymbol{a}_{-i}, a'_i) \succsim_i (\boldsymbol{a}_{-i}, a_i)\}$$
 is convex

- ▶ Since a_i is a best response, the responses a_i' weakly preferable to a_i must be also best responses. $\Rightarrow S \subseteq BR_i(\mathbf{a}_{-i})$.
- ▶ Any other best response $a_i^* \in BR_i(\mathbf{a}_{-i})$ must be at least good as a_i

- ▶ Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- $ightharpoonup \succsim_i$ is quasi-concave on $A_i \Rightarrow$

$$S = \{a'_i \in A_i \mid (\boldsymbol{a}_{-i}, a'_i) \succsim_i (\boldsymbol{a}_{-i}, a_i)\}$$
 is convex

- ▶ Since a_i is a best response, the responses a_i' weakly preferable to a_i must be also best responses. $\Rightarrow S \subseteq BR_i(\mathbf{a}_{-i})$.
- ▶ Any other best response $a_i^* \in BR_i(\mathbf{a}_{-i})$ must be at least good as $a_i \Rightarrow BR_i(\mathbf{a}_{-i}) \subseteq S$.
- ▶ Hence, we have $BR_i(\mathbf{a}_{-i}) = S$, so $BR_i(\mathbf{a}_{-i})$ is convex.

ロト《御》《意》《意》、意、夕久で

▶ Next, we will show that *BR* is upper semi-continuous.

Joseph C.-C. Lin CSIE, TKU, TW 41 / 55

Recall: Upper Semi-Continuous

Upper semi-continuous functions

Let

- $ightharpoonup \mathbb{P}(X)$: all nonempty, closed, convex subsets of X.
- ► S: a nonempty, compact, and convex set.

Then the set-valued function $\Phi: S \mapsto \mathbb{P}(S)$ is upper semi-continuous if

for arbitrary sequences $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ in S, we have

- $ightharpoonup \lim_{n\to\infty} \mathbf{x}_n = \mathbf{x}_0,$
- $\blacktriangleright \ \lim_{n\to\infty} \mathbf{y}_n = \mathbf{y}_0,$
- ▶ $y_n \in \Phi(x_n)$ for all $n \in \mathbb{N}$, imply that $y_0 \in \Phi(x_0)$.

Joseph C.-C. Lin CSIE, TKU, TW 42 / 55

BR is upper semi-continuous

▶ Consider two sequences (x^k) , (y^k) in A such that

$$\lim_{k\to\infty} \mathbf{x}^k = \mathbf{x}^0,$$

 $\lim_{k\to\infty} \mathbf{y}^k = \mathbf{y}^0.$
 $\mathbf{y}^k \in BR_i(\mathbf{x}^k)$ for all $k \in \mathbb{N}$.

▶ Then we have $y_i^k \in BR_i(\mathbf{x}_{-i}^k)$ for all $i \in N, k \in \mathbb{N}$.

Joseph C.-C. Lin CSIE, TKU, TW 43 / 55

BR is upper semi-continuous

▶ Consider two sequences (x^k) , (y^k) in A such that

$$\lim_{k\to\infty} \mathbf{x}^k = \mathbf{x}^0,$$

 $\lim_{k\to\infty} \mathbf{y}^k = \mathbf{y}^0.$
 $\mathbf{y}^k \in BR_i(\mathbf{x}^k)$ for all $k \in \mathbb{N}.$

- ▶ Then we have $y_i^k \in BR_i(\mathbf{x}_{-i}^k)$ for all $i \in N, k \in \mathbb{N}$.
- ▶ For an arbitrary $i \in N$, we have $(\mathbf{x}_{-i}^k, y_i^k) \succsim_i (\mathbf{x}_{-i}^k, a_i)$ for all $a_i \in A_i$ and $k \in \mathbb{N}$ (: best response).

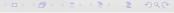
43 / 55

- ▶ For each $a_i \in A_i$, we can construct:
 - ightharpoonup a sequence $((\mathbf{x}_{-i}^k, y_i^k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, y_i^k) = (\mathbf{x}_{-i}^0, y_i^0)$.
 - ightharpoonup a sequence $((\mathbf{x}_{-i}^k, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, a_i) = (\mathbf{x}_{-i}^0, a_i)$.
- Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succsim_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - ▶ By continuity of \succeq_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succeq_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.

◆ロ > 〈母 > 〈臣 > 〈臣 > を を の へ で)

Joseph C.-C. Lin CSIE, TKU, TW 44 / 55

- ▶ For each $a_i \in A_i$, we can construct:
 - ightharpoonup a sequence $((\mathbf{x}_{-i}^k, y_i^k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, y_i^k) = (\mathbf{x}_{-i}^0, y_i^0)$.
 - ightharpoonup a sequence $((\mathbf{x}_{-i}^k, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, a_i) = (\mathbf{x}_{-i}^0, a_i)$.
- Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succeq_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - ▶ By continuity of \succeq_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succeq_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.
- ▶ Thus, we have $y_i^0 \in BR_i(\mathbf{x}_{-i}^0)$ for all $i \in N$.
 - $\mathbf{y}^0 \in BR_i(\mathbf{x}^0).$



Joseph C.-C. Lin CSIE, TKU, TW 44 / 55

- ▶ For each $a_i \in A_i$, we can construct:
 - ightharpoonup a sequence $((\mathbf{x}_{-i}^k, y_i^k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, y_i^k) = (\mathbf{x}_{-i}^0, y_i^0)$.
 - ightharpoonup a sequence $((\mathbf{x}_{-i}^k, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, a_i) = (\mathbf{x}_{-i}^0, a_i)$.
- Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succsim_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - ▶ By continuity of \succeq_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succeq_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.
- ▶ Thus, we have $y_i^0 \in BR_i(\mathbf{x}_{-i}^0)$ for all $i \in N$.
 - $\mathbf{y}^0 \in BR_i(\mathbf{x}^0).$
- ► Therefore, *BR* is upper semi-continuous.

<ロ > < 面 > < 置 > < 置 > を 量 > < で

Joseph C.-C. Lin CSIE, TKU, TW 44 / 55

- ▶ For each $a_i \in A_i$, we can construct:
 - ightharpoonup a sequence $((\mathbf{x}_{-i}^k, y_i^k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, y_i^k) = (\mathbf{x}_{-i}^0, y_i^0)$.
 - ightharpoonup a sequence $((\mathbf{x}_{-i}^k, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, a_i) = (\mathbf{x}_{-i}^0, a_i)$.
- Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succsim_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - ▶ By continuity of \succeq_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succeq_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.
- ▶ Thus, we have $y_i^0 \in BR_i(\mathbf{x}_{-i}^0)$ for all $i \in N$.
 - $\mathbf{y}^0 \in BR_i(\mathbf{x}^0).$
- ► Therefore, *BR* is upper semi-continuous.

By Kakutani's Fixed-Point Theorem, there exists some $\mathbf{a}^* \in A$ such that $\mathbf{a}^* \in BR(\mathbf{a}^*)$

- ▶ For each $a_i \in A_i$, we can construct:
 - ightharpoonup a sequence $((\mathbf{x}_{-i}^k, y_i^k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, y_i^k) = (\mathbf{x}_{-i}^0, y_i^0)$.
 - ightharpoonup a sequence $((\mathbf{x}_{-i}^k, a_i))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, a_i) = (\mathbf{x}_{-i}^0, a_i)$.
- Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succsim_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - ▶ By continuity of \succeq_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succeq_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.
- ▶ Thus, we have $y_i^0 \in BR_i(\mathbf{x}_{-i}^0)$ for all $i \in N$.
 - $\mathbf{y}^0 \in BR_i(\mathbf{x}^0).$
- ► Therefore, *BR* is upper semi-continuous.
 - By Kakutani's Fixed-Point Theorem, there exists some $\mathbf{a}^* \in A$ such that $\mathbf{a}^* \in BR(\mathbf{a}^*) \Rightarrow \mathbf{a}^*$ is a PNE of the strategic game.

Outline

Brouwer's Fixed Point Theorem

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Kakutani's Fixed Point Theorem

Pure Nash Equilibria of Pure Strategic Games

Preliminaries

Main Theorem I & The Proof

Mixed Nash Equilibria of Finite Strategies Games

Preliminaries & Assumptions

Main Theorem II & the Proof

Joseph C.-C. Lin CSIE, TKU, TW 45 / 55

Limitations of the Previous PNE Result

▶ Any finite game cannot satisfy the conditions.

Joseph C.-C. Lin CSIE, TKU, TW 46 / 55

Limitations of the Previous PNE Result

- ▶ Any finite game cannot satisfy the conditions.
 - Each A_i cannot be convex if it is finite and nonempty.
- * Next, we consider extending finite games into non-deterministic (randomized) strategies.

Joseph C.-C. Lin CSIE, TKU, TW 46 / 55

Assumptions

- ▶ For a strategic game $\langle N, (A_i), (\succsim_i) \rangle$, we assume that we can construct a utility function $u_i : A \mapsto \mathbb{R}$, where $A = \prod_{i \in N} A_i$.
- ► Each player's *expected utility* is coupled with the set of probability distributions over *A*.
- $ightharpoonup \Delta(X)$: the set of probability distributions over X.
- ▶ If X is finite and $\delta \in \Delta(X)$, then
 - $\delta(x)$: the probability that δ assigns to $x \in X$.
 - ▶ The support of δ : $\chi(\delta) = \{x \in X \mid \delta(x) > 0\}$.

< □ > < □ > < 臺 > < 臺 > ■ 9 < ○</p>

Joseph C.-C. Lin CSIE, TKU, TW 47 / 55

Mixed Strategy

Mixed Strategy

Given a strategic game $\langle N, (A_i), (u_i) \rangle$, we call

- $ightharpoonup \alpha_i \in \Delta(A_i)$ a mixed strategy.
- ▶ $a_i \in A_i$ a pure strategy.

A profile of mixed strategies $\alpha = (\alpha_j)_{j \in N}$ induces a probability distribution over A.

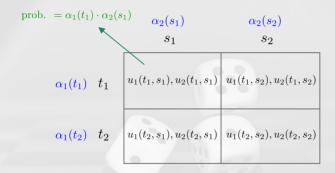
▶ The probability of $\mathbf{a} = (a_j)_{j \in N}$ under α :

$$\alpha(a) = \prod_{j \in N} \alpha_j(a_j)$$
. (a normal product)

(A_i is finite $\forall i \in N$ and each player's strategy is resolved independently.)

4 D P 4 DV P 4 Z P

Joseph C.-C. Lin CSIE, TKU, TW 48 / 55



Mixed Extension of $\langle N, (A_i), (u_i) \rangle$

Mixed Extension of the Strategic Games

 $\langle N, (\Delta(A_i)), (U_i) \rangle$:

- ▶ $U_i: \prod_{i\in N} \Delta(A_i) \mapsto \mathbb{R}$; expected utility over A induced by $\alpha \in \prod_{i\in N} \Delta(A_i)$.
- ▶ If A_i is finite for all $j \in N$, then

$$U_i(lpha) = \sum_{m{a} \in A} (lpha(m{a}) \cdot u_i(m{a}))$$

= $\sum_{m{a} \in A} \left(\left(\prod_{j \in N} lpha_j(m{a}_j) \right) \cdot u_i(m{a}) \right).$

Joseph C.-C. Lin CSIE, TKU, TW 50 / 55

Main Theorem II

Main Theorem II

Every finite strategies game has a mixed strategy Nash equilibrium.

- ▶ Consider an arbitrary finite strategic game $\langle N, (A_i), (u_i) \rangle$, let $m_i := |A_i|$ for all $i \in N$.
- ightharpoonup Represent each $\Delta(A_i)$ as a collection of vectors $oldsymbol{p}^i=(p_1,p_2,\ldots,p_{m_i}).$
 - $ightharpoonup p_k \geq 0$ for all $k \in [m_i]$ and $\sum_{k=1}^{m_i} p_k = 1$.
 - $ightharpoonup \Delta(A_i)$ is a standard $m_i 1$ simplex for all $i \in N$.

4 D F 4 D F

Joseph C.-C. Lin CSIE, TKU, TW 51 / 55

Main Theorem II

Main Theorem II

Every finite strategies game has a mixed strategy Nash equilibrium.

- ▶ Consider an arbitrary finite strategic game $\langle N, (A_i), (u_i) \rangle$, let $m_i := |A_i|$ for all $i \in N$.
- lacktriangle Represent each $\Delta(A_i)$ as a collection of vectors $m{p}^i=(p_1,p_2,\ldots,p_{m_i})$.
 - $ightharpoonup p_k \geq 0$ for all $k \in [m_i]$ and $\sum_{k=1}^{m_i} p_k = 1$.
 - $ightharpoonup \Delta(A_i)$ is a standard $m_i 1$ simplex for all $i \in N$.
 - ⋆ $\Delta(A_i)$: nonempty, compact, and convex for each i ∈ N.
- *U_i*: continuous (∵ multilinear).
- Next, we show that U_i is quasi-concave in $\Delta(A_i)$.

Joseph C.-C. Lin CSIE, TKU, TW 51 / 55

- ▶ Consider $\alpha \in \prod_{i \in N} \Delta(A_i)$.
- ▶ **Goal:** Show that $S = \{\alpha'_i \in \Delta(A_i) \mid U_i(\alpha_{-i}, \alpha'_i) \geq U_i(\alpha_{-i}, \alpha_i)\}$ is convex.

Joseph C.-C. Lin CSIE, TKU, TW 52 / 55

- ▶ Consider $\alpha \in \prod_{i \in N} \Delta(A_i)$.
- ▶ **Goal:** Show that $S = \{\alpha'_i \in \Delta(A_i) \mid U_i(\alpha_{-i}, \alpha'_i) \geq U_i(\alpha_{-i}, \alpha_i)\}$ is convex.
- ▶ Take $\beta_i, \gamma_i \in S$, $\lambda \in [0, 1]$.
- \triangleright By definition of S, we have
 - $V_i(\alpha_{-i},\beta_i) \geq U_i(\alpha_{-i},\alpha_i)$, and
 - $V_i(\alpha_{-i}, \gamma_i) \geq U_i(\alpha_{-i}, \alpha_i).$

Joseph C.-C. Lin CSIE, TKU, TW 52 / 55

- ▶ Consider $\alpha \in \prod_{i \in N} \Delta(A_i)$.
- ▶ **Goal:** Show that $S = \{\alpha'_i \in \Delta(A_i) \mid U_i(\alpha_{-i}, \alpha'_i) \geq U_i(\alpha_{-i}, \alpha_i)\}$ is convex.
- ▶ Take $\beta_i, \gamma_i \in S$, $\lambda \in [0, 1]$.
- \triangleright By definition of S, we have
 - $V_i(\alpha_{-i}, \beta_i) \geq U_i(\alpha_{-i}, \alpha_i)$, and
 - $U_i(\alpha_{-i}, \gamma_i) \geq U_i(\alpha_{-i}, \alpha_i).$
- $\lambda U_i(\alpha_{-i}, \beta_i) + (1 \lambda)U_i(\alpha_{-i}, \gamma_i) \ge \lambda U_i(\alpha_{-i}, \alpha_i) + (1 \lambda)U_i(\alpha_{-i}, \alpha_i) = U_i(\alpha_{-i}, \alpha_i).$

Joseph C.-C. Lin CSIE, TKU, TW 52 / 55

 \triangleright By the multilinearity of U_i , we have

$$\lambda U_i(\alpha_{-i}, \beta_i) + (1 - \lambda)U_i(\alpha_{-i}, \gamma_i) = U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i).$$



Joseph C.-C. Lin CSIE, TKU, TW 53 / 55

 \triangleright By the multilinearity of U_i , we have

$$\lambda U_i(\alpha_{-i}, \beta_i) + (1 - \lambda)U_i(\alpha_{-i}, \gamma_i) = U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i).$$

► So,

$$U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i) \ge U_i(\alpha_{-i}, \alpha_i).$$

Joseph C.-C. Lin CSIE, TKU, TW 53 / 55

 \triangleright By the multilinearity of U_i , we have

$$\lambda U_i(\alpha_{-i}, \beta_i) + (1 - \lambda)U_i(\alpha_{-i}, \gamma_i) = U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i).$$

► So,

$$U_i(\boldsymbol{\alpha}_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i) \geq U_i(\boldsymbol{\alpha}_{-i}, \alpha_i).$$

$$\lambda \beta_i + (1 - \lambda) \gamma_i \in S$$

Joseph C.-C. Lin CSIE, TKU, TW 53 / 55

 \triangleright By the multilinearity of U_i , we have

$$\lambda U_i(\alpha_{-i}, \beta_i) + (1 - \lambda)U_i(\alpha_{-i}, \gamma_i) = U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i).$$

► So,

$$U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i) \ge U_i(\alpha_{-i}, \alpha_i).$$

$$\lambda \beta_i + (1 - \lambda) \gamma_i \in S \Rightarrow U_i$$
 is convex.

▶ Thus, U_i is quasi-concave in $\Delta(A_i)$.

We are done.

Joseph C.-C. Lin CSIE, TKU, TW 53 / 55

A Question

Matching Pennies of Infinite Actions

We have two players A and B having utility functions $f(x,y) = (x-y)^2$ and $g(x,y) = -(x-y)^2$ respectively. $x,y \in [-1,1]$.

- ▶ Does this game has a pure Nash equilibrium?
- ▶ Why can't we use Kakutani's fixed point theorem?

Joseph C.-C. Lin CSIE, TKU, TW 54 / 55

Thank You.

Joseph C.-C. Lin CSIE, TKU, TW 55 / 55