Testing induced P_{3}-freeness

Noga Alon and Asaf Shapira
Combinatorics, Probability and Computing 15 (2006) 791-805.

Speaker: Joseph, Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Dept. Computer Science and Information Engineering National Chung Cheng University, Taiwan

September 24, 2009

Outline

(1) Introduction
(2) Testing induced P_{3}-freeness
(3) Concluding remarks

Outline

(1) Introduction

(2) Testing induced P_{3}-freeness
(3) Concluding remarks

Introduction (model)

- Graph model: dense graph (adjacency matrix) for $G(V, E)$.
- undirected, no self-loops, ≤ 1 edge between any $u, v \in V$
- $|V|=n$ vertices and $|E|=\Omega\left(n^{2}\right)$ edges.
- A graph property:
- A set of graphs closed under isomorphisms.
- Let \mathbb{P} be a graph property.
$\star \geq e n^{2}$ edges should be removed or added to let the graph satisfy

Introduction (model)

- Graph model: dense graph (adjacency matrix) for $G(V, E)$.
- undirected, no self-loops, ≤ 1 edge between any $u, v \in V$
- $|V|=n$ vertices and $|E|=\Omega\left(n^{2}\right)$ edges.
- A graph property:
- A set of graphs closed under isomorphisms.
- Let \mathbb{P} be a graph property.
- ϵ-far from satisfying \mathbb{P} :
$\star \geq \epsilon n^{2}$ edges should be removed or added to let the graph satisfy \mathbb{P}

Introduction (model)

- Graph model: dense graph (adjacency matrix) for $G(V, E)$.
- undirected, no self-loops, ≤ 1 edge between any $u, v \in V$
- $|V|=n$ vertices and $|E|=\Omega\left(n^{2}\right)$ edges.
- A graph property:
- A set of graphs closed under isomorphisms.
- Let \mathbb{P} be a graph property.
- ϵ-far from satisfying \mathbb{P} :
$\star \geq \epsilon n^{2}$ edges should be removed or added to let the graph satisfy \mathbb{P}

Introduction (property testing)

- Property testing:
- it does NOT precisely determine YES or NO for a decision problem;
- requires sublinear running time
- A property tester for \mathbb{P} :
- A randomized algorithm such that
* it answers "YES" with probability of $\geq 2 / 3$ if G satisfies \mathbb{P}, and * it answers "NO" with probability of $\geq 2 / 3$ if G is ϵ-far from satisfying

Introduction (property testing)

- Property testing:
- it does NOT precisely determine YES or NO for a decision problem;
- requires sublinear running time
- A property tester for \mathbb{P} :
- A randomized algorithm such that
\star it answers "YES" with probability of $\geq 2 / 3$ if G satisfies \mathbb{P}, and
\star it answers "NO" with probability of $\geq 2 / 3$ if G is ϵ-far from satisfying \mathbb{P}.

Surveys...

- E. Fischer: The art of uninformed decisions: A primer to property testing. The Computational Complexity Column of The Bulletin of the European Association for Theoretical Computer Science, 75 (2001), pp. 97-126.
- O. Goldreich: Combinatorial property testing - a survey. Randomization Methods in Algorithm Design (P. M. Pardalos, S. Rajasekaran and J. D. P. Rolim eds.), AMS-DIMACS (1998), pp. 45-60.
- D. Ron: Property testing. Handbook of Randomized Computing, Vol. II, Kluwer Academic Publishers (P. M. Pardalos, S. Rajasekaran and J. D. P. Rolim eds.), 2001, pp. 597-649.

Introduction (testing graph properties)

- Throughout this talk, we focus on graph properties and the dense graph model.
- A property tester has the ability to make queries and then make decision by making use of the answers of queries.
- To see whether a desired pair of vertices are adjacent or not.

Introduction (testing graph properties)

- Throughout this talk, we focus on graph properties and the dense graph model.
- A property tester has the ability to make queries and then make decision by making use of the answers of queries.
- To see whether a desired pair of vertices are adjacent or not.
- And, we care about query complexities in this talk.
- With a slight abuse of notation, $\log n=\ln n$.
- Assume that n is large enough and ϵ is small enough.

Introduction (testing graph properties)

- Throughout this talk, we focus on graph properties and the dense graph model.
- A property tester has the ability to make queries and then make decision by making use of the answers of queries.
- To see whether a desired pair of vertices are adjacent or not.
- And, we care about query complexities in this talk.
- With a slight abuse of notation, $\log n=\ln n$.
- Assume that n is large enough and ϵ is small enough.

Introduction (testing graph properties)

- Throughout this talk, we focus on graph properties and the dense graph model.
- A property tester has the ability to make queries and then make decision by making use of the answers of queries.
- To see whether a desired pair of vertices are adjacent or not.
- And, we care about query complexities in this talk.
- With a slight abuse of notation, $\log n=\ln n$.
- Assume that n is large enough and ϵ is small enough.

Introduction (testing graph properties)

- \mathbb{P} is testable if
- \exists a property tester for \mathbb{P} such that its query complexity is independent of n.
- \mathbb{P} is called easily testable if
- \exists a property tester for \mathbb{P} such that its query complexity is independent of n and polynomial in $1 / \epsilon$.

Introduction (testing graph properties)

- \mathbb{P} is testable if
- \exists a property tester for \mathbb{P} such that its query complexity is independent of n.
- \mathbb{P} is called easily testable if
- \exists a property tester for \mathbb{P} such that its query complexity is independent of n and polynomial in $1 / \epsilon$.

Induced H-freeness

- $G[H]$: the induced subgraph of G on H.
- \mathbb{P}_{H}^{*} : the property that a graph having no H as an induced subgraph.
- A graph G satisfies $\mathbb{P}_{H}^{*} \Leftrightarrow G$ does not have H as an induced subgraph.

Goals of this talk

- We show that $\mathbb{P}_{P_{3}}^{*}$ is easily testable.
- Only $O\left(\log ^{2}(1 / \epsilon) / \epsilon^{2}\right)$ queries are required.

Goals of this talk

- We show that $\mathbb{P}_{P_{3}}^{*}$ is easily testable.
- Only $O\left(\log ^{2}(1 / \epsilon) / \epsilon^{2}\right)$ queries are required.

Outline

(1) Introduction

(2) Testing induced P_{3}-freeness
(3) Concluding remarks

The property tester for $\mathbb{P}_{P_{3}}^{*}$

- The property tester is as follows:

1. Pick a random subset of $10 \log (1 / \epsilon) / \epsilon$ vertices.
2. Check if there is an induced copy of P_{3} spanned by this set.

The property tester for $\mathbb{P}_{P_{3}}^{*}$

- The property tester is as follows:

1. Pick a random subset of $10 \log (1 / \epsilon) / \epsilon$ vertices.
2. Check if there is an induced copy of P_{3} spanned by this set.

- The query complexity is at most $O\left(\log ^{2}(1 / \epsilon) / \epsilon^{2}\right)$.
- If G satisfies $\mathbb{P}_{p_{2}}$, the algorithm always answers correctly (i.e., answers YES since there is no induced P_{3}).

The property tester for $\mathbb{P}_{P_{3}}^{*}$

- The property tester is as follows:

1. Pick a random subset of $10 \log (1 / \epsilon) / \epsilon$ vertices.
2. Check if there is an induced copy of P_{3} spanned by this set.

- The query complexity is at most $O\left(\log ^{2}(1 / \epsilon) / \epsilon^{2}\right)$.
- If G satisfies $\mathbb{P}_{P_{3}}^{*}$, the algorithm always answers correctly (i.e., answers YES since there is no induced P_{3}).
- We have to show that if G is ϵ-far from satisfying $\mathbb{P}_{P_{3}}^{*}$, the algorithm finds an induced copy of P_{3} with probability $\geq 2 / 3$

The property tester for $\mathbb{P}_{P_{3}}^{*}$

- The property tester is as follows:

1. Pick a random subset of $10 \log (1 / \epsilon) / \epsilon$ vertices.
2. Check if there is an induced copy of P_{3} spanned by this set.

- The query complexity is at most $O\left(\log ^{2}(1 / \epsilon) / \epsilon^{2}\right)$.
- If G satisfies $\mathbb{P}_{P_{3}}^{*}$, the algorithm always answers correctly (i.e., answers YES since there is no induced P_{3}).
- We have to show that if G is ϵ-far from satisfying $\mathbb{P}_{P_{3}}^{*}$, the algorithm finds an induced copy of P_{3} with probability $\geq 2 / 3$.

The property tester for $\mathbb{P}_{P_{3}}^{*}$

- The property tester is as follows:

1. Pick a random subset of $10 \log (1 / \epsilon) / \epsilon$ vertices.
2. Check if there is an induced copy of P_{3} spanned by this set.

- The query complexity is at most $O\left(\log ^{2}(1 / \epsilon) / \epsilon^{2}\right)$.
- If G satisfies $\mathbb{P}_{P_{3}}^{*}$, the algorithm always answers correctly (i.e., answers YES since there is no induced P_{3}).
- We have to show that if G is ϵ-far from satisfying $\mathbb{P}_{P_{3}}^{*}$, the algorithm finds an induced copy of P_{3} with probability $\geq 2 / 3$.

High degree vertices

- Let HIGH be the set $\left\{v \in V(G) \left\lvert\, \operatorname{deg}(v) \geq \frac{\epsilon n}{4}\right.\right\}$.
- Intuitively, vertices of HIGH have high contribution to G being ϵ-far from satisfying $\mathbb{P}_{P_{3}}^{*}$.

HIGH has high contribution indeed!

Claim 1

Assume that G is ϵ-far from satisfying $\mathbb{P}_{P_{3}}^{*}$ and $W \subseteq V(G)$ contains at least $|H I G H|-\frac{\epsilon}{4} n$ vertices of HIGH, then it requires to add or remove $\geq \frac{\epsilon}{2} n^{2}$ edges to make $G[H]$ satisfy $\mathbb{P}_{P_{3}}^{*}$.

Randomly chosen subset of vertices are Good w.h.p.

Definition 1
We call a set $A \subseteq V(G)$ Good if at least $|\mathrm{HIGH}|-\frac{\epsilon}{4} n$ vertices of HIGH have a neighbor in A.

Randomly chosen subset of vertices are Good w.h.p.

Claim 2

A randomly chosen subset $A \subseteq V(G)$ of size $8 \log (1 / \epsilon) / \epsilon$ is Good with probability at least 7/8.

A well-known observation for induced P_{3}-free graphs

- A graph is induced P_{3}-free if and only if it is disjoint union of cliques.

Correctness and query complexity of the algorithm

- First we choose a random subset $A \subset V$ of size $8 \log (1 / \epsilon) / \epsilon$.
- Assume that A is Good (this is not true with probability $\leq 1 / 8$)
- If A contains an induced copy of P_{3}, then we are done.

Correctness and query complexity of the algorithm

- First we choose a random subset $A \subset V$ of size $8 \log (1 / \epsilon) / \epsilon$.
- Assume that A is Good (this is not true with probability $\leq 1 / 8$).
- If A contains an induced copy of P_{3}, then we are done.

Correctness and query complexity of the algorithm

- First we choose a random subset $A \subset V$ of size $8 \log (1 / \epsilon) / \epsilon$.
- Assume that A is Good (this is not true with probability $\leq 1 / 8$).
- If A contains an induced copy of P_{3}, then we are done.
- Otherwise, (i.e., A contains no induced copy of P_{3})
- Let W be the set of all the vertices $v \in V$ that ≥ 1 neighbor in A. Recall that G is assume to be ϵ-far from satisfying $\mathbb{P}_{P_{3}}^{*}$, and A is assumed to be Good.
- Otherwise, (i.e., A contains no induced copy of P_{3})
- Let W be the set of all the vertices $v \in V$ that ≥ 1 neighbor in A.
\Rightarrow Recall that G is assume to be ϵ-far from satisfying $\mathbb{P}_{P_{3}}^{*}$, and A is assumed to be Good.
- And of course, we can assume that A can be partitioned into disjoint union of cliques $C_{1}, C_{2}, \ldots, C_{r}$, for some integer r
- Otherwise, (i.e., A contains no induced copy of P_{3})
- Let W be the set of all the vertices $v \in V$ that ≥ 1 neighbor in A.
- Recall that G is assume to be ϵ-far from satisfying $\mathbb{P}_{P_{3}}^{*}$, and A is assumed to be Good.
- And of course, we can assume that A can be partitioned into disjoint union of cliques $C_{1}, C_{2}, \ldots, C_{r}$, for some integer r.
- Otherwise, (i.e., A contains no induced copy of P_{3})
- Let W be the set of all the vertices $v \in V$ that ≥ 1 neighbor in A.
- Recall that G is assume to be ϵ-far from satisfying $\mathbb{P}_{P_{3}}^{*}$, and A is assumed to be Good.
- And of course, we can assume that A can be partitioned into disjoint union of cliques $C_{1}, C_{2}, \ldots, C_{r}$, for some integer r.

- If a vertex $v \in W$ is connected to $u \in C_{i} \subseteq A$, it follows that if W can be partitioned into cliques D_{1}, \ldots, D_{r}, where for $1 \leq i \leq r, C_{i} \subseteq D_{i}$, then v would have to belong to D_{i}.

- If a vertex $v \in W$ is connected to $u \in C_{i} \subseteq A$, it follows that if W can be partitioned into cliques D_{1}, \ldots, D_{r}, where for $1 \leq i \leq r, C_{i} \subseteq D_{i}$, then v would have to belong to D_{i}.

- For each $v \in W$ connected to $u \in C_{i}$, assign v the number i. If v is connected to vertices that belong to different C_{i} 's, then assign v any of these numbers.
- The numbering induces a partition of W into r subsets.

- Violating pairs: " $s, t \in D_{i}$ but s, t are not connected" or " $s \in D_{i}, t \in D_{j}$ for $i \neq j$ but s, t are connected".
- There are at least $\frac{\epsilon}{2} n^{2}$ violating pairs of vertices in W (for A is Good, so that W contains many vertices of HIGH).

- Therefore, choosing a set B of $8 / \epsilon$ randomly chosen pairs of vertices fails to find violating pairs with probability of at most

$$
\left(1-\frac{\epsilon n^{2} / 2}{n(n-1) / 2}\right)^{8 / \epsilon}<\left(1-\frac{\epsilon}{2}\right)^{8 / \epsilon}<e^{-4}<\frac{1}{8}
$$

To sum up

- By Claim 2, $\operatorname{Pr}[A$ is NOT Good $] \leq \frac{1}{8}$.
- $\operatorname{Pr}[B$ does NOT contain any violating pair of vertices $] \leq \frac{1}{8}$. - Hence with probability $<\frac{1}{8}+\frac{1}{8}=\frac{1}{4}$ the induced subgraph $G[A \cup B]$ is not induced P_{3}-free.

To sum up

- By Claim 2, $\operatorname{Pr}[A$ is NOT Good $] \leq \frac{1}{8}$.
- $\operatorname{Pr}[B$ does NOT contain any violating pair of vertices $] \leq \frac{1}{8}$.
- Hence with probability $<\frac{1}{8}+\frac{1}{8}=\frac{1}{4}$ the induced subgraph $G[A \cup B]$ is not induced P_{3}-free.

To sum up

- By Claim 2, $\operatorname{Pr}[A$ is NOT Good $] \leq \frac{1}{8}$.
- $\operatorname{Pr}[B$ does NOT contain any violating pair of vertices $] \leq \frac{1}{8}$.
- Hence with probability $<\frac{1}{8}+\frac{1}{8}=\frac{1}{4}$ the induced subgraph $G[A \cup B]$ is not induced P_{3}-free.
- Since $|A|+|B|=O(8 \log (1 / \epsilon) / \epsilon+8 / \epsilon)=O(8 \log (1 / \epsilon) / \epsilon)$, the proof is complete!

To sum up

- By Claim $2, \operatorname{Pr}[A$ is NOT Good $] \leq \frac{1}{8}$.
- $\operatorname{Pr}[B$ does NOT contain any violating pair of vertices $] \leq \frac{1}{8}$.
- Hence with probability $<\frac{1}{8}+\frac{1}{8}=\frac{1}{4}$ the induced subgraph $G[A \cup B]$ is not induced P_{3}-free.
- Since $|A|+|B|=O(8 \log (1 / \epsilon) / \epsilon+8 / \epsilon)=O(8 \log (1 / \epsilon) / \epsilon)$, the proof is complete!

Back to the proofs of claims

Claim 1

Assume that G is ϵ-far from satisfying $\mathbb{P}_{P_{3}}^{*}$ and $W \subseteq V(G)$ contains at least $|\mathrm{HIGH}|-\frac{\epsilon}{4} n$ vertices of HIGH, then it requires to add or remove $\geq \frac{\epsilon}{2} n^{2}$ edges to make $G[H]$ satisfy $\mathbb{P}_{P_{3}}^{*}$.

Proof of Claim 1

- Assume this is not the case (proof by contradiction).

Proof of Claim 1 (contd.)

- That is, we can make less than $\frac{\epsilon}{2} n^{2}$ changes (edge removals or edge additions) within W and get a graph that contains no induced copy of P_{3} within W.

Proof of Claim 1 (contd.)

- Then we remove all the edges touching a vertex not in $W \cup$ HIGH.
- $\leq n \cdot \frac{\epsilon}{4} n$ such edges.

Proof of Claim 1 (contd.)

- Then we remove any edge touching a vertex in HIGH $\backslash W$.
- $\leq \frac{\epsilon}{4} n \cdot n$ such edges since \mid HIGH $\backslash W \left\lvert\, \leq \frac{\epsilon}{4} n\right.$.

Proof of Claim 1 (contd.)

- Thus we obtain a graph that satisfies $\mathbb{P}_{P_{3}}^{*}$.
$0<\epsilon n^{2}$ edges are added or removed in G, so the remaining graph is not ϵ-far from satisfying $\mathbb{P}_{P_{3}}^{*}$.
= This contradicts the assumption!

Proof of Claim 1 (contd.)

- Thus we obtain a graph that satisfies $\mathbb{P}_{P_{3}}^{*}$.
- $<\epsilon n^{2}$ edges are added or removed in G, so the remaining graph is not ϵ-far from satisfying $\mathbb{P}_{P_{3}}^{*}$.
- This contradicts the assumption!

Claim 2

A randomly chosen subset $A \subseteq V(G)$ of size $8 \log (1 / \epsilon) / \epsilon$ is Good with probability at least $7 / 8$.

Proof of Claim 2

- Let A be a randomly chosen subset of size $8 \log (1 / \epsilon) / \epsilon$.
- Consider a vertex v \in HIGH.
- Since v has at least $\frac{\epsilon}{4} n$ neighbors, the probability that A does not contain anv neighbor of v is at most
where we assume that $\epsilon<1 / 32$.

Proof of Claim 2

- Let A be a randomly chosen subset of size $8 \log (1 / \epsilon) / \epsilon$.
- Consider a vertex $v \in \mathrm{HIGH}$.
- Since v has at least $\frac{\epsilon}{4} n$ neighbors, the probability that A does not contain any neighbor of v is at most

where we assume that $\epsilon<1 / 32$.

Proof of Claim 2

- Let A be a randomly chosen subset of size $8 \log (1 / \epsilon) / \epsilon$.
- Consider a vertex $v \in$ HIGH.
- Since v has at least $\frac{\epsilon}{4} n$ neighbors, the probability that A does not contain any neighbor of v is at most

$$
\left(1-\frac{\epsilon}{4}\right)^{8 \log (1 / \epsilon) / \epsilon}=\left[\left(1-\frac{\epsilon}{4}\right)^{\frac{-4}{\epsilon}}\right]^{-2 \log \left(\frac{1}{\epsilon}\right)} \leq e^{\log \epsilon^{2}}=\epsilon^{2} \leq \frac{\epsilon}{32}
$$

where we assume that $\epsilon<1 / 32$.
\triangleright Exercise: Show that the above assumption can be loosed to $\epsilon<1$ by letting $|A|=\frac{4 \log (1 / \epsilon)}{\epsilon}+\frac{20}{\epsilon}$.

Proof of Claim 2

- Let A be a randomly chosen subset of size $8 \log (1 / \epsilon) / \epsilon$.
- Consider a vertex $v \in$ HIGH.
- Since v has at least $\frac{\epsilon}{4} n$ neighbors, the probability that A does not contain any neighbor of v is at most

$$
\left(1-\frac{\epsilon}{4}\right)^{8 \log (1 / \epsilon) / \epsilon}=\left[\left(1-\frac{\epsilon}{4}\right)^{\frac{-4}{\epsilon}}\right]^{-2 \log \left(\frac{1}{\epsilon}\right)} \leq e^{\log \epsilon^{2}}=\epsilon^{2} \leq \frac{\epsilon}{32}
$$

where we assume that $\epsilon<1 / 32$.
\triangleright Exercise: Show that the above assumption can be loosed to $\epsilon<1$ by letting $|A|=\frac{4 \log (1 / \epsilon)}{\epsilon}+\frac{20}{\epsilon}$.

Proof of Claim 2 (contd.)

- We just obtained for $v \in$ HIGH, $\operatorname{Pr}[A$ does not contain any neighbor of $v] \leq \frac{\epsilon}{32}$.
- Let X denote the number of vertices that belong to HIGH and have no neighbor in A.

Proof of Claim 2 (contd.)

- We just obtained for $v \in$ HIGH, $\operatorname{Pr}[A$ does not contain any neighbor of $v] \leq \frac{\epsilon}{32}$.
- Let X denote the number of vertices that belong to HIGH and have no neighbor in A.
- Since \mid HIGH| $\leq n$, we have $E[X] \leq \frac{\epsilon}{32} \cdot n$ (by linearity of expectation).

Proof of Claim 2 (contd.)

- We just obtained for $v \in$ HIGH, $\operatorname{Pr}[A$ does not contain any neighbor of $v] \leq \frac{\epsilon}{32}$.
- Let X denote the number of vertices that belong to HIGH and have no neighbor in A.
- Since $|\mathrm{HIGH}| \leq n$, we have $\mathbf{E}[X] \leq \frac{\epsilon}{32} \cdot n$ (by linearity of expectation).
- By Markov's inequality, $\operatorname{Pr}\left[X \geq \frac{\epsilon}{4} n\right] \leq \frac{\mathrm{E}[X]}{\frac{\epsilon}{4} n} \leq \frac{\epsilon n / 32}{\epsilon n / 4}=1 / 8$.
- Hence the proof is done.

Proof of Claim 2 (contd.)

- We just obtained for $v \in$ HIGH, $\operatorname{Pr}[A$ does not contain any neighbor of $v] \leq \frac{\epsilon}{32}$.
- Let X denote the number of vertices that belong to HIGH and have no neighbor in A.
- Since $|\mathrm{HIGH}| \leq n$, we have $\mathbf{E}[X] \leq \frac{\epsilon}{32} \cdot n$ (by linearity of expectation).
- By Markov's inequality, $\operatorname{Pr}\left[X \geq \frac{\epsilon}{4} n\right] \leq \frac{\mathrm{E}[X]}{\frac{\epsilon}{4} n} \leq \frac{\epsilon n / 32}{\epsilon n / 4}=1 / 8$.
- Hence the proof is done.

Open problems

- Are P_{4} and C_{4} easily testable?

Thank you!

