Testing induced P_3 -freeness

Noga Alon and Asaf Shapira Combinatorics, Probability and Computing **15** (2006) 791–805.

> Speaker: Joseph, Chuang-Chieh Lin Advisor: Professor Maw-Shang Chang

Computation Theory Laboratory Dept. Computer Science and Information Engineering National Chung Cheng University, Taiwan

September 24, 2009

Outline

2 Testing induced P_3 -freeness

Outline

2 Testing induced P₃-freeness

Introduction (model)

• Graph model: dense graph (adjacency matrix) for G(V, E).

- undirected, no self-loops, ≤ 1 edge between any $u, v \in V$
- |V| = n vertices and $|E| = \Omega(n^2)$ edges.

• A graph property:

• A set of graphs closed under isomorphisms.

- Let \mathbb{P} be a graph property.
 - ϵ-far from satisfying P:
 - $\star \ \geq \epsilon n^2$ edges should be removed or added to let the graph satisfy $\mathbb P$

Introduction (model)

• Graph model: dense graph (adjacency matrix) for G(V, E).

- undirected, no self-loops, \leq 1 edge between any $u, v \in V$
- |V| = n vertices and $|E| = \Omega(n^2)$ edges.

• A graph property:

- A set of graphs closed under isomorphisms.
- Let \mathbb{P} be a graph property.
 - ϵ -far from satisfying \mathbb{P} :
 - \star \geq ϵ n² edges should be removed or added to let the graph satisfy $\mathbb P$

Introduction (model)

• Graph model: dense graph (adjacency matrix) for G(V, E).

- undirected, no self-loops, \leq 1 edge between any $u, v \in V$
- |V| = n vertices and $|E| = \Omega(n^2)$ edges.
- A graph property:
 - A set of graphs closed under isomorphisms.
- Let \mathbb{P} be a graph property.
 - ϵ -far from satisfying \mathbb{P} :
 - $\star \ \geq \epsilon \mathit{n}^2$ edges should be removed or added to let the graph satisfy $\mathbb P$

Introduction (property testing)

• Property testing:

- it does NOT precisely determine YES or NO for a decision problem;
- requires sublinear running time

• A property tester for \mathbb{P} :

- A randomized algorithm such that
 - ★ it answers "YES" with probability of $\geq 2/3$ if G satisfies \mathbb{P} , and
 - ★ it answers "NO" with probability of $\geq 2/3$ if G is ϵ -far from satisfying \mathbb{P} .

Introduction (property testing)

• Property testing:

- it does NOT precisely determine YES or NO for a decision problem;
- requires sublinear running time

• A property tester for \mathbb{P} :

- A randomized algorithm such that
 - ★ it answers "YES" with probability of \geq 2/3 if G satisfies $\mathbb P$, and
 - ★ it answers "NO" with probability of $\geq 2/3$ if G is ϵ -far from satisfying \mathbb{P} .

Surveys...

- <u>E. Fischer:</u> The art of uninformed decisions: A primer to property testing. The Computational Complexity Column of The Bulletin of the European Association for Theoretical Computer Science, **75** (2001), pp. 97–126.
- <u>O. Goldreich: Combinatorial property testing a survey</u>. Randomization Methods in Algorithm Design (P. M. Pardalos, S. Rajasekaran and J. D. P. Rolim eds.), AMS-DIMACS (1998), pp. 45–60.
- <u>D. Ron:</u> Property testing. Handbook of Randomized Computing, Vol. II, Kluwer Academic Publishers (P. M. Pardalos, S. Rajasekaran and J. D. P. Rolim eds.), 2001, pp. 597–649.

• Throughout this talk, we focus on graph properties and the dense graph model.

- A property tester has the ability to make queries and then make decision by making use of the answers of queries.
 - To see whether a desired pair of vertices are adjacent or not.
- And, we care about query complexities in this talk.
- With a slight abuse of notation, log *n* = ln *n*.
- Assume that n is large enough and ϵ is small enough.

- Throughout this talk, we focus on graph properties and the dense graph model.
- A property tester has the ability to make queries and then make decision by making use of the answers of queries.
 - To see whether a desired pair of vertices are adjacent or not.
- And, we care about query complexities in this talk.
- With a slight abuse of notation, $\log n = \ln n$.
- Assume that n is large enough and ϵ is small enough.

- Throughout this talk, we focus on graph properties and the dense graph model.
- A property tester has the ability to make queries and then make decision by making use of the answers of queries.
 - To see whether a desired pair of vertices are adjacent or not.
- And, we care about query complexities in this talk.
- With a slight abuse of notation, $\log n = \ln n$.
- Assume that n is large enough and ϵ is small enough.

- Throughout this talk, we focus on graph properties and the dense graph model.
- A property tester has the ability to make queries and then make decision by making use of the answers of queries.
 - To see whether a desired pair of vertices are adjacent or not.
- And, we care about query complexities in this talk.
- With a slight abuse of notation, $\log n = \ln n$.
- Assume that n is large enough and ϵ is small enough.

• \mathbb{P} is testable if

- ► \exists a property tester for \mathbb{P} such that its query complexity is independent of *n*.
- P is called easily testable if
 - ▶ \exists a property tester for \mathbb{P} such that its query complexity is independent of *n* and **polynomial in** $1/\epsilon$.

$\bullet \ \mathbb{P}$ is testable if

- ▶ \exists a property tester for \mathbb{P} such that its query complexity is independent of *n*.
- $\bullet \ \mathbb{P}$ is called easily testable if
 - ► \exists a property tester for \mathbb{P} such that its query complexity is independent of *n* and polynomial in $1/\epsilon$.

- G[H]: the induced subgraph of G on H.
- \mathbb{P}_{H}^{*} : the property that a graph having no H as an induced subgraph.
- A graph G satisfies $\mathbb{P}^*_H \Leftrightarrow G$ does not have H as an induced subgraph.

Goals of this talk

• We show that $\mathbb{P}_{P_3}^*$ is easily testable.

• Only $O(\log^2(1/\epsilon)/\epsilon^2)$ queries are required.

Goals of this talk

- We show that $\mathbb{P}_{P_3}^*$ is easily testable.
 - Only $O(\log^2(1/\epsilon)/\epsilon^2)$ queries are required.

10/37

Outline

2 Testing induced P_3 -freeness

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• The property tester is as follows:

1. Pick a random subset of $10 \log(1/\epsilon)/\epsilon$ vertices.

- 2. Check if there is an induced copy of P_3 spanned by this set.
- The query complexity is at most $O(\log^2(1/\epsilon)/\epsilon^2)$.
- If G satisfies $\mathbb{P}_{P_3}^*$, the algorithm always answers correctly (i.e., answers YES since there is no induced P_3).

- The property tester is as follows:
 - 1. Pick a random subset of $10 \log(1/\epsilon)/\epsilon$ vertices.
 - 2. Check if there is an induced copy of P_3 spanned by this set.
- The query complexity is at most $O(\log^2(1/\epsilon)/\epsilon^2)$.
- If G satisfies $\mathbb{P}_{P_3}^*$, the algorithm always answers correctly (i.e., answers YES since there is no induced P_3).
- We have to show that if G is ε-far from satisfying P^{*}_{P3}, the algorithm finds an induced copy of P₃ with probability ≥ 2/3.

- The property tester is as follows:
 - 1. Pick a random subset of $10 \log(1/\epsilon)/\epsilon$ vertices.
 - 2. Check if there is an induced copy of P_3 spanned by this set.
- The query complexity is at most $O(\log^2(1/\epsilon)/\epsilon^2)$.
- If G satisfies $\mathbb{P}_{P_3}^*$, the algorithm always answers correctly (i.e., answers YES since there is no induced P_3).
- We have to show that if G is ε-far from satisfying P^{*}_{P3}, the algorithm finds an induced copy of P₃ with probability ≥ 2/3.

- The property tester is as follows:
 - 1. Pick a random subset of $10 \log(1/\epsilon)/\epsilon$ vertices.
 - 2. Check if there is an induced copy of P_3 spanned by this set.
- The query complexity is at most $O(\log^2(1/\epsilon)/\epsilon^2)$.
- If G satisfies $\mathbb{P}_{P_3}^*$, the algorithm always answers correctly (i.e., answers YES since there is no induced P_3).
- We have to show that if G is ϵ -far from satisfying $\mathbb{P}_{P_3}^*$, the algorithm finds an induced copy of P_3 with probability $\geq 2/3$.

- The property tester is as follows:
 - 1. Pick a random subset of $10 \log(1/\epsilon)/\epsilon$ vertices.
 - 2. Check if there is an induced copy of P_3 spanned by this set.
- The query complexity is at most $O(\log^2(1/\epsilon)/\epsilon^2)$.
- If G satisfies $\mathbb{P}_{P_3}^*$, the algorithm always answers correctly (i.e., answers YES since there is no induced P_3).

High degree vertices

- Let *HIGH* be the set $\{v \in V(G) \mid \deg(v) \geq \frac{\epsilon n}{4}\}$.
 - Intuitively, vertices of HIGH have high contribution to G being ϵ -far from satisfying $\mathbb{P}_{P_3}^*$.

HIGH has high contribution indeed!

Claim 1

Assume that G is ϵ -far from satisfying $\mathbb{P}_{P_3}^*$ and $W \subseteq V(G)$ contains at least $|HIGH| - \frac{\epsilon}{4}n$ vertices of HIGH, then it requires to add or remove $\geq \frac{\epsilon}{2}n^2$ edges to make G[H] satisfy $\mathbb{P}_{P_3}^*$.

Randomly chosen subset of vertices are Good w.h.p.

Definition 1

We call a set $A \subseteq V(G)$ Good if at least $|\text{HIGH}| - \frac{\epsilon}{4}n$ vertices of HIGH have a neighbor in A.

Randomly chosen subset of vertices are Good w.h.p.

Claim 2

A randomly chosen subset $A \subseteq V(G)$ of size $8\log(1/\epsilon)/\epsilon$ is Good with probability at least 7/8.

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ り へ (や 16/37

A well-known observation for induced P_3 -free graphs

• A graph is induced P_3 -free if and only if it is disjoint union of cliques.

Correctness and query complexity of the algorithm

- First we choose a random subset $A \subset V$ of size $8 \log(1/\epsilon)/\epsilon$.
- Assume that A is Good (this is not true with probability $\leq 1/8$).
- If A contains an induced copy of P₃, then we are done.

Correctness and query complexity of the algorithm

- First we choose a random subset $A \subset V$ of size $8 \log(1/\epsilon)/\epsilon$.
- Assume that A is Good (this is not true with probability $\leq 1/8$).
- If A contains an induced copy of P_3 , then we are done.

Correctness and query complexity of the algorithm

- First we choose a random subset A ⊂ V of size 8 log(1/ε)/ε.
- Assume that A is Good (this is not true with probability $\leq 1/8$).
- If A contains an induced copy of P_3 , then we are done.

• Otherwise, (i.e., A contains no induced copy of P_3)

- Let W be the set of all the vertices $v \in V$ that ≥ 1 neighbor in A.
- ▶ Recall that G is assume to be ϵ -far from satisfying $\mathbb{P}_{P_3}^*$, and A is assumed to be Good.
- And of course, we can assume that A can be partitioned into disjoint union of cliques C₁, C₂,..., C_r, for some integer r.

• Otherwise, (i.e., A contains no induced copy of P_3)

- Let W be the set of all the vertices $v \in V$ that ≥ 1 neighbor in A.
- ▶ Recall that G is assume to be ϵ -far from satisfying $\mathbb{P}_{P_3}^*$, and A is assumed to be Good.
- And of course, we can assume that A can be partitioned into disjoint union of cliques C_1, C_2, \ldots, C_r , for some integer r.

- Otherwise, (i.e., A contains no induced copy of P_3)
 - Let W be the set of all the vertices $v \in V$ that ≥ 1 neighbor in A.
 - ▶ Recall that *G* is assume to be ϵ -far from satisfying $\mathbb{P}_{P_3}^*$, and *A* is assumed to be Good.
- And of course, we can assume that A can be partitioned into disjoint union of cliques C_1, C_2, \ldots, C_r , for some integer r.

- Otherwise, (i.e., A contains no induced copy of P_3)
 - Let W be the set of all the vertices $v \in V$ that ≥ 1 neighbor in A.
 - ▶ Recall that *G* is assume to be ϵ -far from satisfying $\mathbb{P}_{P_3}^*$, and *A* is assumed to be Good.
- And of course, we can assume that A can be partitioned into disjoint union of cliques C_1, C_2, \ldots, C_r , for some integer r.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 20/37 If a vertex v ∈ W is connected to u ∈ C_i ⊆ A, it follows that if W can be partitioned into cliques D₁,..., D_r, where for 1 ≤ i ≤ r, C_i ⊆ D_i, then v would have to belong to D_i.

If a vertex v ∈ W is connected to u ∈ C_i ⊆ A, it follows that if W can be partitioned into cliques D₁,..., D_r, where for 1 ≤ i ≤ r, C_i ⊆ D_i, then v would have to belong to D_i.

- For each v ∈ W connected to u ∈ C_i, assign v the number i. If v is connected to vertices that belong to different C_i's, then assign v any of these numbers.
- The numbering induces a partition of W into r subsets.

- Violating pairs: "s, t ∈ D_i but s, t are not connected" or "s ∈ D_i, t ∈ D_j for i ≠ j but s, t are connected".
- There are at least $\frac{\epsilon}{2}n^2$ violating pairs of vertices in W (for A is Good, so that W contains many vertices of HIGH).

 Therefore, choosing a set B of 8/e randomly chosen pairs of vertices fails to find violating pairs with probability of at most

• By Claim 2, $\Pr[A \text{ is NOT Good}] \leq \frac{1}{8}$.

- $\Pr[B \text{ does NOT contain any violating pair of vertices}] \leq \frac{1}{8}$.
- Hence with probability $< \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$ the induced subgraph $G[A \cup B]$ is not induced P_3 -free.
- Since |A| + |B| = O(8 log(1/ε)/ε + 8/ε) = O(8 log(1/ε)/ε), the proof is complete!

- By Claim 2, $\Pr[A \text{ is NOT Good}] \leq \frac{1}{8}$.
- $\Pr[B \text{ does NOT contain any violating pair of vertices}] \le \frac{1}{8}$.
- Hence with probability $< \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$ the induced subgraph $G[A \cup B]$ is not induced P_3 -free.
- Since |A| + |B| = O(8 log(1/ε)/ε + 8/ε) = O(8 log(1/ε)/ε), the proof is complete!

- By Claim 2, $\Pr[A \text{ is NOT Good}] \leq \frac{1}{8}$.
- $\Pr[B \text{ does NOT contain any violating pair of vertices}] \leq \frac{1}{8}$.
- Hence with probability $< \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$ the induced subgraph $G[A \cup B]$ is not induced P_3 -free.
- Since |A| + |B| = O(8 log(1/ε)/ε + 8/ε) = O(8 log(1/ε)/ε), the proof is complete!

- By Claim 2, $\Pr[A \text{ is NOT Good}] \leq \frac{1}{8}$.
- $\Pr[B \text{ does NOT contain any violating pair of vertices}] \leq \frac{1}{8}$.
- Hence with probability $< \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$ the induced subgraph $G[A \cup B]$ is not induced P_3 -free.
- Since |A| + |B| = O(8 log(1/ε)/ε + 8/ε) = O(8 log(1/ε)/ε), the proof is complete!

Back to the proofs of claims

Claim 1

Assume that G is ϵ -far from satisfying $\mathbb{P}_{P_3}^*$ and $W \subseteq V(G)$ contains at least $|\text{HIGH}| - \frac{\epsilon}{4}n$ vertices of HIGH, then it requires to add or remove $\geq \frac{\epsilon}{2}n^2$ edges to make G[H] satisfy $\mathbb{P}_{P_3}^*$.

• Assume this is not the case (proof by contradiction).

• That is, we can make less than $\frac{\epsilon}{2}n^2$ changes (edge removals or edge additions) within W and get a graph that contains no induced copy of P_3 within W.

- Then we remove all the edges touching a vertex not in $W \cup HIGH$.
- $\leq n \cdot \frac{\epsilon}{4}n$ such edges.

・ロ ・ ・ 合 ・ ・ 言 ・ ・ 言 ・ う へ (* 30 / 37

- Then we remove any edge touching a vertex in HIGH $\setminus W$.
- $\leq \frac{\epsilon}{4}n \cdot n$ such edges since $|\text{HIGH} \setminus W| \leq \frac{\epsilon}{4}n$.

• Thus we obtain a graph that satisfies $\mathbb{P}_{P_2}^*$.

- < εn² edges are added or removed in G, so the remaining graph is not ε-far from satisfying P^{*}_{P3}.
 - This contradicts the assumption!

- Thus we obtain a graph that satisfies $\mathbb{P}_{P_3}^*$.
- < εn² edges are added or removed in G, so the remaining graph is not ε-far from satisfying P^{*}_{P3}.
 - This contradicts the assumption!

Claim 2

A randomly chosen subset $A \subseteq V(G)$ of size $8 \log(1/\epsilon)/\epsilon$ is Good with probability at least 7/8.

33 / 37

• Let A be a randomly chosen subset of size $8 \log(1/\epsilon)/\epsilon$.

• Consider a vertex $v \in HIGH$.

 Since v has at least [€]/₄n neighbors, the probability that A does not contain any neighbor of v is at most

$$\left(1-\frac{\epsilon}{4}\right)^{8\log(1/\epsilon)/\epsilon} = \left[\left(1-\frac{\epsilon}{4}\right)^{\frac{-4}{\epsilon}}\right]^{-2\log(\frac{1}{\epsilon})} \le e^{\log\epsilon^2} = \epsilon^2 \le \frac{\epsilon}{32},$$

where we assume that $\epsilon < 1/32$.

 $\geq \frac{\text{Exercise}}{|\mathcal{A}|} = \frac{4 \log(1/\epsilon)}{\epsilon} + \frac{20}{\epsilon}.$

- Let A be a randomly chosen subset of size $8\log(1/\epsilon)/\epsilon$.
- Consider a vertex $v \in HIGH$.
- Since v has at least [€]/₄n neighbors, the probability that A does not contain any neighbor of v is at most

$$\left(1-\frac{\epsilon}{4}\right)^{8\log(1/\epsilon)/\epsilon} = \left[\left(1-\frac{\epsilon}{4}\right)^{\frac{-4}{\epsilon}}\right]^{-2\log(\frac{1}{\epsilon})} \le e^{\log\epsilon^2} = \epsilon^2 \le \frac{\epsilon}{32},$$

where we assume that $\epsilon < 1/32$.

- Let A be a randomly chosen subset of size $8\log(1/\epsilon)/\epsilon$.
- Consider a vertex $v \in HIGH$.
- Since v has at least [€]/₄n neighbors, the probability that A does not contain any neighbor of v is at most

$$\left(1-\frac{\epsilon}{4}\right)^{8\log(1/\epsilon)/\epsilon} = \left[\left(1-\frac{\epsilon}{4}\right)^{\frac{-4}{\epsilon}}\right]^{-2\log(\frac{1}{\epsilon})} \le e^{\log\epsilon^2} = \epsilon^2 \le \frac{\epsilon}{32},$$

where we assume that $\epsilon < 1/32$.

- Let A be a randomly chosen subset of size $8 \log(1/\epsilon)/\epsilon$.
- Consider a vertex $v \in HIGH$.
- Since v has at least [€]/₄n neighbors, the probability that A does not contain any neighbor of v is at most

$$\left(1-\frac{\epsilon}{4}\right)^{8\log(1/\epsilon)/\epsilon} = \left[\left(1-\frac{\epsilon}{4}\right)^{\frac{-4}{\epsilon}}\right]^{-2\log(\frac{1}{\epsilon})} \le e^{\log\epsilon^2} = \epsilon^2 \le \frac{\epsilon}{32},$$

where we assume that $\epsilon < 1/32$.

- We just obtained for v ∈ HIGH,
 Pr[A does not contain any neighbor of v] ≤ ^ε/₃₂.
- Let X denote the number of vertices that belong to HIGH and have no neighbor in A.
- Since $|\mathsf{HIGH}| \le n$, we have $\mathbf{E}[X] \le \frac{\epsilon}{32} \cdot n$ (by linearity of expectation).
- By Markov's inequality, $\Pr[X \ge \frac{\epsilon}{4}n] \le \frac{\mathsf{E}[X]}{\frac{\epsilon}{2}n} \le \frac{\epsilon n/32}{\epsilon n/4} = 1/8$.
- Hence the proof is done.

- We just obtained for v ∈ HIGH,
 Pr[A does not contain any neighbor of v] ≤ ^ε/₃₂.
- Let X denote the number of vertices that belong to HIGH and have no neighbor in A.
- Since $|\text{HIGH}| \le n$, we have $\mathbf{E}[X] \le \frac{\epsilon}{32} \cdot n$ (by linearity of expectation).
- By Markov's inequality, $\Pr[X \ge \frac{\epsilon}{4}n] \le \frac{\mathsf{E}[X]}{\frac{\epsilon}{2}n} \le \frac{\epsilon n/32}{\epsilon n/4} = 1/8.$
- Hence the proof is done.

- We just obtained for v ∈ HIGH,
 Pr[A does not contain any neighbor of v] ≤ ^ε/₃₂.
- Let X denote the number of vertices that belong to HIGH and have no neighbor in A.
- Since $|\text{HIGH}| \le n$, we have $\mathbf{E}[X] \le \frac{\epsilon}{32} \cdot n$ (by linearity of expectation).
- By Markov's inequality, $\Pr[X \ge \frac{\epsilon}{4}n] \le \frac{\mathsf{E}[X]}{\frac{\epsilon}{2}n} \le \frac{\epsilon n/32}{\epsilon n/4} = 1/8.$
- Hence the proof is done.

- We just obtained for v ∈ HIGH,
 Pr[A does not contain any neighbor of v] ≤ ^ε/₃₂.
- Let X denote the number of vertices that belong to HIGH and have no neighbor in A.
- Since $|\text{HIGH}| \le n$, we have $\mathbf{E}[X] \le \frac{\epsilon}{32} \cdot n$ (by linearity of expectation).
- By Markov's inequality, $\Pr[X \ge \frac{\epsilon}{4}n] \le \frac{\mathsf{E}[X]}{\frac{\epsilon}{4}n} \le \frac{\epsilon n/32}{\epsilon n/4} = 1/8.$
- Hence the proof is done.

Open problems

• Are P_4 and C_4 easily testable?

Thank you!