
Testing induced P3-freeness

Noga Alon and Asaf Shapira

Combinatorics, Probability and Computing 15 (2006) 791–805.

Speaker: Joseph, Chuang-Chieh Lin

Advisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Dept. Computer Science and Information Engineering

National Chung Cheng University, Taiwan

September 24, 2009

1 / 37

Outline

1 Introduction

2 Testing induced P3-freeness

3 Concluding remarks

2 / 37

Outline

1 Introduction

2 Testing induced P3-freeness

3 Concluding remarks

3 / 37

Introduction (model)

Graph model: dense graph (adjacency matrix) for G (V ,E).
◮ undirected, no self-loops, ≤ 1 edge between any u, v ∈ V
◮ |V | = n vertices and |E | = Ω(n2) edges.

A graph property:
◮ A set of graphs closed under isomorphisms.

Let P be a graph property.
◮ ǫ-far from satisfying P:

⋆ ≥ ǫn2 edges should be removed or added to let the graph satisfy P

4 / 37

Introduction (model)

Graph model: dense graph (adjacency matrix) for G (V ,E).
◮ undirected, no self-loops, ≤ 1 edge between any u, v ∈ V
◮ |V | = n vertices and |E | = Ω(n2) edges.

A graph property:
◮ A set of graphs closed under isomorphisms.

Let P be a graph property.
◮ ǫ-far from satisfying P:

⋆ ≥ ǫn2 edges should be removed or added to let the graph satisfy P

4 / 37

Introduction (model)

Graph model: dense graph (adjacency matrix) for G (V ,E).
◮ undirected, no self-loops, ≤ 1 edge between any u, v ∈ V
◮ |V | = n vertices and |E | = Ω(n2) edges.

A graph property:
◮ A set of graphs closed under isomorphisms.

Let P be a graph property.
◮ ǫ-far from satisfying P:

⋆ ≥ ǫn2 edges should be removed or added to let the graph satisfy P

4 / 37

Introduction (property testing)

Property testing:
◮ it does NOT precisely determine YES or NO for a decision problem;
◮ requires sublinear running time

A property tester for P:
◮ A randomized algorithm such that

⋆ it answers “YES” with probability of ≥ 2/3 if G satisfies P, and
⋆ it answers “NO” with probability of ≥ 2/3 if G is ǫ-far from satisfying

P.

5 / 37

Introduction (property testing)

Property testing:
◮ it does NOT precisely determine YES or NO for a decision problem;
◮ requires sublinear running time

A property tester for P:
◮ A randomized algorithm such that

⋆ it answers “YES” with probability of ≥ 2/3 if G satisfies P, and
⋆ it answers “NO” with probability of ≥ 2/3 if G is ǫ-far from satisfying

P.

5 / 37

Surveys...

E. Fischer: The art of uninformed decisions: A primer to property
testing. The Computational Complexity Column of The Bulletin of

the European Association for Theoretical Computer Science, 75

(2001), pp. 97–126.

O. Goldreich: Combinatorial property testing - a survey.
Randomization Methods in Algorithm Design (P. M. Pardalos, S.
Rajasekaran and J. D. P. Rolim eds.), AMS-DIMACS (1998), pp.
45–60.

D. Ron: Property testing. Handbook of Randomized Computing, Vol.
II, Kluwer Academic Publishers (P. M. Pardalos, S. Rajasekaran and
J. D. P. Rolim eds.), 2001, pp. 597–649.

6 / 37

Introduction (testing graph properties)

Throughout this talk, we focus on graph properties and the dense
graph model.

A property tester has the ability to make queries and then make
decision by making use of the answers of queries.

◮ To see whether a desired pair of vertices are adjacent or not.

And, we care about query complexities in this talk.

With a slight abuse of notation, log n = ln n.

Assume that n is large enough and ǫ is small enough.

7 / 37

Introduction (testing graph properties)

Throughout this talk, we focus on graph properties and the dense
graph model.

A property tester has the ability to make queries and then make
decision by making use of the answers of queries.

◮ To see whether a desired pair of vertices are adjacent or not.

And, we care about query complexities in this talk.

With a slight abuse of notation, log n = ln n.

Assume that n is large enough and ǫ is small enough.

7 / 37

Introduction (testing graph properties)

Throughout this talk, we focus on graph properties and the dense
graph model.

A property tester has the ability to make queries and then make
decision by making use of the answers of queries.

◮ To see whether a desired pair of vertices are adjacent or not.

And, we care about query complexities in this talk.

With a slight abuse of notation, log n = ln n.

Assume that n is large enough and ǫ is small enough.

7 / 37

Introduction (testing graph properties)

Throughout this talk, we focus on graph properties and the dense
graph model.

A property tester has the ability to make queries and then make
decision by making use of the answers of queries.

◮ To see whether a desired pair of vertices are adjacent or not.

And, we care about query complexities in this talk.

With a slight abuse of notation, log n = ln n.

Assume that n is large enough and ǫ is small enough.

7 / 37

Introduction (testing graph properties)

P is testable if
◮ ∃ a property tester for P such that its query complexity is independent

of n.

P is called easily testable if
◮ ∃ a property tester for P such that its query complexity is independent

of n and polynomial in 1/ǫ.

8 / 37

Introduction (testing graph properties)

P is testable if
◮ ∃ a property tester for P such that its query complexity is independent

of n.

P is called easily testable if
◮ ∃ a property tester for P such that its query complexity is independent

of n and polynomial in 1/ǫ.

8 / 37

Induced H-freeness

G [H]: the induced subgraph of G on H.

P
∗

H : the property that a graph having no H as an induced subgraph.

A graph G satisfies P
∗

H ⇔ G does not have H as an induced subgraph.

9 / 37

Goals of this talk

We show that P
∗

P3
is easily testable.

◮ Only O(log2(1/ǫ)/ǫ2) queries are required.

10 / 37

Goals of this talk

We show that P
∗

P3
is easily testable.

◮ Only O(log2(1/ǫ)/ǫ2) queries are required.

10 / 37

Outline

1 Introduction

2 Testing induced P3-freeness

3 Concluding remarks

11 / 37

The property tester for P
∗
P3

The property tester is as follows:

1. Pick a random subset of 10 log(1/ǫ)/ǫ vertices.
2. Check if there is an induced copy of P3 spanned by this set.

The query complexity is at most O(log2(1/ǫ)/ǫ2).

If G satisfies P
∗

P3
, the algorithm always answers correctly (i.e.,

answers YES since there is no induced P3).

We have to show that if G is ǫ-far from satisfying P
∗

P3
, the algorithm

finds an induced copy of P3 with probability ≥ 2/3.

12 / 37

The property tester for P
∗
P3

The property tester is as follows:

1. Pick a random subset of 10 log(1/ǫ)/ǫ vertices.
2. Check if there is an induced copy of P3 spanned by this set.

The query complexity is at most O(log2(1/ǫ)/ǫ2).

If G satisfies P
∗

P3
, the algorithm always answers correctly (i.e.,

answers YES since there is no induced P3).

We have to show that if G is ǫ-far from satisfying P
∗

P3
, the algorithm

finds an induced copy of P3 with probability ≥ 2/3.

12 / 37

The property tester for P
∗
P3

The property tester is as follows:

1. Pick a random subset of 10 log(1/ǫ)/ǫ vertices.
2. Check if there is an induced copy of P3 spanned by this set.

The query complexity is at most O(log2(1/ǫ)/ǫ2).

If G satisfies P
∗

P3
, the algorithm always answers correctly (i.e.,

answers YES since there is no induced P3).

We have to show that if G is ǫ-far from satisfying P
∗

P3
, the algorithm

finds an induced copy of P3 with probability ≥ 2/3.

12 / 37

The property tester for P
∗
P3

The property tester is as follows:

1. Pick a random subset of 10 log(1/ǫ)/ǫ vertices.
2. Check if there is an induced copy of P3 spanned by this set.

The query complexity is at most O(log2(1/ǫ)/ǫ2).

If G satisfies P
∗

P3
, the algorithm always answers correctly (i.e.,

answers YES since there is no induced P3).

We have to show that if G is ǫ-far from satisfying P
∗

P3
, the algorithm

finds an induced copy of P3 with probability ≥ 2/3.

12 / 37

The property tester for P
∗
P3

The property tester is as follows:

1. Pick a random subset of 10 log(1/ǫ)/ǫ vertices.
2. Check if there is an induced copy of P3 spanned by this set.

The query complexity is at most O(log2(1/ǫ)/ǫ2).

If G satisfies P
∗

P3
, the algorithm always answers correctly (i.e.,

answers YES since there is no induced P3).

We have to show that if G is ǫ-far from satisfying P
∗

P3
, the algorithm

finds an induced copy of P3 with probability ≥ 2/3.

12 / 37

High degree vertices

Let HIGH be the set {v ∈ V (G) | deg(v) ≥ ǫn
4 }.

◮ Intuitively, vertices of HIGH have high contribution to G being ǫ-far
from satisfying P

∗

P3
.

13 / 37

HIGH has high contribution indeed!

Claim 1

Assume that G is ǫ-far from satisfying P
∗

P3
and W ⊆ V (G) contains at

least |HIGH| − ǫ
4n vertices of HIGH, then it requires to add or remove

≥ ǫ
2n2 edges to make G [H] satisfy P

∗

P3
.

14 / 37

Randomly chosen subset of vertices are Good w.h.p.

Definition 1

We call a set A ⊆ V (G) Good if at least |HIGH| − ǫ
4n vertices of HIGH

have a neighbor in A.

15 / 37

Randomly chosen subset of vertices are Good w.h.p.

Claim 2

A randomly chosen subset A ⊆ V (G) of size 8 log(1/ǫ)/ǫ is Good with

probability at least 7/8.

16 / 37

A well-known observation for induced P3-free graphs

A graph is induced P3-free if and only if it is disjoint union of cliques.

17 / 37

Correctness and query complexity of the algorithm

First we choose a random subset A ⊂ V of size 8 log(1/ǫ)/ǫ.

Assume that A is Good (this is not true with probability ≤ 1/8).

If A contains an induced copy of P3, then we are done.

18 / 37

Correctness and query complexity of the algorithm

First we choose a random subset A ⊂ V of size 8 log(1/ǫ)/ǫ.

Assume that A is Good (this is not true with probability ≤ 1/8).

If A contains an induced copy of P3, then we are done.

18 / 37

Correctness and query complexity of the algorithm

First we choose a random subset A ⊂ V of size 8 log(1/ǫ)/ǫ.

Assume that A is Good (this is not true with probability ≤ 1/8).

If A contains an induced copy of P3, then we are done.

18 / 37

Otherwise, (i.e., A contains no induced copy of P3)

◮ Let W be the set of all the vertices v ∈ V that ≥ 1 neighbor in A.

◮ Recall that G is assume to be ǫ-far from satisfying P
∗

P3
, and A is

assumed to be Good.

And of course, we can assume that A can be partitioned into disjoint
union of cliques C1,C2, . . . ,Cr , for some integer r .

19 / 37

Otherwise, (i.e., A contains no induced copy of P3)

◮ Let W be the set of all the vertices v ∈ V that ≥ 1 neighbor in A.

◮ Recall that G is assume to be ǫ-far from satisfying P
∗

P3
, and A is

assumed to be Good.

And of course, we can assume that A can be partitioned into disjoint
union of cliques C1,C2, . . . ,Cr , for some integer r .

19 / 37

Otherwise, (i.e., A contains no induced copy of P3)

◮ Let W be the set of all the vertices v ∈ V that ≥ 1 neighbor in A.

◮ Recall that G is assume to be ǫ-far from satisfying P
∗

P3
, and A is

assumed to be Good.

And of course, we can assume that A can be partitioned into disjoint
union of cliques C1,C2, . . . ,Cr , for some integer r .

19 / 37

Otherwise, (i.e., A contains no induced copy of P3)

◮ Let W be the set of all the vertices v ∈ V that ≥ 1 neighbor in A.

◮ Recall that G is assume to be ǫ-far from satisfying P
∗

P3
, and A is

assumed to be Good.

And of course, we can assume that A can be partitioned into disjoint
union of cliques C1,C2, . . . ,Cr , for some integer r .

19 / 37

20 / 37

If a vertex v ∈ W is connected to u ∈ Ci ⊆ A, it follows that if W

can be partitioned into cliques D1, . . . ,Dr , where for
1 ≤ i ≤ r ,Ci ⊆ Di , then v would have to belong to Di .

21 / 37

If a vertex v ∈ W is connected to u ∈ Ci ⊆ A, it follows that if W

can be partitioned into cliques D1, . . . ,Dr , where for
1 ≤ i ≤ r ,Ci ⊆ Di , then v would have to belong to Di .

22 / 37

For each v ∈ W connected to u ∈ Ci , assign v the number i . If v is
connected to vertices that belong to different Ci ’s, then assign v any
of these numbers.

The numbering induces a partition of W into r subsets.

23 / 37

Violating pairs: “s, t ∈ Di but s, t are not connected” or
“s ∈ Di ,t ∈ Dj for i 6= j but s, t are connected”.

There are at least ǫ
2n2 violating pairs of vertices in W (for A is Good,

so that W contains many vertices of HIGH).

24 / 37

Therefore, choosing a set B of 8/ǫ randomly chosen pairs of vertices
fails to find violating pairs with probability of at most

(

1 −
ǫn2/2

n(n − 1)/2

)8/ǫ

<
(

1 −
ǫ

2

)8/ǫ
< e−4 <

1

8
.

25 / 37

To sum up

By Claim 2, Pr[A is NOT Good] ≤ 1
8 .

Pr[B does NOT contain any violating pair of vertices] ≤ 1
8 .

Hence with probability < 1
8 + 1

8 = 1
4 the induced subgraph G [A ∪ B]

is not induced P3-free.

Since |A| + |B | = O(8 log(1/ǫ)/ǫ + 8/ǫ) = O(8 log(1/ǫ)/ǫ), the proof
is complete!

26 / 37

To sum up

By Claim 2, Pr[A is NOT Good] ≤ 1
8 .

Pr[B does NOT contain any violating pair of vertices] ≤ 1
8 .

Hence with probability < 1
8 + 1

8 = 1
4 the induced subgraph G [A ∪ B]

is not induced P3-free.

Since |A| + |B | = O(8 log(1/ǫ)/ǫ + 8/ǫ) = O(8 log(1/ǫ)/ǫ), the proof
is complete!

26 / 37

To sum up

By Claim 2, Pr[A is NOT Good] ≤ 1
8 .

Pr[B does NOT contain any violating pair of vertices] ≤ 1
8 .

Hence with probability < 1
8 + 1

8 = 1
4 the induced subgraph G [A ∪ B]

is not induced P3-free.

Since |A| + |B | = O(8 log(1/ǫ)/ǫ + 8/ǫ) = O(8 log(1/ǫ)/ǫ), the proof
is complete!

26 / 37

To sum up

By Claim 2, Pr[A is NOT Good] ≤ 1
8 .

Pr[B does NOT contain any violating pair of vertices] ≤ 1
8 .

Hence with probability < 1
8 + 1

8 = 1
4 the induced subgraph G [A ∪ B]

is not induced P3-free.

Since |A| + |B | = O(8 log(1/ǫ)/ǫ + 8/ǫ) = O(8 log(1/ǫ)/ǫ), the proof
is complete!

26 / 37

Back to the proofs of claims

Claim 1

Assume that G is ǫ-far from satisfying P
∗

P3
and W ⊆ V (G) contains at

least |HIGH| − ǫ
4n vertices of HIGH, then it requires to add or remove

≥ ǫ
2n2 edges to make G [H] satisfy P

∗

P3
.

27 / 37

Proof of Claim 1

Assume this is not the case (proof by contradiction).

28 / 37

Proof of Claim 1 (contd.)

That is, we can make less than ǫ
2n2 changes (edge removals or edge

additions) within W and get a graph that contains no induced copy
of P3 within W .

29 / 37

Proof of Claim 1 (contd.)

Then we remove all the edges touching a vertex not in W ∪ HIGH.

≤ n · ǫ
4n such edges.

30 / 37

Proof of Claim 1 (contd.)

Then we remove any edge touching a vertex in HIGH \ W .

≤ ǫ
4n · n such edges since |HIGH \ W | ≤ ǫ

4n.

31 / 37

Proof of Claim 1 (contd.)

Thus we obtain a graph that satisfies P
∗

P3
.

< ǫn2 edges are added or removed in G , so the remaining graph is
not ǫ-far from satisfying P

∗

P3
.

◮ This contradicts the assumption!

32 / 37

Proof of Claim 1 (contd.)

Thus we obtain a graph that satisfies P
∗

P3
.

< ǫn2 edges are added or removed in G , so the remaining graph is
not ǫ-far from satisfying P

∗

P3
.

◮ This contradicts the assumption!

32 / 37

Claim 2

A randomly chosen subset A ⊆ V (G) of size 8 log(1/ǫ)/ǫ is Good with
probability at least 7/8.

33 / 37

Proof of Claim 2

Let A be a randomly chosen subset of size 8 log(1/ǫ)/ǫ.

Consider a vertex v ∈ HIGH.

Since v has at least ǫ
4n neighbors, the probability that A does not

contain any neighbor of v is at most

(

1 −
ǫ

4

)8 log(1/ǫ)/ǫ
=

[

(

1 −
ǫ

4

)
−4
ǫ

]

−2 log(1
ǫ
)

≤ e log ǫ2
= ǫ2 ≤

ǫ

32
,

where we assume that ǫ < 1/32.

� Exercise: Show that the above assumption can be loosed to ǫ < 1 by
letting |A| = 4 log(1/ǫ)

ǫ + 20
ǫ .

34 / 37

Proof of Claim 2

Let A be a randomly chosen subset of size 8 log(1/ǫ)/ǫ.

Consider a vertex v ∈ HIGH.

Since v has at least ǫ
4n neighbors, the probability that A does not

contain any neighbor of v is at most

(

1 −
ǫ

4

)8 log(1/ǫ)/ǫ
=

[

(

1 −
ǫ

4

)
−4
ǫ

]

−2 log(1
ǫ
)

≤ e log ǫ2
= ǫ2 ≤

ǫ

32
,

where we assume that ǫ < 1/32.

� Exercise: Show that the above assumption can be loosed to ǫ < 1 by
letting |A| = 4 log(1/ǫ)

ǫ + 20
ǫ .

34 / 37

Proof of Claim 2

Let A be a randomly chosen subset of size 8 log(1/ǫ)/ǫ.

Consider a vertex v ∈ HIGH.

Since v has at least ǫ
4n neighbors, the probability that A does not

contain any neighbor of v is at most

(

1 −
ǫ

4

)8 log(1/ǫ)/ǫ
=

[

(

1 −
ǫ

4

)
−4
ǫ

]

−2 log(1
ǫ
)

≤ e log ǫ2
= ǫ2 ≤

ǫ

32
,

where we assume that ǫ < 1/32.

� Exercise: Show that the above assumption can be loosed to ǫ < 1 by
letting |A| = 4 log(1/ǫ)

ǫ + 20
ǫ .

34 / 37

Proof of Claim 2

Let A be a randomly chosen subset of size 8 log(1/ǫ)/ǫ.

Consider a vertex v ∈ HIGH.

Since v has at least ǫ
4n neighbors, the probability that A does not

contain any neighbor of v is at most

(

1 −
ǫ

4

)8 log(1/ǫ)/ǫ
=

[

(

1 −
ǫ

4

)
−4
ǫ

]

−2 log(1
ǫ
)

≤ e log ǫ2
= ǫ2 ≤

ǫ

32
,

where we assume that ǫ < 1/32.

� Exercise: Show that the above assumption can be loosed to ǫ < 1 by
letting |A| = 4 log(1/ǫ)

ǫ + 20
ǫ .

34 / 37

Proof of Claim 2 (contd.)

We just obtained for v ∈ HIGH,
Pr[A does not contain any neighbor of v] ≤ ǫ

32 .

Let X denote the number of vertices that belong to HIGH and have
no neighbor in A.

Since |HIGH| ≤ n, we have E[X] ≤ ǫ
32 · n (by linearity of expectation).

By Markov’s inequality, Pr[X ≥ ǫ
4n] ≤ E[X]

ǫ

4
n

≤ ǫn/32
ǫn/4 = 1/8.

Hence the proof is done.

35 / 37

Proof of Claim 2 (contd.)

We just obtained for v ∈ HIGH,
Pr[A does not contain any neighbor of v] ≤ ǫ

32 .

Let X denote the number of vertices that belong to HIGH and have
no neighbor in A.

Since |HIGH| ≤ n, we have E[X] ≤ ǫ
32 · n (by linearity of expectation).

By Markov’s inequality, Pr[X ≥ ǫ
4n] ≤ E[X]

ǫ

4
n

≤ ǫn/32
ǫn/4 = 1/8.

Hence the proof is done.

35 / 37

Proof of Claim 2 (contd.)

We just obtained for v ∈ HIGH,
Pr[A does not contain any neighbor of v] ≤ ǫ

32 .

Let X denote the number of vertices that belong to HIGH and have
no neighbor in A.

Since |HIGH| ≤ n, we have E[X] ≤ ǫ
32 · n (by linearity of expectation).

By Markov’s inequality, Pr[X ≥ ǫ
4n] ≤ E[X]

ǫ

4
n

≤ ǫn/32
ǫn/4 = 1/8.

Hence the proof is done.

35 / 37

Proof of Claim 2 (contd.)

We just obtained for v ∈ HIGH,
Pr[A does not contain any neighbor of v] ≤ ǫ

32 .

Let X denote the number of vertices that belong to HIGH and have
no neighbor in A.

Since |HIGH| ≤ n, we have E[X] ≤ ǫ
32 · n (by linearity of expectation).

By Markov’s inequality, Pr[X ≥ ǫ
4n] ≤ E[X]

ǫ

4
n

≤ ǫn/32
ǫn/4 = 1/8.

Hence the proof is done.

35 / 37

Open problems

Are P4 and C4 easily testable?

36 / 37

Thank you!

37 / 37

