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Abstract

For a long time, as long as a problem is proved to be NP-hard, people usually avoid

solving it exactly due to its computational hardness. In fact, there are strategies

of designing fixed-parameter algorithms, which can be used to solve these problems

exactly. A parameterized problem is a language L ⊂ Σ∗ × Z+, where Σ is a finite

alphabet. The first component is called the problem instance of L which has size of n,

and the second component, which is simply a nonnegative integer k for most cases, is

called the parameter of L. A fixed-parameter algorithm is an algorithm that solves a

parameterized problem in f(k)·nO(1) time for some computable function f depending

solely on k. When k is small, a fixed-parameter algorithms runs in poly(n) time. In

the past two decades, a variety of useful methods and techniques for demonstrating

fixed-parameter tractability or designing fixed-parameter algorithms have emerged.

Besides, with recent advances in technology, we are faced with imperious need

to process increasing larger amounts of data quickly. It is sometimes necessary to

come out an answer without examining the whole input, yet the answer must have

guaranteed accuracy. Property testing delves into the possibilities of getting answers

by observing only a small fraction of the input. An input, given as a function

f : D 7→ F , is said to be ε-close to satisfying a property P, if there exists a function

f ′ : D 7→ F that satisfies P and differs from f in less than ε|D| places. Otherwise,

it is said to be ε-far from P. Given a specified property P , property testing is

the study of the following task: Given queries or accesses to an unknown function

f , determine in o(|D|) time whether f satisfies P or is ε-far from P . In the past

decade, property testing has become one of the most active fields in theoretical

computer science.

In this dissertation, we study fixed-parameter algorithms and property testing,

and introduce a new concept: parameterized property testing, which combines the
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characteristics of these two fields. Given a function f : D 7→ F , ε ∈ (0, 1), and

an integer k ∈ Z+ as the parameter, a parameterized property tester for a property

P is a property tester for P which has time complexity φ(k, 1/ε) · o(|D|), where φ

is a function that solely depends on k and ε. In the first half of the dissertation,

we focus on a problem of determining consistency of a set of quartet topologies,

which is related to evolutionary tree reconstruction. We tackle this problem and

its variants through the aspects of fixed-parameter algorithms, property testing and

parameterized property testing. Let Q be a set of quartet topologies over an n-taxon

set S. We say that Q is complete if every quartet over S has exactly one topology

in Q. Given a complete Q, the Minimum Quartet Inconsistency (MQI) problem

asks if there exists an unrooted evolutionary tree T such that at most k quartet

topologies in Q are not satisfied by T . For the MQI problem, we present three fixed-

parameter algorithms with time complexity O(3.0446kn + n4), O(2.0162kn3 + n5),

and O∗((1 + ε)k), respectively, where ε > 0 is an arbitrarily small constant. Next,

we consider tree-consistency of quartet topologies, which is the property that all

the quartet topologies in Q are satisfied by an unrooted evolutionary tree. To test

if a complete Q is tree-consistent, we give a non-adaptive O(n3/ε) property tester

with one-sided error. When Q is not necessarily complete, we give a non-adaptive

O(1.7321kkn3/ε) parameterized property tester with one-sided error to test if Q is

tree-consistent, where k ∈ Z+ is an upper bound on the number of quartets which

do not have topologies in Q. This parameterized property tester is uniform on k.

In the second half of the dissertation, we study parameterized property testing for

graph properties and focus on two NP-hard graph theoretical problems: the Vertex

Cover problem and the problem of computing treewidth of a graph. We consider the

sparse model, where graphs are stored in adjacency lists and have maximum vertex

degree bounded by d. To test if an n-vertex graph has a vertex cover of size at

most k, we present an adaptive parameterized property tester with two-sided error,

which runs in O(d/ε) time for k < n/(6d), and another adaptive parameterized

property tester with one-sided error, which runs in O(kd/ε) time for k < εn/4.

For testing if an n-vertex graph has treewidth at most k, we give two adaptive

parameterized property testers with two-sided error, which run in 2dO(kd3/ε2)
time

and d(k/ε)O(k2)
+ 2poly(k,d,1/ε) time respectively. Both of them are uniform on k.



摘要

長久以來, 當一個問題被證明為 NP-hard 之後, 因為計算複雜度高的緣故, 人們總是避免去

直接地去求這個問題的最佳解。 事實上, 有一些設計固定參數演算法的策略, 讓我們可以用來

直接去解這些過去避而不談的問題。 一個參數化問題為一語言 L ⊂ Σ∗×Z+, 其中 Σ 為一個

有限的字母集。 L 的第一個部份為大小為 n 的問題實例, 而第二個部份為一個非負整數 k, 稱

為 L 之參數。 一個能在 f(k) · nO(1) 的時間複雜度內解決一個參數化問題的演算法, 我們稱

之為固定參數演算法, 其中 f 是一個只跟 k 相依的可計算函數。 當 k 之值很小時, 固定參數

演算法能在 n 的多項式時間內執行完畢。 在過去二十年來, 證明一個問題存在固定參數演算

法和設計各種不同固定參數演算法的方法與技巧, 不斷地被開發出來。

此外, 隨著科技不斷地進步, 我們亟需更快速地處理大量資料。 有時候, 我們必須在不看

完全部輸入資料的要求下得到答案, 並且仍確保答案的正確性。 性質測試探討只看輸入資料的

一小部份而能得到答案的可能性。 給定一個函數 f : D 7→ F 為輸入, 如果存在一個函數

f ′ : D 7→ F 滿足某一個性質 P 而且 f ′ 與 f 對應的函數值不同之處少於 ε|D| 個位置, 我

們稱 f 為 ε-接近於性質 P , 否則, 我們稱 f 為 ε-遠離於性質 P。 給定一個性質 P , 性質測

試最主要的工作如下: 透過查詢或存取一個未知的函數 f , 在 o(|D|) 的時間複雜度內判斷 f

是否滿足性質 P , 抑或 ε-遠離於性質 P。 在過去十年來, 性質測試已經成為理論計算機科學

中最熱門的領域之一。

在本論文中, 我們針對固定參數演算法與性質測試進行研究, 並結合了這兩者的的特性進

而提出一個新的概念: 「參數化性質測試」。 給定一個函數 f : D 7→ F , ε ∈ (0, 1), 以及一個

整數 k ∈ Z+ 作為參數, 針對一個性質 P 的參數化性質測試演算法即為一個時間複雜度為

φ(k, 1/ε) · o(|D|) 的性質測試演算法, 其中 φ 為一個只與 k 和 ε 相依的函數。 在本論文的

前半段, 我們聚焦在一個與演算樹重建相關的問題: 決定一組四元拓樸集的一致性。 我們利用

固定參數演算法、 性質測試與參數化性質測試這三個方向去處理這個問題與其變形。 令 Q 為

一組在 S 上的四元拓樸集, 其中 S 為一個包含 n 個物種的集合。 若每個 S 上的四元集在 Q

中都恰好存在一個對應的拓樸, 我們稱 Q 為完整的。 給定一組在 S 上的完整四元拓樸集, 最

少四元樹不一致問題是問 「是否存在一個無根的演化樹 T , 使得 Q 中至多 k 四元拓樸無法被
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T 滿足」。 針對最少四元樹不一致問題, 我們提出三個固定參數演算法, 其時間複雜度分別為

O(3.0446kn + n4), O(2.0162kn3 + n5), 與 O∗((1 + ε)k), 這裡的 ε 是一個任意小的正值

常數。 接著, 我們考慮四元拓樸集的 「樹一致性」。 若存在一個無根演化樹滿足在 Q 中的所有

四元拓樸, 我們稱 Q 具有樹一致性。 針對一個完整的四元拓樸集 Q, 我們提出一個 O(n3/ε)

性質測試演算法來測試 Q 是否具有樹一致性, 該演算法具有非遷就性與單邊誤差。 當 Q 未必

完整時, 我們提出一個時間複雜度為 O(1.7321kkn3/ε) 參數化性質測試演算法來測試 Q 是

否具有樹一致性, 其中 k ∈ Z+ 為在 Q 中不具有拓樸之四元集的數目上限。 此參數化性質測

試演算法同樣具有非遷就性與單邊誤差, 且在 k 上均勻一致。

在本論文的後半段, 我們探討圖形性質的參數化性質測試, 並聚焦在圖形理論上的兩個 NP-

hard 問題: 「點覆蓋問題」 與 「樹寬計算問題」。 我們考慮稀疏圖模型, 在此模型下的圖形儲存

於相鄰串列裡, 且每個點至多有 d 個相鄰點。 針對測試一個 n-點圖形是否具有大小至多為 k

的點覆蓋集, 我們在稀疏圖模型下, 提出兩個具遷就性的參數化性質測試演算法, 第一個演算

法具有雙邊誤差, 在 k < n/(6d) 的時候, 其時間複雜度為 O(d/ε)。 第二個演算法則具有單

邊誤差, 在 k < εn/4 的時候, 其時間複雜度為 O(kd/ε)。 針對測試一個 n-點圖形之樹寬是否

大小至多為 k, 我們在稀疏圖模型下提出兩個具遷就性與雙邊誤差的參數化性質測試演算法,

其時間複雜度分別為 2dO(kd3/ε2)
與 d(k/ε)O(k2)

+ 2poly(k,d,1/ε)。 這兩個演算法在 k 上皆為均勻

一致。
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Chapter 1

Introduction

1.1 Fixed-Parameter Algorithms

The monograph by Gary and Johnson [72] provides a comprehensive and thorough

study of NP-completeness, which implies computational intractability of many prob-

lems. For a long time, to cope with intractable problems, people have referred to

approximation algorithms or purely heuristic methods.

In fact, we usually find that an NP-hard problem is easy to deal with if some

parameter of the problem instance is small. To design algorithms for such problems

leads to the notion of fixed-parameter algorithms . A parameterized problem is a

language L ⊂ Σ∗ × Σ∗, where Σ is a finite alphabet. The first component of L is

the problem instance, and the second component of L is called the parameter. In

most cases, the parameter is a nonnegative integer which is denoted by k. Gener-

ally speaking, a fixed-parameter algorithm is an algorithm that determines whether

(x, k) ∈ L (i.e., solves the parameterized problem) in f(k) ·nO(1) time for some com-

putable function f solely depending on k, where n = |x|. Such algorithms then bring

out a class of problems called fixed-parameter tractable (FPT), in which a problem

admits a fixed-parameter algorithm. Obviously, a fixed-parameter algorithm runs

in polynomial time when f(k) is regarded as a constant. Note that an algorithm

with running time O(nf(k)) is not our concern, since it is much slower.

To make readers grasp the rough idea of fixed-parameter algorithms quickly, we

use the Vertex Cover problem as an illustrating example, which is defined below.

Readers who are unfamiliar with the fundamental notions of graphs are suggested

to refer to Appendix A.

1
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The Vertex Cover problem
Input: A graph G = (V,E) and an integer k ≥ 0.
Task: Determine if there exists a vertex subset C ⊆ V of size at most k such
that each edge in E has at least one of its endpoints in C.

Let G = (V,E) be the input graph. A vertex subset C ⊆ V is called a vertex

cover if each edge in the graph has at least one of its endpoints in C. The Vertex

Cover problem is to determine whether there exists a vertex cover of size at most k

for the input graph G. The Vertex Cover problem is a well-known NP-complete

problem [72], thus it seems hopeless to devise an efficient algorithm for this problem.

However, let us consider the following observation. For C ⊆ V to be a feasible

solution to the Vertex Cover problem, each edge (u, v) ∈ E in the graph must be

covered by C, that is, at least one of its endpoints must be in C. Based on this

observation, we pick one of {u, v}, say u, into the solution and delete u together

with its incident edges, and then continue recursively with the remaining graph.

Such a recursive algorithm works as a search tree where each tree-node corresponds

to a certain recursion and has two branches. The depth of the search tree is bounded

by k. Let T (k) denote the number of leaves of the search tree, then we have T (k) =

T (k − 1) + T (k − 1). Since the search tree is binary, it is clearly that T (k) ≤ 2k.

Note that it takes O(n) time for each tree-node (i.e., the time cost for deleting the

incident edges of a vertex). Thus, the overall time complexity of the algorithm is

clearly O(2kn). Such an algorithm is efficient when the parameter k is small. This

example suggests the possibility of designing efficient algorithms to solve the Vertex

Cover problem exactly for small k’s.

In fact, the search tree size can be even smaller. Let us consider another recursive

algorithm: Simple-VC, whose pseudocode is listed in Algorithm 1.1. The variables

vmax, sum degs, and max deg denote the vertex with maximum vertex degree, the

sum of vertices degrees, and the maximum vertex degree in the graph, respectively.

Assume that vmax, sum degs, and max deg are initialized to be ∅, 0 and 0 respec-

tively. We clarify the general idea of the algorithm as follows. First, we remove the

isolated vertices (i.e., the vertices with degree 0) in the graph. Note that if a vertex

cover C contains isolated vertices, then removing these isolated vertices from C still

results in a vertex cover since an isolated vertex does not cover any edge. Second,
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we find out the maximum degree (i.e., max deg) and a vertex with the maximum

degree (i.e., vmax) in the graph. If the maximum degree of the graph is 1, then it is

clear that the graph G consists of disjoint edges (i.e., edges that mutually share no

endpoint). For this case, the size of any vertex cover of G is equal to the number of

edges in G, which is equal to half of sum degs. Then the algorithm answers “yes”

or “no” by comparing k with the number sum degs/2. Otherwise, consider the ver-

tex vmax. In order to cover the incident edges of vmax, either vmax or its neighbors

(i.e., NG(vmax)) must be selected into the vertex cover. The algorithm recursively

branches on these two cases. For the former (i.e., the algorithm selects vmax into

the vertex cover), it removes vmax and the incident edges of vmax from the graph,

and then decreases the value of k by 1. For the latter (i.e., the algorithm selects

NG(vmax) into the vertex cover), it removes NG[vmax] (i.e., {vmax} ∪ NG(vmax)) and

their incident edges from the graph, and then decreases the value of k by the size of

NG(vmax).

Algorithm Simple-VC takesO(n+m) time for computing vmax, max deg, sum degs,

and the remaining graphs, say G1 and G2, respectively. The recursion of the al-

gorithm also works as a search tree with depth bounded by k. Let T denote

the number of leaves of the search tree. Note that the parameter k is decreased

by at least two at Line 20 since the maximum degree of the graph is greater

than one due to the processes that were done in prior. Thus, we derive that

T (k) is bounded by T (k − 1) + T (k − 2). At the first sight, we can only obtain

T (k) ≤ T (k − 1) + T (k − 2) ≤ T (k − 1) + T (k − 1) ≤ 2k. However, by the ap-

proach introduced in Sect. 2.2, we can obtain that T (k − 1) + T (k − 2) ≤ 1.62k,

which leads to T (k) ≤ 1.62k. Thus this algorithm solves the Vertex Cover problem

in O(1.62k(m+ n)) = O(1.62kn2) time.

The above examples of solving the Vertex Cover problem reveal the possibility of

deriving fixed-parameter algorithms whose time complexity has much less exponen-

tial dependency on k. This makes such algorithms efficient in practical uses when k

is small. Such a parameter k is relevant to the “target” of an NP-hard optimization

problem.

Generally, there are also parameters which are relevant to the “structure” of

the problem instance. The treewidth of a graph is a typical example for this case.
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Simple-VC(G, k)/* a graph G = (V,E) and an integer k as the parameter */
begin

1: for each v ∈ V do
2: sum degs← sum degs + degG(v);
3: if degG(v) = 0 then
4: G← G− {v};
5: else if max deg < degG(v) then
6: vmax ← v;
7: max deg← degG(v);
8: end if
9: end for

10: if max deg ≤ 1 then
11: if sum degs/2 ≤ k then
12: return “yes”;
13: else
14: return “no”;
15: end if
16: else
17: G1 ← G− {vmax};
18: G2 ← G− ({vmax} ∪NG(vmax));
19: Simple-VC(G1, k−1); /* vmax is selected into the vertex cover */
20: Simple-VC(G2, k−|NG(vmax)|); /* NG(vmax) is selected into the vertex cover */
21: end if
end

Algorithm 1.1: Simple-VC: a simple O(1.62k(n + m)) fixed-parameter algorithm
for the Vertex Cover problem.

Roughly speaking, the treewidth of a graph measures “how close a graph is to being

a tree” (refer to Sect. 5.2 for the formal definition and more details). It is one of

the most fundamental notions in graph theory and algorithms. Given a graph G,

the treewidth of G can be derived by computing the tree-decomposition of G which

can be done in 2Θ(k) · kO(1) · n time [28]. With the tree-decomposition of a graph at

hand, many NP-hard problems, such as the Vertex Cover problem, the Maximum

Independent Set problem, the Minimum Dominating Set problem, the Hamiltonian

Cycle problem, the problem of computing the chromatic number of a graph, etc.,

can be solved in O(n) time when the treewidth of the input graph is bounded by a

fixed k [14, 98]. Furthermore, Courcelle [52] proved that graph theoretical problems

that can be formulated as monadic second-order logic (MSO) formulae are O(n)-time

solvable when the treewidth is bounded by a fixed k.
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The above examples implicitly reveals the fact that some NP-hard problems are

difficult only when the parameters get large. Generally speaking, the main tasks in

the field of parameterized complexity theory include finding the parameters which

make NP-hard problems difficult and improving currently known FPT results. Take

the Vertex Cover problem as an example. The size of a vertex cover is a kind of

parameter which makes the Vertex Cover problem difficult. The problem becomes

more difficult when the size of the minimum vertex cover of the input graph gets

larger. As to the algorithmic improvement of solving this problem, we have seen a

simple O(2kn) fixed-parameter algorithm, and an O(1.62kn2) fixed-parameter algo-

rithm. The current best fixed-parameter algorithm runs in O(1.2738k+kn) time [48].

The base of the exponential function of k decreases significantly.

Although there has been many NP-hard problems shown to be fixed-parameter

tractable, there exist NP-hard problems that do not admit fixed-parameter algo-

rithms unless NP = P. For example, let us consider the Independent Set problem.

Given a graph G = (V,E), a vertex subset S ⊆ V is an independent set if none of

the pairs of vertices in S are adjacent. The Independent Set problem asks if there

is an independent set of size k in the graph. It is well-known that G has a vertex

cover of size k if and only if it has an independent set of size n − k. Let k′ denote

n − k. If the Independent Set problem with the parameter k′ is fixed-parameter

tractable, then the Vertex Cover problem with the parameter k can be solved effi-

ciently even though k is quite large. From this point of view, we can realize that

the Independent Set problem is unlikely to be fixed-parameter tractable. In fact,

there are problems shown to be fixed-parameter intractable and the hierarchy with

respect to their difficulty has been established. See [60] for more details.

In the past two decades, fixed-parameter algorithms have been extensively stud-

ied. There are excellent surveys and textbooks introducing this field. For instance,

the work by Downey and Fellows [60] in 1999 is one of the best monographs for

introducing fixed-parameter algorithms and the parameterized complexity. Later in

2006, Niedermeier [98] wrote an elaborate textbook for introducing fixed-parameter

algorithms and parameterized complexity. Many approaches for designing fixed-

parameter algorithms are summarized in this book. Readers are recommended to

refer to the above literatures for more information.
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1.2 Property Testing

By observing recent advances in technology of the real world, we are faced with

imperious need to process increasing larger amounts of data quickly. Many practical

problems have inputs of very large size, so that even taking a linear time in its

size to provide an answer is too much. It is sometimes necessary to come out

an answer quickly without examining the whole input, yet the answer must have

guaranteed accuracy. Property testing is a new field in computational complexity

theory and algorithm design. It delves into the possibilities of getting answers (yes

or no for decision problems) by observing only a small fraction of the input. The

notion of property testing provides an aspect that how a decision problem can be

“approximated”. To achieve the goal of property testing, randomized algorithms

are always used, however, the probability of getting an erroneous answer should be

very small.

Let us clarify the general concepts of property testing by considering functions

as follows. Let F be the set of all functions with the same domain D. Let P be

a fixed property of functions in F , which can be viewed as a subset of F . For two

functions f and g in F , let δ(f, g) denote the fraction of the points in the domain D

where f and g have different values. Obviously, the range of δ is [0, 1]. Then for a

function f ∈ F , we define that ∆(f,P) = ming∈P δ(f, g). We say that f satisfies

the property P if ∆(f,P) = 0. We say f is ε-far from P if ∆(f,P) ≥ ε, otherwise

f is said to be ε-close to satisfying P . According to the above notations, a property

tester for P is defined as follows.

Definition 1.1 (Property testers [75]). Given a function f ∈ F and a parameter

0 < ε < 1 as the input, a property tester for P is an algorithm M such that the

following conditions hold:

1. M runs in o(|D|) time;

2. M returns “yes” with probability at least 2/3 if ∆(f,P) = 0 (i.e., f ∈ P);

3. M returns “no” with probability at least 2/3 if ∆(f,P) ≥ ε.

Moreover, a property testerM for property P is said to have one-sided error if it

returns “yes” for every instance satisfying P with probability 1. IfM makes queries
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without knowing the results of previous ones, we say that M is non-adaptive. A

property P is called testable if it has a property tester that runs in q(ε) time, where

q(ε) is independent of the input size. Moreover, we say that P is easily testable if it

has a property tester which has one-sided error and runs in poly(1/ε) time. Note that

o(·) in the first condition of Definition 1.1 is an asymptotic notation of “little-o”. For

functions f, g : Z+ 7→ R+, where Z+ and R+ denote the set of nonnegative integers

and the set of nonnegative real numbers, respectively, we denote by f(x) = o(g(x))

if limx→∞ f(x)/g(x) = 0.

Generally, from the point of view of algorithm design, one prefers non-adaptive

testers to adaptive ones due to the reason that the strategy of sampling all at once

suffices. When time complexity is the most concern, the result that a property is

easily testable is better than that it is testable. Be noted that the time complexity of

any property tester should be sublinear in the domain size. From the point of view

of correctness, a tester with one-sided error tester is better than another one with

two-sided error. For any property, a non-adaptive property tester usually requires

more time than an adaptive one, and a property tester with one-sided error usually

requires more time than that with two-sided error.

Here let us consider testing emptiness of a graph as an illustrating example of

property testing. We say that a graph G = (V,E) satisfies emptiness if E = ∅, that

is, there exists no edge in the graph G. Suppose that the dense model of graphs

is applied. In the dense model, a graph G is represented by an adjacency matrix

where an algorithm is allowed to make queries. Here a query means to examine

whether an entry of the matrix equals to 1 or 0, that is, to see if a pair of vertices

are adjacent or not. The distance measure of two graphs refers to the fraction of

vertex pairs which is an edge in one graph and not an edge in the other, taken over

the domain size which is n2. Hence, G is ε-far from emptiness if it has at least εn2

edges. Let us consider a randomized algorithm, which is called Emptiness-Tester, in

Algorithm 1.2.

Algorithm Emptiness-Tester first picks 2/ε vertex pairs uniformly at random,

and then check if any of them is a pair of adjacent vertices. Once a pair of adjacent

vertices is found, the algorithm returns “no” since it finds an evidence that the graph

is not empty. If none of them is a pair of adjacent vertices, then the algorithm returns
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Emptiness-Tester(G) /* a graph G = (V,E) stored in an adjacency matrix */
begin

1: pick 2/ε vertex pairs from G uniformly at random;
2: for each picked vertex pair (u, v) do
3: if (u, v) ∈ E then
4: return “no”;
5: end if
6: end for
7: return “yes”;

end

Algorithm 1.2: Emptiness-Tester: a property tester for testing emptiness of a graph
in the dense model.

“yes”. It is easy to see that if G is really empty, then there is no edge in G so that

the algorithm must return “yes”. On the other hand, if the graph is ε-far from being

empty, then there must be at least εn2 pairs of vertices that are adjacent. In this

case, the algorithm returns “no” with probability at least

1−
(

1− εn2

n2

)2/ε

= 1− ((1− ε)1/(−ε))−2 > 1− e−2 >
2

3
.

Algorithm Emptiness-Tester utilizes only O(1/ε) = o(n2) queries, thus it is indeed

a valid property tester for testing emptiness of a graph. Clearly, we obtain that

emptiness of a graph is easily testable in the dense model.

The general notion of property testing was first explicitly formulated by Ru-

binfeld and Sudan [108], who were motivated by the connection to the program

checking [25]. Suppose we have a program P which calculates a function f over a

domain D. A so-called ε-self-tester is to distinguish whether the program P truly

calculates the function f or has wrong calculation results for more than ε|D| points of

the domain D. Then the authors extend the self-testers to ε-function-family testers,

which take the program P as an input and test if there exists a function f ∈ F
such that P has wrong answers at less than ε|D| points in the domain, where F is

a certain family of functions possessing a certain property. The study on testing

combinatorial objects was first introduced by Goldreich, Goldwasser, and Ron [75].

Recall that, in the dense model, a graph is stored in an adjacency matrix. A

property tester is allowed to make queries, where each query is to examine an entry

(i, j) in the adjacent matrix in order to know whether vertex i and j are adjacent
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or not. The input graph is ε-far from a property P if more than εn2 edge insertions

or removals should be performed to make the graph have the property. In [75],

many graph properties, such as k-colorability, bipartiteness, having a large clique,

having a large cut, etc., were proved to be testable in the dense model. In [3] it was

shown that every first-order graph property without a quantifier alternation of type

‘∀∃’ is testable. Later, monotone graph properties and hereditary graph properties

are shown to be testable in the dense model [10, 11]. Monotone graph properties

are the graph properties that are closed under removal of vertices and edges, while

hereditary graph properties are the graph properties that are closed under vertex

removals. A graph is H-free if it does not contain any subgraph isomorphic to H,

and it is induced H-free if it does not contain any induced subgraph isomorphic

to H. Clearly, induced H-freeness is a monotone graph property and induced H-

freeness is a hereditary graph property. The property H-freeness is easily testable if

H is bipartite [2]. In [9], Alon and Shapira gave a nearly complete characterizations

of H’s such that induced H-freeness is easily testable, though it is still open that

whether induced P4-freeness and induced C4-freeness are easily testable, where P4 is

a path of length 3 and C4 is a cycle of length four. Table 1.1 summarizes the results

on testing graph properties in the dense model.

There is another frequently used graph model, which is called the sparse model.

In this model, bounded-degree graphs are considered and stored in adjacency lists.

Goldreich and Ron [76] are the first ones to study property testing in the sparse

model. Unlike property testing in the dense model, there are only a few graph prop-

erties shown to be testable in the sparse model. Recently, there are breakthroughs

of property testing in this model. In [21, 83], minor-closed properties are shown to

be testable in the sparse model. When we focus on the testing for special classes of

graphs, hereditary graph properties are proved to be testable when the input graph

has very limited expansion [54]. Very recently, property of hyperfinite graphs are

proved to be testable in the sparse model [21, 83]. Table 1.2 summarizes the results

on testing graph properties in the sparse model.

There are also non-graph properties studied in the field of property testing,

such as testing monotonically nondecreasing of a sequence of numbers [63], testing

constraint satisfiability [7], testing whether a language is regular [5] (the results are
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Property Testable Easily testable Query complexity

first-order graph properties
without a quantifier Yes [3] No [75]
alternation of type ‘∀∃’ 22

. . .
2

)

O(poly(1/ε)) 2’s

[3]

first-order graph properties
with a quantifier No [3] No [3] ?
alternation of type ‘∀∃’

monotone properties Yes [10] No [2] 22
. . .

2
)

O(poly(1/ε)) 2’s

[10]

hereditary properties Yes [11] No [9] 22
. . .

2
)

O(poly(1/ε)) 2’s

[11]

H-freeness, H is bipartite Yes [3] Yes [2] O(h2
(

1
2ε

)h2/4) [2]

H-freeness, H is not bipartite Yes [3] No [2] Ω
((

c
ε

)c log(c/ε)
)

[2]

induced H-freeness, H = P2 Yes [3] Yes [9] Θ
(

1
ε

)
induced H-freeness, H = P3 Yes [3] Yes [9] O

(
log(1/ε)

ε

)
[9]

induced H-freeness,
H 6= P2, P3, P4, C4 Yes [3] No [9] Ω

((
1
ε

)c log(1/ε)
)

or their complements.

induced H-freeness,
H is P4 or C4 Yes [3] ? 22

. . .
2

)

O(poly(1/ε)) 2’s

[11]

bipartiteness Yes [75] Yes [75] O
(

ln8(1/ε) lnln2(1/ε)
ε2

)
[4]

k-colorability Yes [75] Yes [75] O
(

k2 ln2 k
ε4

)
[4]

having a clique of size
at least ρn Yes [75] No [75] O

(
log2(1/ε)ρ2

ε6

)
[75]

having a cut of size
at least ρn2 Yes [75] No [75] O

(
log2(1/ε)

ε7

)
[75]

Table 1.1: Important results on testing graph properties in the dense model. h =
|H|; c is a constant depending on H; ‘?’ stands for an open question; ‘?’ means no
explicit bound is given.



1.2 Property Testing 11

Property Testable Easily testable Query complexity

properties of
hyperfinite graphs Yes [95] ? ? [95]

hereditary properties
in a nonexpanding Yes [54] ? ? [54]
family of graphs

minor-closed properties Yes [21] ? 2poly(1/ε) [83]

bipartiteness No [76] No [76] Ω(
√

n) [76]

expansion No [76] No [76] Ω(
√

n) [76]

k-colorability No [33] No [33] Ω(n) [33]

connectivity Yes [76] Yes [76] O
(

log2(1/εd)
ε

)
[76]

k-connectivity Yes [118] Yes [118] O
(
d
(

ck
εd

)k
log k

εd

)
[118]

k-edge-connectivity
for k = 1, 2 Yes [76] Yes [76] O

(
log2(1/εd)

ε

)
[76]

k-edge-connectivity
for k ≥ 4 Yes [76] Yes [76] O

(
k3 log(1/(εd))

ε3−2/kd2−2/k

)
[76]

Eulerian Yes [76] Yes [76] O
(

log2(1/εd)
ε

)
[76]

cycle-freeness Yes [76] No [76] O
(

1
ε3

)
[76]*

Table 1.2: Important results on testing graph properties in the sparse model. ‘?’
stands for a bound in a not explicitly form yet it is independent of n; ‘?’ stands for
an open question; ‘*’ stands for a result with two-sided error.
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then extended to the testing on read-once branching programs [92] and read-twice

branching programs [70], which are testable and non-testable respectively), etc.

In [18], Batu et al. considered testing whether two distributions of n elements are

closed. Property testing also emerges in the context of probabilistically checkable

proof (PCP) systems [15, 58], and a variant of the PCP system similar to the

setting of property testing is also studied [64]. Naturally, property testing is related

to the notion of additive approximation [12, 69, 103, 104]. For more details of graph

property testing, refer to [8, 67, 74, 106] for more details.

1.3 A New Concept: Parameterized Property Testing

As mentioned in [106], property testing may be useful in some scenarios. For ex-

ample, suppose we have a slow exact decision procedure and a property tester for a

function. If the property tester answers “no”, then we know that with high prob-

ability the function does not have the property. In particular, for one-sided-error

property testers, such a negative answer provides a witness that the function does

not have the property, and therefore it is not necessary to run the slow decision

procedure. Property testing is also useful when we can tolerate a small number of

errors of the function values. In such a scenario, we only care whether the function

is “good” (i.e., has the property) or “very bad” (i.e., ε-far from having the prop-

erty). We have seen the examples of problems that can be efficiently solved when

the associated parameters are small. One might be eager to know quickly whether

the associated parameter of the problem is small or large so that the efficiency of

the fixed-parameter algorithms can be expected to some degree. In such a scenario,

using property testing as a preprocessing step helps.

On the other hand, the notion of fixed-parameter algorithms might also help

property testing from the following point of view. Fixed-parameter algorithms are

efficient when the associated parameters are small. Similarly, one might wonder

whether a property tester can be more efficient when some associated parameter is

small, or whether it facilitates the study of standard property testing. Based on

the above idea, we introduce a new concept: parameterized property testing. For a

specified property, it concerns whether there exists a property tester, which is called

a parameterized property tester, such that the property can be tested efficiently when
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the parameter k associated with the input or the property is small. Based on this

concept, we define parameterized property testers as follows.

Definition 1.2 (Parameterized property testers). Given a function f ∈ F , 0 <

ε < 1, and k ∈ Z+ as the input, where F is the set of all functions with the same

domain D, a parameterized property tester for a property P is an algorithmM such

that the following conditions hold:

1. M runs in O(φ(k, 1/ε) ·o|D|) time, where φ is a function which solely depends

on k and ε;

2. M returns “yes” with probability at least 2/3 if ∆(f,P) = 0 (i.e., f ∈ P);

3. M returns “no” with probability at least 2/3 if ∆(f,P) ≥ ε.

In Definition 1.2, we regard k (i.e., the parameter1) and ε as constants with

respect to |D|. Hence, we say that a parameterized property tester runs in constant

time if its time complexity solely depends on k and ε. A parameterized property

tester M can be regarded as a collection of procedures CM = {Φk : k ∈ Z+}.
We say that M is nonuniform on k if the procedures in CM are mutually distinct,

otherwise we that it is weakly uniform on k. We say thatM is uniform on k if the

procedures in CM are all identical. If a property P with the parameter k admits a

parameterized property tester of time complexity φ(k, 1/ε) that solely depends on k

and ε, we say that P is parameterized testable. If a parameterized testable property

P admits an O(poly(k, 1/ε)) parameterized property tester which is uniform on k

and has one-sided error, then we say that P is parameterized easily testable.

In fact, there have been several examples of graph property testing implicitly re-

vealing this idea. For example, Alon and Krivelevich [4] proposed an O(k2 ln2 k/ε4)

property tester with one-sided error for k-colorability in the dense model. Their re-

sult implies that k-colorability is parameterized easily testable in the dense model.

Alon [2] proved that testing if a graph is H-free (i.e., does not have H as a subgraph)

requires O(h2(1/2ε)h2/4) queries in the dense model, where h is the size of V (H).

This result implies that H-freeness is parameterized testable in the dense model.

1In our setting of parameterized property testing, two or more parameters are allowed. For
example, the maximum degree d in the sparse model for graph property testing is also regarded as
a parameter.
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As to the sparse model, where graphs of vertex-degree bounded by d are considered

and adjacency lists are commonly used, Yoshida and Ito [118] obtained a property

tester for k-connectivity, which runs in time O(d(ck/εd)k log(k/εd)) for some con-

stant c. Yet for k ≥ min{ 3
√
n/120, 3

√
εdn/400}, their property tester runs another

O(poly(n)) = O(poly(k/(εd))) algorithm to deterministically decide if the graph is

k-connected. Hence, their property tester for k-connectivity in the sparse model is

a parameterized property tester which is weakly uniform on k.

Note that there are property testing models called massively parameterized mod-

els, which generalize the setting of the standard property testing (e.g., see [68, 71,

82, 93, 94]). Yet, the parameter considered in a massively parameterized model is a

fixed structure that determines all the input. For example, we can take Kn, which is

a complete graph on n vertices, as the fixed structure. Then, the collection of inputs

is the set of all 0/1 coloring of the edges of Kn, and the specified property is a subset

of the collection of inputs. In this model, edge insertions and removals are forbidden.

Except the massively parameterized models, to the best of our knowledge, we are

not aware of any prior work that explicitly defined the same terminology as ours.

1.4 Our Contributions

In this dissertation, we introduce the new concept: parameterized property test-

ing, which combines the characteristics of fixed-parameter algorithms and property

testing. For the purpose of illustrating how to solve an NP-hard problem using

fixed-parameter algorithms, property testing, and parameterized property testing,

in the first part of the dissertation, we consider a problem of determining the consis-

tency of quartet topologies as an example. The problem is about evolutionary tree

reconstruction, which originates from computational biology. We tackle this prob-

lem and its variants through the approaches of fixed-parameter algorithms, property

testing, and parameterized property testing.

First, we focus on the parameterized Minimum Quartet Inconsistency problem

(parameterized MQI). Roughly speaking, a quartet topology is an unrooted tree with

four leaves. Given a set Q of
(

n
4

)
quartet topologies over an n-taxon set S, where

each quartet over S has exactly one topology in Q, the parameterized MQI problem

is to determine whether there exists an unrooted binary tree T , where internal
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nodes are of degree three and leaves are bijectively labelled by a set of n taxa,

such that at most k quartet topologies (i.e., quartet errors) in Q are not consistent

with T . Such an unrooted tree is called an evolutionary tree. In 2003, Gramm and

Niedermeier showed that this problem is in FPT [78], and presented an O(4kn+n4)

fixed-parameter algorithm. We improve their result by devising three efficient fixed-

parameter algorithms in a step-by-step way for the parameterized MQI problem.

The complexity of these three algorithms are O(3.0446kn+ n4), O(2.0162kn3 + n5),

and O∗((1+ε)k), respectively, where ε > 0 is an arbitrarily small constant2. Readers

can also refer to [43] for this part of results.

Second, we consider property testing for the consistency of a set Q of quartet

topologies. Our goal is to distinguish between the case that all the quartet topolo-

gies in Q are consistent with some evolutionary tree T and the case that no such

evolutionary tree exists unless at least ε
(

n
4

)
quartet topologies in Q are changed.

When there is exactly one topology in Q for every quartet over an n-taxon set S,

we present an O(n3/ε) property tester, which is non-adaptive and has one-sided

error, for this property. This property tester is the first one for testing consistency

of quartet topologies. Readers can also refer to [44] for this part of results.

Third, for the case that there are at most k quartets whose topologies are missing

in Q (i.e., do not have topologies in Q), we show that there is an O(1.7321kkn3/ε)

parameterized property tester, which is also non-adaptive and has one-sided error,

for testing if Q is consistent with an evolutionary tree. Moreover, the parameterized

property tester is uniform on k. Readers can refer to [45] for the preliminary result.

Finally, we study parameterized property testing for graph properties. We in-

dicate that there are graph properties which are trivial to test (i.e., one can sim-

ply answer “yes” or “no” without observing the input graph) when the parame-

ters are small constants, there are graph properties which are easily parameterized

easily testable, and there are also graph properties which are not parameterized

testable. Then, we focus on the Vertex Cover problem and the problem of comput-

ing treewidth of a graph, and give parameterized property testers for these properties

in the sparse model, where graphs have bounded vertex degree d and are stored in

adjacency lists.

2For two functions f, g : (N, N)→ R, we write f = O∗(g) if f(n, k) = O(poly(n, k) · g(n, k)).
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For testing whether a graph has a vertex cover of size at most k, Alon and

Shapira’s result [11] implies that there exists a property tester for this property in

the dense model, yet its time complexity is only guaranteed to be a function of

towers of 2’s of height O(poly(1/ε)). In the sparse model, it is proved in [76] that it

requires at least Ω(
√
n) time to test this property for k = ρn, ρ ∈ (0, 1). As to its

parameterized complexity, the current best result for the Vertex Cover problem is

O(1.2738k + kn) [48]. We present two adaptive parameterized property testers for

testing if a graph has a vertex cover of size at most k in the sparse model. The first

one has two-sided error and is weakly uniform on k. It runs in O(d/ε) time when

k < n/(6d), and in O(1.2738k + k2d) time otherwise. The second one has one-sided

error and is also weakly uniform on k. It runs in O(kd/ε) time when k < εn/4, and

in O(1.2738k + k2/ε) time otherwise. Our results reveal the fact that testing if a

graph has a small vertex cover can be quite efficient. Next, for testing if a graph has

treewidth at most k in the sparse model, we give a 2dO(kd3/ε2)
parameterized property

tester and another d(k/ε)O(k2)
+ 2poly(k,d,1/ε) parameterized property tester, both of

which have two-sided error. Compared with the O(2poly(1/ε)) property tester in [83]

for minor-closed properties, our parameterized property testers are not only uniform

on k, but also simpler since they do not need to know the obstruction set (i.e., the

set of forbidden minors) of this property. This part of results on parameterized

property testing can also refer to the manuscript [42].

We summarize our results in Table 1.3 and 1.4 as follows.

1.5 Dissertation Organization

We give a brief overview of the coming chapters in this section.

In Chapter 2, we introduce the background on evolutionary tree reconstruction

and then define the Minimum Quartet Inconsistency problem. For the study of its

parameterized complexity, we present three efficient fixed-parameter algorithms of

time complexity O(3.0446kn+n4), O(2.0162kn3+n5), and O∗((1+ε)k), respectively,

where ε > 0 is an arbitrarily small constant.

In Chapter 3, we formulate the problem of determining if a set of quartet topolo-

gies is consistent with an evolutionary tree as a combinatorial property, which is

called tree-consistency of a set of quartet topologies. When the input set consists
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Property

(Problem) PC PT PPT

MQI O(3.0446kn + n4) [43]? – –

O(2.0162kn3+n5) [43]?

O∗((1 + ε)k) [43]?

Ptree – O(n3/ε) [44]# O(1.7321kkn3/ε) [45]??

PV C≤k O(1.2738k + kn) [48] 22
. . .

2
)

O(poly(1/ε)) 2’s
[11]† O(d/ε) [42]‡\

O(kd/ε) [42]‡[

PV C≤ρ·n – Ω(
√

n) [76]‡

Ptw≤k 2Θ(k3) · kO(1) · n [28] 2poly(1/ε) [83]‡ 2dO(kd3/ε2)
[42]‡

d(k/ε)O(k2)
+ 2poly(k,d,1/ε) [42]‡

Table 1.3: A summary of our contributions. References in boldface, i.e., [42–45],
are our results. PC: parameterized complexity; PT: property testing; PPT: param-
eterized property testing; Ptree : tree-consistency of quartet topologies; PV C≤k: the
property of having a vertex cover of size at most k; PV C≤ρn: the property of having
a vertex cover of size at most ρn for a constant ρ ∈ (0, 1); Ptw≤k: the property of
having treewidth at most k; ‘?’: the parameter k stands for the number of quartet
errors; ‘??’: the parameter k stands for the number of missing quartets; ‘#’: the
input set of quartet topologies is complete; ‘\’: complexity for k < n/(6d); ‘[’: com-
plexity for k < εn/4; ‘†’: the result is in the dense model; ‘‡’: the result is in the
sparse model.

Property Sublinear Testable (easily) Non-adaptive 1/2-sided error uniform

Ptree Yes ? (?) Yes 1 Yes

PV C≤k Yes Yes (no) No 1 weakly

Ptw≤k Yes Yes (?) No 2 Yes

Table 1.4: A summary of the characteristics of our parameterized property testers.
Here “sublinear” is with respect to the input (domain) size.
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of exactly one topology for every quartet over an n-taxon set, we prove that there

are instances which are ε-far from being tree-consistent. Then, we give an O(n3/ε)

property tester for this property. In the end of this chapter, we discuss about the

difficulty of dealing with the testing for incomplete set of quartet topologies.

In Chapter 4, we extend the result in Chapter 3. We show that, when we are given

an integer k ≥ 0 which serves as an upper bound on the number of missing quartets

with respect to Q, there exists an O(3kkn3/ε) parameterized property tester, which

is non-adaptive, one-sided-error and uniform on k, for testing if Q is tree-consistent.

By carefully enumerating all the possible topologies of the missing quartets which

make the set of topologies of all the quartets over S tree-consistent, we obtain

another O(1.7321kkn3/ε) parameterized property tester, which is also non-adaptive,

one-sided-error and uniform on k.

In Chapter 5, we consider parameterized property testing for graph properties.

We clarify that there are properties that are trivial to test when the parameter k

is small and properties that are parameterized easily testable. Then, we focus on

the property of having a vertex cover of size at most k and the property of having

treewidth at most k in the sparse model. For testing if a graph has a vertex cover

of size at most k in the sparse model, we present a simple adaptive parameterized

property tester with two-sided error, which is weakly uniform on k and runs inO(d/ε)

time when k < n/(6d), and another one with one-sided error, which is also weakly

uniform on k and runs in O(kd/ε) time when k < εn/4. For testing if a graph has

treewidth at most k in the sparse model, we present two parameterized property

testers of time complexity 2dO(kd3/ε2)
and d(k/ε)O(k2)

+ 2poly(k,d,1/ε), respectively, both

of which are uniform on k.

Finally, in Chapter 6 we end the dissertation with concluding remarks and sug-

gestions for future work.



Chapter 2

Fixed-Parameter Algorithms for Minimum
Quartet Inconsistency

Determining the evolutionary relationship of a set of taxa is a very essential topic

in computational biology. In order to model such relationships, evolutionary trees

(or phylogenetic tree) are widely considered. Roughly speaking, an evolutionary tree

represents the course of evolution for a set of taxa over time. In an evolutionary

tree, the leaves represent the taxa and the internal nodes represent the ancestors.

Building an evolutionary tree for all the taxa has been regarded as a crucial and

fundamental problem in computational biology.

As mentioned in [46], we assume that an evolutionary tree is bifurcating (i.e.,

binary), that is, each internal node of the tree (except the root) is of degree 3. This

assumption is due to the reason that events of taxon divergence are usually rare in

practical cases, and multifurcations can be viewed as aggregates of bifurcations in

some circumstances [114]. Rooted and unrooted evolutionary trees are both studied,

however, construction of unrooted evolutionary trees is mostly considered. One

crucial reason is that for the same set of leaves, there are fewer unrooted evolutionary

trees than rooted ones (See [66] for further discussions). In this dissertation, we focus

on unrooted evolutionary trees.

In practical cases, one can only analyze the evolutionary relation of a small set

of taxa at one time. Hence, in order to observe the whole evolution course of all

the taxa, one has to construct an evolutionary tree from a set of small subtrees.

However, in reality some of the given small trees may be erroneous, so an evolu-

tionary tree consistent with all of them may not exist. Moreover, determining if

such an evolutionary tree exists is proved to be NP-complete [110]. Therefore,

19
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one turns to seek for an evolutionary tree consistent with as many of the input

small trees as possible. For practical and theoretical advantages, quartet methods,

where the input consists of a set of unrooted four-leaf trees (i.e., quartet topolo-

gies), are extensively used for this kind of optimization problem in the past three

decades [17, 20, 23, 24, 41, 43–46, 50, 62, 78, 85, 86, 109, 110, 112]. This method

is based on the fact that any evolutionary tree can be uniquely characterized by its

set of induced quartet topologies [37, 50].

We focus on the Minimum Quartet Inconsistency (MQI) problem and its param-

eterized complexity. Roughly speaking, the MQI problem asks for an evolutionary

tree from a set of small four-leaf unrooted trees, such that the number of inconsis-

tent small trees is minimized. Assume that exactly one quartet topology for each

set of four taxa is given. Provided with a parameter k denoting the upper bound

on the number of inconsistent small four-leaf unrooted trees, we show that the MQI

problem admits efficient fixed-parameter algorithms.

In Sect. 2.1, we introduce the MQI problem as well as basic terminologies and the

related work. In Sect. 2.2, we introduce the strategy of designing fixed-parameter al-

gorithms using the depth-bounded search tree . Then, we provide three efficient fixed-

parameter algorithms for the MQI problem. The first one, presented in Sect. 2.3, is

an O(3.0446kn+ n4) fixed-parameter algorithm, which is designed using the depth-

bounded search tree. The second one, which is obtained by extending the first one,

is an O(2.0162kn3 + n5) fixed-parameter algorithm and presented in Sect. 2.4. In

Sect. 2.5, we present an O∗((1 + ε)k) fixed-parameter algorithm, where ε > 0 is an

arbitrarily small constant. The running time of the third algorithm has an expo-

nential term with an arbitrarily small base, which can be very close to 1, yet its

polynomial factor grows quickly as the base of the exponential term decreases.

2.1 The Minimum Quartet Inconsistency Problem

2.1.1 Preliminaries and terminologies

Let S be a set of n taxa. An evolutionary tree T over S is an unrooted , leaf-labeled

tree such that the leaves of T are bijectively labeled by the taxa in S, and each

internal node of T has degree three. A quartet is a set of four taxa in S. The quartet
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topology for {a, b, c, d} induced by T is the path structure connecting a, b, c, and d

in T (see Fig. 2.1 for an illustration). Equivalently, we say that {a, b, c, d} has the

quartet topology [ab|cd] with respect to T if and only if the path on T from a to

b does not share any vertex with that from c to d. In this dissertation, a quartet

{a, b, c, d} is restricted to have three possible topologies [ab|cd], [ac|bd], and [ad|bc]
(see Fig. 2.2), which are the possible bipartitions of {a, b, c, d} (hence [ab|cd], [ba|cd],
[ab|dc], [ba|dc], [cd|ab], [dc|ab], [cd|ba], [dc|ba] are regarded the same).

Figure 2.1: (i) An evolutionary tree T ; (ii) The path structure connecting a, b, c, d
in T ; (iii) The quartet topology of {a, b, c, d} induced by T .

We denote by QT the set of quartet topologies induced by an evolutionary tree T .

A set of quartet topologies Q is said to be complete (with respect to S) if Q contains

exactly one topology for every quartet in S. We say that Q is tree-consistent [17]

if there exists an evolutionary tree T such that Q ⊆ QT . Furthermore, we say

that Q is tree-like [17] if Q = QT for some evolutionary tree T . For example,

if S = {a, b, c, d, e, f} and Q = {[ab|cd], [ab|ce], [ab|cf ], [ab|de], [ab|df ], [ab|ef ], [ac|de],
[af |cd], [af |ce], [af |de], [bc|de], [bf |cd], [bf |ce], [bf |de], [cf |de]}, thenQ is tree-like since

it is exactly the set of quartet topologies induced by T in Fig. 2.1 (i). Let Υ be

the set of all tree-like sets of quartet topologies over S. We call minQ∗∈Υ |Q \ Q∗|
the error number of Q. We call the quartet topologies in Q \Q∗ the quartet errors

of Q if |Q \Q∗| equals to the error number of Q for Q∗ ∈ Υ. Note that the number

|Q\Q∗| is equal to |Q∗ \Q| since Q and Q∗ are complete (if a quartet has a topology

is in Q \Q∗ then there must be a different one of this quartet in Q∗ \Q).

In the following we formally state the MQI problem. By introducing a param-

eter k to the MQI problem, we obtain its parameterized version, which is called

parameterized MQI problem for short.
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Figure 2.2: Three topologies for a quartet {a, b, c, d}.

The Minimum Quartet Inconsistency Problem (MQI):
Input: A complete set of quartet topologies Q over an n-taxon set S.
Task: Construct an evolutionary tree T on S such that the number of quartet
errors of Q with respect to QT is minimized.

The Parameterized Minimum Quartet Inconsistency Problem
(parameteried MQI):
Input: A complete set of quartet topologies Q over an n-taxon set S, and
an integer k.
Task: Determine if there exists an evolutionary tree T on S such that the
number of quartet errors of Q with respect to QT is at most k.

2.1.2 Related work

The Quartet Compatibility Problem (QCP) is to determine if there exists an evo-

lutionary tree T on S satisfying all quartet topologies Q. The QCP problem can

be solved in polynomial time whenever Q is complete [62], but it becomes NP-

complete when Q is not necessarily complete [110]. From now on we consider the

case that Q is complete. The optimization problem, called the Maximum Quartet

Consistency problem (MQC), is a dual problem to the MQI problem. The MQC

problem is to construct an evolutionary tree T on S to satisfy as many quartet

topologies of Q as possible. The MQC problem and the MQI problem are both

NP-hard [24], however, the MQC problem admits a polynomial time approximation

scheme (PTAS) [86], while the best approximation ratio found so far for the MQI

problem is O(n2) [85]. Ben-Dor et al. gave an O(3nn4) algorithm to solve the MQI

problem by dynamic programming [20]. For the case that Q has less than (n− 3)/2

quartet errors, Berry et al. [24] devised an O(n4) algorithm for the MQI problem.

Furthermore, if Q has at most cn quartet errors, Wu et al. [117] compute the optimal

solution for the MQI problem in O(n5 + 24cn12c+2) time, where c is some positive

constant. While this is a polynomial time algorithm, the degree of the polynomial
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in the run-time grows quickly. Therefore parameterized algorithms are faster for

practical values of k and n.

As to the parameterized complexity of the MQI problem, Gramm and Nieder-

meier proved that the parameterized MQI problem is fixed parameter tractable [78],

and they proposed a O(4kn + n4) fixed parameter algorithm [78]. In [116], Wu et

al. presented a lookahead branch-and-bound algorithm for the MQC problem which

runs in time O(4k′
n2k′ + n4), where k′ is an upper bound on the number of quar-

tet errors of Q.

2.2 The Main Approach: Depth-Bounded Search Tree

In this chapter, we utilize the strategy of depth-bounded search trees, which is one

of the most important concepts in design and analysis of fixed-parameter algo-

rithms [60, 98]. A depth-bounded search tree algorithm works recursively. The

number of recursions is the size of the corresponding search tree. Such an algorithm

explores an optimal solution for an NP-hard problem by performing systematic

exhaustive search in a search tree. The depth of the search tree is bounded by a

parameter. Concerning the complexity analysis of the algorithm, we have to de-

termine an upper bound on the size of the corresponding search depending on the

structure of algorithm recursions. Note that we concentrate on linear recurrences

with constant coefficients here. The basic definitions and results which are used in

this dissertation are listed as follows.

Definition 2.1 ([98]). Given a problem P with parameter k. If an algorithm solves

P and calls itself recursively for subproblems with parameters k−d1, k−d2, . . . , k−di,

then (d1, d2, . . . , di) is called the branching vector of recursion of the algorithm.

Actually, the branching vector (d1, d2, . . . , di) corresponds to the recurrence Tk =

Tk−d1 + Tk−d2 + . . .+ Tk−di
. In addition, we assume that T0 = T1 = . . . = Td′−1 = 1,

where d′ = min{d1, . . . , di}, for the boundary condition of the recurrence. Note that

Tk corresponds to the number of leaves in the search tree, and the number of nodes

in the search tree is at most 2Tk.
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Definition 2.2 ([98]). Given a branching vector v = (d1, d2 . . . , di) of some recur-

sion, the characteristic polynomial of v is

zd − zd−d1 − zd−d2 − . . .− zd−di ,

where d is defined to be max{d1, d2, . . . , di}. Furthermore, we call α the character-

istic root of the characteristic polynomial if αd = αd−d1 + αd−d2 + . . .+ αd−di .

Definition 2.3 ([80, 100]). Given a branching vector v = (d1, d2, . . . , di) of some

recursion, the reflected characteristic polynomial of v is 1− zd1 − zd2 − . . .− zdi .

For example, assume that we have a recurrence T (k) = 2T (k − 1) + T (k − 3) +

T (k− 5). The branching vector of the recurrence is (1, 1, 3, 5) and its characteristic

polynomial and reflected characteristic polynomial are z5 − 2z4 − z2 − 1 and 1 −
2z− z3− z5 respectively. The characteristic root of the characteristic polynomial is

2.2392 . . ..

Let α be the characteristic root of the characteristic polynomial zd − zd−d1 −
zd−d2 − . . . − zd−di . It is well known that the root of the reflected characteristic

polynomial 1− zd1 − zd2 − . . .− zdi is 1/α [80, 100].

Theorem 2.1 ([80, 98, 100]). A depth-bounded search tree with branching vector

(d1, d2, . . . , di) and its root labeled with parameter k has size kO(1) · αk, where α is

the greatest characteristic root the corresponding characteristic polynomial. Further-

more, if α is not a multiple root, then the size of the search tree is Θ(αk).

Remarks. Let v = (d1, d2, . . . , di), where d1, d2, . . . , di > 0 and i > 1, be a branch-

ing vector. Let f(z) = zd−zd−d1−zd−d2− . . .−zd−di , where d = max{d1, d2, . . . , di},
be the characteristic polynomial of v. For the analysis of the corresponding search

tree size, we only care about the roots of f(z) which are greater than 1, hence

we focus on the polynomial g(z) = f(z)/zd = 1 − z−d1 − z−d2 − . . . − z−di . Note

that the derivative of g(z) is g′(z) = d1z
−d1−1 + d2z

−d2−1 + . . . + diz
−di−1. Since

d1, d2, . . . , di > 0, we have g′(z) > 0 for all z > 0 so that g(z) is monotonically in-

creasing in (0,∞). Since it is clear that g(1) < 0 and g(z) is monotonically increasing

in (1,∞), there must be exactly one root α > 1 of g(z), which is simple (i.e., α is not

a multiple root) due to the fact that g′(α) > 0. Thus, there is also exactly one root
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1/α of the corresponding reflected characteristic polynomial 1− zd1− zd2− . . .− zdi ,

where 0 < 1/α < 1. In the remainder of this dissertation, each branching vector has

positive entries. Thus, whenever a root α > 1 (resp., 0 < 1/α < 1) of a character-

istic polynomial (resp., a reflected characteristic polynomial) is found, Theorem 2.1

imples that the size of the corresponding search tree is Θ(αk).

For simplicity, we call the base of the exponentially growing function in The-

orem 2.1, i.e., α, the branching number. Let ρ(v) denote the branching number

corresponding to a branching vector v. Note that the ordering of a branching vector

does not affect the corresponding branching number. The following theorem con-

cerns about the relation between a branching vector its corresponding branching

number.

Theorem 2.2. Let v = (d1, d2, . . . , di) and v′ = (d′1, d
′
2, . . . , d

′
i) be two branching

vectors, where dj ≤ d′j for 1 ≤ j ≤ i, then ρ(v) ≥ ρ(v′).

Proof. The reflected characteristic polynomial of v and v′ are 1 −
∑i

j=1 z
dj and

1−
∑i

j=1 z
d′j respectively. Let z0 and z′0 be the roots of 1−

∑i
j=1 z

dj and 1−
∑i

j=1 z
d′j

respectively, then we have
∑i

j=1 z0
dj = 1 and

∑i
j=1 z

′
0
dj = 1. Since z0 < 1 and dj ≤

d′j for 1 ≤ j ≤ i, we have z0
d′j ≤ z0

dj for all 1 ≤ j ≤ i, and hence
∑i

j=1 z0
d′j ≤ 1. Thus

z′0 must be greater than or equal to z0. Therefore, ρ(v) = 1/z0 ≥ 1/z′0 = ρ(v′). 2

Based on the above definitions and observations, we devise a C language program

that can calculate the branching number of an input branching vector with positive

entries. Refer to [89] for the program as well as its source code.

2.3 An O(3.0446kn+ n4) Fixed-Parameter Algorithm

2.3.1 Quintets and tree-consistency

A quintet is a set of five taxa in S. Let Q denote a complete set of quartet topologies

over S. Clearly, Q is of size
(

n
4

)
. We say that a quintet {a, b, c, d, e} ⊆ S is resolved

with respect to Q if the set of quartet topologies over {a, b, c, d, e} in Q is tree-

like. Otherwise, we say that {a, b, c, d, e} is unresolved with respect to Q. Similar

to the quartet topology, the quintet topology of a quintet {a, b, c, d, e} induced by

an evolutionary tree T is the path structure connecting a, b, c, d, and e in T .
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Without loss of generality, assume that we have [ab|cd] induced by T , then there

are five quintet topologies for the quintet {a, b, c, d, e} induced by T since there are

five positions for inserting e into the tree structure of [ab|cd]. Since there are three

different topologies for the quartet {a, b, c, d}, there are fifteen quintet topologies for

a quintet {a, b, c, d, e} (see Fig. 2.3).

Figure 2.3: The fifteen topologies for a quintet {a, b, c, d, e}.

We say that a set of quartet topologies Q′ over S involves a taxon f if there exists

at least one quartet topology t = [v1v2|v3v4] ∈ Q′, where v1, v2, v3, v4 ∈ S, such that

f = vi for some i ∈ {1, 2, 3, 4}. If a set of quartet topologies is not tree-consistent,

we say that it has a conflict [78]. We say that a set of three topologies has a local

conflict [78] if it is not tree-consistent. Concerning the connection between local

conflicts and tree-likeness, Gramm and Niedermeier proved the following lemma

and theorem.

Lemma 2.1 ([78]). A set of three quartet topologies, each of which comes from

different quartets, is tree-consistent if it involves more than five taxa.

Theorem 2.3 ([78]). Given a set of taxa S and a complete set of quartet topologies Q

over S, and some taxon f ∈ S, then Q is tree-like if and only if every set of three

quartet topologies in Q that involves f has no local conflict.
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The following lemma relates local conflicts with unresolved quintets.

Lemma 2.2. Assume that q ⊆ S is a quintet such that f ∈ q and let Qq ⊆ Q

denote the set of quartet topologies of quartets in q. Then q is resolved if and only

if every set of three quartet topologies in Qq has no local conflict.

Proof. Recall that q is resolved if and only if there exists an evolutionary tree T

with leaf set q such that Qq = QT , i.e., Qq is tree-consistent. Furthermore, we can

derive by Theorem 2.3 that Qq is tree-consistent (or tree-like when regarding q as

the taxon set) if and only if every set of three quartet topologies in Qq has no local

conflict. Therefore the lemma follows. 2

By Lemma 2.1 and Lemma 2.2, we observe the relation between tree-likeness

and resolved quintets and Theorem 2.4 follows. Actually, this theorem can be easily

derived from Bandelt and Dress’ result [17].

Theorem 2.4 ([17]). Given a set of taxa S, a complete set of quartet topologies

Q over S, and some taxon f ∈ S, then Q is tree-like if and only if every quintet

containing f is resolved.

There are
((5

4)
3

)
= 10 sets of three quartets with respect to a quintet {a, b, c, d, e}.

Checking whether a set of three quartet topologies has a local conflict requires only

constant time [78]. It is then clear that checking whether a quintet is resolved

requires only constant time. With a taxon f ∈ S which is fixed, there are
(

n−1
4

)
quintets containing f . Thus we have the following theorem.

Theorem 2.5. Given a set S of taxa, some taxon f ∈ S, and a complete set Q

of quartet topologies, then all unresolved quintets involving f can be found in O(n4)

time.

Let ≺ be a total order on the taxon set S. Without loss of generality, every

set of l taxa is represented according to ≺. That is, we denote a set of taxa by

{s1, s2, . . . , sl} if s1 ≺ s2 . . . ≺ sl. A quartet topology is represented by [s1s2|s3s4]

if s1 ≺ s3, s1 ≺ s2, and s3 ≺ s4. For the three possible topologies of a quartet, we

denote them by type 0, 1, and 2 according to ≺. Consider a quartet {a, b, c, d} ⊂ S
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as an example. If a ≺ b ≺ c ≺ d, we denote [ab|cd] by 0, [ac|bd] by 1, and [ad|bc]
by 2.

Let ≺l be the lexicographic order on the Cartesian product of l’s S according to

the total order ≺. For a quintet {s1, s2, s3, s4, s5}, where s1 ≺ s2 ≺ s3 ≺ s4 ≺ s5,

we define its topology vector to be an ordered sequence (r1, r2, r3, r4, r5), where r1,

r2, r3, r4, and r5 are the types of quartet topologies of {s1, s2, s3, s4}, {s1, s2, s3, s5},
{s1, s2, s4, s5}, {s1, s3, s4, s5}, and {s2, s3, s4, s5} respectively (i.e., the quartets in

the order of ≺5). For example, consider a quintet {a, b, c, d, e} ⊆ S, where a ≺
b ≺ c ≺ d ≺ e. Assume that [ab|cd], [ae|bc], [ab|de], [ae|cd], and [bd|ce] are in Q,

then the topology vector of {a, b, c, d, e} is (0, 2, 0, 2, 1). Recall that there are 15

possible quintet topologies for a quintet {s1, s2, s3, s4, s5}. We denote by V the set

of topology vectors of all the possible quintet topologies of a quintet, then we have

V =


(0, 0, 0, 0, 0), (1, 1, 0, 0, 0), (2, 2, 0, 0, 0), (2, 2, 1, 1, 0), (2, 2, 2, 2, 0),
(0, 0, 0, 1, 1), (2, 0, 1, 1, 1), (1, 0, 2, 1, 1), (1, 1, 2, 0, 1), (1, 2, 2, 2, 1),
(0, 0, 0, 2, 2), (0, 2, 2, 2, 2), (0, 1, 1, 2, 2), (1, 1, 1, 0, 2), (2, 1, 1, 1, 2).

 .

Note that the size of V is far less than the number of possible topology vectors of a

quintet, which is 35 = 243.

2.3.2 The algorithm

Our first fixed-parameter algorithm is called FPA1-MQI, which runs recursively. The

concepts of the algorithm are as follows. We build a list of unresolved quintets Cf
containing some fixed taxon f and the list V of topologies vectors of possible quintet

topologies for a quintet as preprocessing steps. In each recursion, the algorithm

selects an unresolved quintet q = {a, b, c, d, e} ∈ Cf arbitrarily and then tries to

make q resolved by the procedure update according to all the possible fifteen quintet

topologies of q.
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FPA1-MQI(Q, k, Cf )
/* Q: a complete set of quartet topologies; k: an integer parameter;
Cf : a list of unresolved quintets. */

begin

1: if Cf is empty and k ≥ 0 then
2: return ACCEPT;
3: else if k ≤ 0 then
4: return
5: end if
6: extract an unresolved quintet q from Cf ;
7: for each µ ∈ V do
8: (Q′, C ′f , k′)← update(Q, Cf ,q, µ, k);
9: FPA1-MQI (Q′, k′, C ′f );

10: end for
end

Algorithm 2.1: FPA1-MQI: an O(3.0446kn + n4) algorithm for the parameterized
MQI problem.

Recall that each topology vector µ ∈ V represents a quintet topology of a quintet.

The procedure update changes quartet topologies according to the quartet topologies

which µ stands for, and updates the set Cf and the parameter k to be C ′f and k′

respectively. For example, assume that we have [ab|cd], [ae|bc], [ab|de], [ae|cd], and

[bd|ce] in Q for the quintet {a, b, c, d, e} (the corresponding topology vector is then

(0, 2, 0, 2, 1)), and assume that µ = (2, 1, 1, 1, 2). The procedure update changes

these quartet topologies to [ad|bc], [ac|be], [ad|be], [ad|ce], and [be|cd] respectively,

according to µ, and these quartets are marked so that their topologies will not be

changed again. However, if there is a branch node in the search tree such that

some quartet topology, whose corresponding quartet has been marked, must be

changed in all the possible 15 branches to make an unresolved quintet resolved, the

algorithm stops branching here and just returns (since all the possible changes of

topologies of this quartet have been already considered by the algorithm to make

some certain quintet resolved when this quartet was marked). Let Qµ denote the

set of quartet topologies changed according to µ. The procedure update obtains the

updated inconsistent quintet set C ′f by removing the newly resolved quintets and

adding the newly unresolved quintets from Cf , and gets the updated parameter k′

by letting k′ = k − |Qµ|.
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By Theorem 2.4, we know Cf is empty if and only if the set of quartet topologies

is tree-like. Algorithm FPA1-MQI branches in all possible ways to eliminate each

unresolved quintet in Cf and it changes at most k quartet topologies from the root

to each branch node in the search tree. furthermore, the algorithm returns ACCEPT

if and only if Cf = ∅ and at most k quartet topologies are changed, thus it is correct.

2.3.3 Time complexity

Building lists Cf and V.

Building Cf requires O(n4) time by Theorem 2.5. Furthermore, building V requires

only constant time.

The recursive structure of Algorithm FPA1-MQI.

The algorithm works as a depth-bounded search tree. Each tree node has 15 branches

and each branch corresponds to a quintet topology. The root of the search tree is

labeled by k. Let us denote the size of the search tree rooted at a node labeled

r to be the T (r). For each µ ∈ V , we have T (r) =
∑

µ∈V T (r − |Qµ|), i.e., the

branching vector is (|Qµ|)µ∈V . Since there are 243 possible topology vectors of a

quintet but 15 of them are in V , we have 228 possible branching vectors as well as

228 branching numbers. Table 2.1 lists the branching vectors and the corresponding

branching numbers (refer to Appendix C for all the 243 branching vectors as well

as their branching numbers).

Consider the first row in Table 2.1 for an illustration. In this case, the al-

gorithm selects a quintet q = {a, b, c, d, e} which has induced quartet topologies

[ab|cd], [ac|be], [ae|bd], [ad|ce], and [bc|de] in Q. By comparing its correspond-

ing topology vector (0, 1, 2, 1, 0) with each topology vector µ ∈ V , we obtain that

the numbers of quartet topologies changed by Algorithm FPA1-MQI are 3, 3, 4, 3,

3, 3, 4, 3, 3, 4, 4, 3, 3, 4, and 3 respectively. Hence we have a branching vector

(3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3) and then we can compute a branching number be-

tween 2.3004 and 2.3005. It can be derived that the branching number in the worst

case is greater than 3.0445 and less than 3.0446. Thus the size of T (k) is O(3.0446k).
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Table 2.1: Some possible branching vectors and branching numbers of FPA1-MQI.

topology vector branching vector branching number
(0, 1, 2, 1, 0) (3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3) 2.30042. . .
(0, 0, 1, 0, 1) (2, 4, 4, 4, 5, 2, 2, 3, 3, 4, 3, 4, 3, 3, 4) 2.46596. . .
(0, 0, 1, 0, 2) (2, 4, 4, 4, 5, 3, 3, 4, 4, 5, 2, 3, 2, 2, 3) 2.54314. . .
(0, 0, 1, 0, 0) (1, 3, 3, 3, 4, 3, 3, 4, 4, 5, 3, 4, 3, 3, 4) 2.55234. . .
(0, 0, 1, 1, 2) (3, 5, 5, 3, 5, 2, 2, 3, 5, 5, 2, 3, 2, 3, 2) 2.67102. . .
(0, 0, 0, 0, 1) (1, 3, 3, 5, 5, 1, 3, 3, 3, 4, 2, 4, 4, 4, 5) 3.04454. . .

The procedure update.

For µ ∈ V , since there are n−4 quintets involving a fixed quartet, there are at most

|Qµ|(n− 4) quintets involving quartet topologies in Qµ. Thus the procedure update

runs only in O(n) time.

From the above analysis, we derive that the time complexity of Algorithm FPA1-

MQI is O(3.0446kn+ n4). Thus the following theorem follows.

Theorem 2.6. There exists an O(3.0446kn+ n4) fixed-parameter algorithm for the

parameterized minimum quartet inconsistency problem.

2.4 An O(2.0162kn3 + n5) Fixed-Parameter Algorithm

2.4.1 Sextets with siblings

Two taxa a, b are siblings on an evolutionary tree T if a and b are both adjacent to

the same internal vertex in T . Here we consider the sextet topologies of the sextet

{a, b, w, x, y, z} where a, b are siblings. It is clear that there are fifteen possible

sextet topologies with siblings a, b for a sextet {a, b, w, x, y, z} (see Fig. 2.4 for an

illustration)

Assume that s1, s2 are siblings in an evolutionary tree over S, and hence that

we have 15 sextet topologies for the sextet {s1, s2, s3, s4, s5, s6} ⊆ S. There are(
6
4

)
= 15 quartets with respect to the sextet {s1, s2, s3, s4, s5, s6}, yet

(
4
2

)
= 6 of

them have fixed quartet topologies since s1, s2 are siblings. For example, the quar-

tet topology of {s1, s2, s3, s4} must be [s1s2|s3s4]. Given two siblings s1, s2, the

{s1, s2}-reduced topology vector of sextet {s1, s2, s3, s4, s5, s6} is an ordered sequence

of types of the quartet topologies which are not fixed. For example, consider a sextet
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Figure 2.4: The fifteen possible sextet topologies for the sextet {a, b, w, x, y, z} with
siblings a, b.

{a, b, w, x, y, z} ⊆ S with siblings a, b such that [aw|xy], [ax|wz], [az|wy], [ay|xz],
[bw|xy], [bx|wz], [bz|wy], [by|xz], and [wx|yz] are in Q. The {a, b}-reduced topology

vector of {a, b, w, x, y, z} is (0, 1, 2, 1, 0, 1, 2, 1, 0). Let us denote by V2 the set of

{a, b}-reduced topology vectors of all possible sextet topologies of {a, b, w, x, y, z}.
Then we have

V2 =


(0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 0, 0, 1, 1, 0, 0, 0), (2, 2, 0, 0, 2, 2, 0, 0, 0),
(2, 2, 1, 1, 2, 2, 1, 1, 0), (2, 2, 2, 2, 2, 2, 2, 2, 0), (0, 0, 0, 1, 0, 0, 0, 1, 1),
(2, 0, 1, 1, 2, 0, 1, 1, 1), (1, 0, 2, 1, 1, 0, 2, 1, 1), (1, 1, 2, 0, 1, 1, 2, 0, 1),
(1, 2, 2, 2, 1, 2, 2, 2, 1), (0, 0, 0, 2, 0, 0, 0, 2, 2), (0, 2, 2, 2, 0, 2, 2, 2, 2),
(0, 1, 1, 2, 0, 1, 1, 2, 2), (1, 1, 1, 0, 1, 1, 1, 0, 2), (2, 1, 1, 1, 2, 1, 1, 1, 2).

 .

2.4.2 The two-siblings-determined minimum quartet inconsistency prob-
lem

We define the two-siblings-determined minimum quartet inconsistency problem as

follows. Given a complete quartet topology set Q over a taxon set S, a parameter k

and two taxa a, b ∈ S as the input, determine whether there exists an evolutionary

tree T on which a and b are siblings such that QT differs from Q in at most k quartet

topologies. We abbreviate this problem as 2SDMQI for the readers’ convenience.

We present a fixed-parameter algorithm called FPA-2SDMQI for the 2SDMQI

problem as follows. First, for every u, v ∈ S \ {a, b} such that [ab|uv] /∈ Q, we

change the quartet topology of {a, b, u, v} to be [ab|uv] and decrease k by 1. Note

that k ≤ 0 at Line 3 of Algorithm FPA-2SDMQI means that the algorithm has to
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change more than k quartet topologies to make a, b be siblings on an evolutionary

tree, so it just returns. Second, we build two lists Ca and V2, where Ca is a list

of unresolved quintets containing a while V2 is a list of {a, b}-reduced topologies

vectors of possible sextet topologies on which a, b are siblings. Then the algorithm

calls Algorithm Resolve as a subroutine to resolve all {a, b}-unresolved sextets by

changing at most k quartet topologies.

FPA-2SDMQI(Q, k, Ca, a, b)
/* Q: a complete set of quartet topologies; k: an integer parameter;
Cf : a list of unresolved quintets; a, b: two taxa. */

begin

1: if Ca is empty and k ≥ 0 then
2: return ACCEPT;
3: else if k ≤ 0 then
4: return
5: end if
6: for every two taxa u, v ∈ S \ {a, b} do
7: if k ≤ 0 then
8: return
9: else

10: change the quartet topology of {a, b, u, v} to be [ab|uv] if [ab|uv] /∈ Q;
11: update Ca and k ← k − 1;
12: end if
13: end for
14: Resolve(Q, k, Ca, a, b);
end

Algorithm 2.2: FPA-2SDMQI: a fixed-parameter algorithm for the 2SDMQI prob-
lem.

Algorithm Resolve works recursively. In each recursion, it arbitrarily selects an

unresolved quintet q. It is clear that q ∪ {b} is {a, b}-unresolved. Then Algorithm

Resolve tries to make q ∪ {b} be {a, b}-resolved by the procedure update2 according

to all the possible 15 sextet topologies of q ∪ {b} having a, b as siblings. Similar

to the procedure update in Sect. 2.3, we mark the quartets whose topologies are

changed, and if there is a branch node in the search tree such that some quartet,

which has been marked, must be changed in all the possible 15 branches to make

q ∪ {b} be {a, b}-resolved, the algorithm stops branching here and just returns (by

the same reason mentioned in Sect. 2.3.2).

Each {a, b}-reduced topology vector ν ∈ V2 represents a sextet topology of a
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sextet with siblings a, b. The procedure update2 changes quartet topologies accord-

ing to the quartet topologies that ν stands for, marks these quartets so that their

topologies will not be changed again, and updates the set Ca and the parameter k

to be C ′a and k′ respectively. We denote by Qν the set of quartet topologies changed

according to ν. The procedure update2 gets the updated C ′a by removing the newly

resolved quintets and adding the newly unresolved quintets from Ca, and gets the

updated parameter k′ by letting k′ = k− |Qν |. Similar to the analysis of Algorithm

FPA1-MQI, we can derive easily that Algorithm FPA-2SDMQI is correct.

Resolve(Q, k, Ca, a, b)
/* Q: a complete set of quartet topologies; k: an integer parameter;
Ca: a list of unresolved quintets; a, b: two taxa. */

begin

1: if Ca is empty and k ≥ 0 then
2: return ACCEPT;
3: else if k ≤ 0 then
4: return
5: end if
6: extract an unresolved quintet q from Ca;
7: if b ∈ q then
8: q← q ∪ {s}, for some arbitrary taxon s /∈ q;
9: else

10: q← q ∪ {b};
11: end if
12: for each ν ∈ V2 do
13: (Q′, C ′a, k′)← update2(Q, Ca,q, ν, k);
14: Resolve(Q′, k′, C ′a, a, b);
15: end for
end

Algorithm 2.3: Resolve: a subroutine of FPA-2SDMQI.

Time complexity of nonrecursive steps. Execution of Lines 6–13 in Algorithm

FPA-2SDMQI takes O(n2) time. Building Ca requires O(n4) time by Theorem 2.5.

Furthermore, it is obvious that building V2 costs only constant time.

Time complexity of the recursive structure of Algorithm FPA-2SDMQI.

The algorithm (i.e., Algorithm Resolve) again works as a depth-bounded search

tree. Each tree node has 15 branches and each branch corresponds to a sextet
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topology with siblings a, b. The root of the search tree is labeled by k. Let us

denote the size of the search tree rooted at a node labeled r to be the T2(r). For

each ν ∈ V2, we have T2(r) =
∑

ν∈V2
T2(r − |Qν |), that is, the branching vector

is (|Qν |)ν∈V2 . There are 39 = 19683 possible {a, b}-reduced topology vectors of a

sextet containing a, b. By ignoring {a, b}-reduced topology vectors in V2, there are

19668 possible branching vectors as well as 19668 branching numbers left. Actually,

there are only 141 different branching numbers among these 19668 ones (this can

be easily checked by a small program). Table 2.2 lists part of the branching vectors

and the corresponding branching numbers (refer to Appendix D for the 141 different

branching numbers). By examining these branching numbers, we obtain that the

branching number is between 2.0161 and 2.0162 in the worst case. Thus the size of

T2(k) is O(2.0162k).

Table 2.2: Some possible branching vectors and branching numbers of FPA-2SDMQI.

topology vector branching vector branching number
(0, 0, 1, 1, 1, 1, 2, 2, 0) (6, 6, 8, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 6) 1.58005. . .
(0, 0, 1, 0, 1, 2, 2, 1, 0) (5, 6, 6, 5, 6, 6, 6, 5, 6, 6, 7, 6, 7, 6, 7) 1.58142. . .

. . . . . . . . .
(0, 0, 0, 0, 0, 0, 0, 1, 0) (1, 5, 5, 7, 8, 2, 6, 6, 8, 9, 3, 7, 7, 8, 8) 2.00904. . .
(0, 0, 0, 0, 0, 0, 0, 0, 1) (1, 5, 5, 9, 9, 2, 6, 6, 6, 8, 3, 7, 7, 7, 9) 2.01615. . .

Similar to the procedure update in Sect. 2.3, the procedure update2 runs in O(n)

time. In addition, building the list Ca costs O(n4) time. Hence the following theorem

follows.

Theorem 2.7. There exists an O(2.0162kn+ n4) fixed-parameter algorithm for the

two-siblings-determined minimum quartet inconsistency problem.

2.4.3 Solving the parameterized MQI problem by determining two sib-
lings

Let T be an evolutionary tree on S such that Q is tree-like with T and Q differs from

QT at most k quartet topologies. Note that every evolutionary tree with |S| ≥ 4

leaves has at least two pairs of taxa which are siblings (Fig. 2.5 is an illustration

for an evolutionary tree with only two pairs of siblings). Hence there must be two



36 Chapter 2. Fixed-Parameter Algorithms for Minimum Quartet Inconsistency

taxa which are siblings in T . So we devise another fixed-parameter algorithm, say

FPA2-MQI, for the parameterized MQI problem.

Figure 2.5: An evolutionary tree with n ≥ 4 leaves, where s1, s2 and sn−1, sn are
two pairs of siblings.

First, the algorithm builds the list of unresolved quintets involving taxon s for

every s ∈ S and builds the list V2. Building these lists can be done in O(n5)

time. And then Algorithm FPA2-MQI runs Algorithm FPA-2SDMQI for every two

taxa, say a and b. Once there is an execution of Algorithm FPA-2SDMQI returning

ACCEPT, then Algorithm FPA2-MQI returns ACCEPT, too. If such an evolutionary

tree T exists, Algorithm FPA2-MQI must return ACCEPT. Thus the algorithm is

valid. Therefore, by Theorem 2.7 we have an O(2.0162kn3 + n5) algorithm for the

parameterized MQI problem. Here we summarize the above result into the following

concluding theorem.

FPA2-MQI(Q, k)
/* Q: a complete set of quartet topologies; k: an integer parameter. */
begin

1: for every taxon s ∈ S do
2: build the list Cs;
3: end for
4: k∗ ← k;
5: for every two distinct taxa a, b ∈ S do
6: FPA-2SDMQI(Q, k∗, Ca, a, b);
7: restoring Q and Ca, and k ← k∗;
8: end for

end

Algorithm 2.4: FPA2-MQI: an O(2.0162kn3 +n5) algorithm for the parameterized
MQI problem.

Theorem 2.8. There exists an O(2.0162kn3 +n5) fixed-parameter algorithm for the

parameterized minimum quartet inconsistency problem.
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2.5 An O∗((1 + ε)k) Fixed-Parameter Algorithm

2.5.1 The algorithm

At the beginning of this section, let us consider some additional preliminaries. Let

T denote an evolutionary tree on S such that QT differs from Q in at most k

quartet topologies. For an integer m ≥ 2, we say that taxa a1, . . . , am are adjacent

if there exists an edge e = (w, v) on T such that cutting e will produce a bipartition

({a1, . . . , am}, S \ {a1, . . . , am}) of S. In Fig. 2.6, cutting the edge e will derive four

adjacent taxa a1, a2, a3, and a4. In addition, after e = (w, v) is cut, two binary trees,

which are rooted at w and v respectively, will be produced. Note that two taxa on T

are adjacent if and only if they are siblings on T .

Lemma 2.3. Given an evolutionary tree T and an integer 2 ≤ ω ≤ n/2, there exists

a set of m adjacent taxa as leaves on T , where ω ≤ m ≤ 2ω − 2.

Proof. If there exists ω adjacent taxa on T , the lemma holds. Otherwise, assume

that there is no subtree of T which has exactly m taxa as leaves. Let T (s) denote the

subtree of T which is rooted at a tree node s. There must exist some edge e∗ = (w, v)

such that cutting e∗ will produce a bipartition (A, S \ A), where |A| > ω, T (v) has

A as its leaf set and two subtrees of T (v) have both less than ω taxa as their leaves

(otherwise, assume that t is one child of v such that T (t) has more than ω taxa

as leaves. Then we can recursively find a subtree of T (t) rooted at some tree node

x descendant of t until both two subtrees of T (x) have less than ω taxa as their

leaves). Assume that v has two children u and t, and T (u) and T (t) have p and

p′ taxa as leaves respectively, where p, p′ < ω. Since |A| > ω, we have p + p′ > ω.

Furthermore, p + p′ ≤ 2ω − 2 since p and p′ are both less than ω. So we have

ω + 1 ≤ p+ p′ ≤ 2ω − 2. Therefore the lemma follows. 2

Recall that Algorithm FPA2-MQI copes with siblings on an evolutionary tree

first. In this section, we extend the idea of Algorithm FPA2-MQI to consider m ≥ 3

adjacent taxa. We obtain another fixed-parameter algorithm called FPA3-MQI with

two subroutines Algorithm MAKE-ADJ and Algorithm ADJ-Resolve. Assume that

Am = {a1, . . . , am} is a set of adjacent taxa on T . In the following we introduce the
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Figure 2.6: An evolutionary tree with adjacent taxa a1, a2, a3, a4.

main concepts of Algorithm FPA3-MQI, while the correctness will be clarified at the

end of this subsection.

(2, 2)-cleaning. For every two taxa ai, aj ∈ Am and every two taxa u, v ∈ S \Am,

we modify the topology of {ai, aj, u, v} to be [aiaj|uv]. We call this part of the

algorithm (2, 2)-cleaning.

(3, 1)-cleaning. Assume the parameter is k′. For ah, ai, aj ∈ Am and s ∈ S \ Am,

without loss of generality we denote the type of quartet topology [ahai|ajs] by 0,

[ahaj|ais] by 1, and [ahs|aiaj] by 2. We construct a set of all possible evolutionary

trees Tm+1 on the taxa in Am ∪ {x}, where x is an arbitrary taxon in S \ Am, such

that each T ′ ∈ Tm+1 has at most k′ different induced quartet topologies from Q.

Afterwards, for each T ′ ∈ Tm+1, we change the type of topology of every quartet

{ah, ai, aj, s} into the same type of topology as {ah, ai, aj, x} has on T ′. We call this

part of the algorithm (3, 1)-cleaning.

(1, 3)-cleaning. Without loss of generality, we denote the type of quartet topology

[aiw|xy] by 0, [aix|wy] by 1, and [aiy|wx] by 2 for ai ∈ Am and w, x, y ∈ S \Am. We

build a list Bm of sets of three taxa {w, x, y} ⊆ S \ Am such that the topologies of

{ai, w, x, y} are not all the same for i = 1, . . . ,m. Then we make all these quartet

topologies be the same type by Algorithm MAKE-ADJ, which recursively branches

on three possible types of these quartet topologies. We call this part of the algorithm

(1, 3)-cleaning.
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FPA3-MQI(Q, k, Ca1 ,m)
/* Q: a complete set of quartet topologies; k: an integer parameter;
Ca1 : a list of unresolved quintets; m: an arbitrary integer. */

begin

1: Q∗ ← Q; C∗a1
← Ca1 ; k

∗ ← k;
2: for every set of m taxa Am = {a1, . . . , am} ⊆ S do
3: for every two taxa ai, aj ∈ Am and every two taxa u, v ∈ S \ Am do
4: if k∗ ≤ 0 then
5: return
6: else
7: change the quartet topology of {ai, aj, u, v} in Q∗ to be [aiaj|uv] if

[aiaj|uv] /∈ Q∗, and then update C∗a1
and k∗ ← k∗ − 1;

8: end if
9: end for

10: build a set of all possible evolutionary trees Tm+1 such that each T ′ ∈ Tm+1

is an evolutionary tree on Am ∪ {x}, where x is an arbitrary taxon in S \Am

and |QT ′ \ Q∗| ≤ k∗;
11: build a list Bm of sets of three taxa w, x, y ∈ S \ Am such that topologies of

{ai, w, x, y} in Q∗ are not all the same for all 1 ≤ i ≤ m;
12: Q∗∗ ← Q∗; C∗∗a1

← C∗a1
; k∗∗ ← k∗;

13: if Tm+1 = ∅ then
14: return
15: else
16: for each T ′ ∈ Tm+1 do
17: k∗∗ ← k∗∗ − |QT ′ \Q∗∗|;
18: change the quartet topologies in Q∗∗ over Am to those in QT ′ ;
19: for every taxon s ∈ S \ Am and every three taxa ah, ai, aj ∈ Am, change

the topology of {ah, ai, aj, s} to the one of the same type as {ah, ai, aj, x}
has; update C∗∗a1

;
20: if MAKE-ADJ(Q∗∗, C∗∗a1

, k∗∗) returns ACCEPT then
21: return ACCEPT;
22: else
23: restore (Q∗∗, C∗∗a1

) to (Q∗, C∗a1
), and k∗∗ ← k∗;

24: end if
25: end for
26: end if
27: restore (Q∗, C∗a1

) to (Q, Ca1), delete Bm, and k∗ ← k;
28: end for
end

Algorithm 2.5: FPA3-MQI: an O∗((1 + ε)k) algorithm for the parameterized MQI
problem.
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MAKE-ADJ(Q, Ca1 , k)
/* Q: a complete set of quartet topologies; Ca1 : a list of unresolved quintets;
k: an integer parameter. */

begin

1: if Ca1 is empty and k ≥ 0 then
2: return ACCEPT;
3: else if k ≤ 0 then
4: return
5: end if
6: while Bm 6= ∅ do
7: extract {w, x, y} from Bm;
8: for each type i ∈ {0, 1, 2} do
9: change all the topologies of {a1, w, x, y}, . . . , {am, w, x, y} to topologies of

type i; let Q′, C ′a1
, k′ be the changed Q, Ca1 , k respectively;

10: MAKE-ADJ(Q′, C ′a1
, k′);

11: end for
12: end while
13: if ADJ-Resolve(Q, k, Ca1) returns ACCEPT then
14: return ACCEPT;
15: end if
end

Algorithm 2.6: MAKE-ADJ: a subroutine of FPA3-MQI.

Quintet cleaning. After (2, 2)-cleaning, (3, 1)-cleaning and (1, 3)-cleaning, as-

sume that the parameter is k′′ for the moment. We try to resolve all the unresolved

quintets in Ca1 through Algorithm ADJ-Resolve, which changes at most k′′ quartet

topologies in Q. We call this part of the algorithm quintet cleaning.

Lemma 2.4. Assume that Am = {a1, . . . , am} and the list of unresolved quintet is

Ca1, then after (2, 2)-cleaning, (3, 1)-cleaning, and (1, 3)-cleaning, q∩Am = {a1} for

every q ∈ Ca1.

Proof. We prove this lemma by contradiction as follows. Assume that Am =

{a1, . . . , am}, Ca1 is the list of unresolved quintet considered for the moment, and

(2, 2)-cleaning, (3, 1)-cleaning, and (1, 3)-cleaning are done. For an unresolved quin-

tet q ∈ Ca1 , we consider four cases for the proof: |(q ∩ Am) \ {a1}| = i, where

i = 1, 2, 3, 4. First, without loss of generality, assume that q = {a1, a2, w, x, y},
where a1, a2 ∈ Am and w, x, y ∈ S \ Am. In this quintet, the quartets {a1, a2, w, x},
{a1, a2, w, y}, and {a1, a2, x, y} have topologies [a1a2|wx], [a1a2|wy], and [a1a2|xy]
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respectively, due to (2, 2)-cleaning of the Algorithm FPA3-MQI. By (1, 3)-cleaning

of the Algorithm, the quartets {a1, w, x, y} and {a2, w, x, y} have the same type of

topologies. Let us consider Fig. 2.7 for an illustration. If [a1w|xy] ∈ Q, then the

quintet has the topology in (a) of Fig. 2.7. Similarly, we can derive the other two

quintet topologies in (b) and (c) of Fig. 2.7, so the quintet {a1, a2, w, x, y} must be

resolved. Then a contradiction occurs.

ADJ-Resolve(Q, k, Ca1)
/* Q: a complete set of quartet topologies; k: an integer parameter;
Ca1 : a list of unresolved quintets. */

begin

1: if Ca1 is empty and k ≥ 0 then
2: return ACCEPT;
3: else if k ≤ 0 then
4: return
5: end if
6: extract an unresolved quintet q from Ca1 ;
7: for each µ ∈ V do
8: (Q′, C ′a1

, k′)← updatem(Q, Ca1 ,q, µ, k);
9: ADJ-Resolve(Q′, k′, C ′a1

);
10: end for
end

Algorithm 2.7: ADJ-Resolve: a subroutine of MAKE-ADJ.

Figure 2.7: Possible topologies for the quintet {a1, a2, w, x, y}.

Second, without loss of generality we assume that q = {a1, a2, a3, x, y}, where

a1, a2, a3 ∈ Am and x, y ∈ S \ Am. In this quintet, the quartets {a1, a2, x, y},
{a1, a3, x, y}, and {a2, a3, x, y} have topologies [a1a2|xy], [a1a3|xy], and [a2a3|xy]
respectively, due to (2, 2)-cleaning of the algorithm. Thus there are three possi-

ble quintet topologies for this quintet. Recall that {a1, a2, a3, x} and {a1, a2, a3, y}
have the same type of quartet topologies due to (3, 1)-cleaning of the algorithm. If

[a1a2|a3x] ∈ Q, then [a1a2|a3y] ∈ Q and hence we have a topology for the quintet in
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(a) of Fig. 2.8. Similarly for the other possible quartet topologies of {a1, a2, a3, x},
we obtain the other two quintet topologies in (b) and (c) of Fig. 2.8. So the quintet

{a1, a2, a3, x, y} must be also resolved. Then a contradiction occurs.

Figure 2.8: Possible topologies for the quintet {a1, a2, a3, x, y}.

Third, without loss of generality we assume q = {a1, a2, a3, a4, s}, where a1, a2, a3,

a4 ∈ Am and s ∈ S \ Am. Recall that for some fixed taxa x ∈ S \ Am, the tree

topology of Am∪{x} is determined because of (3, 1)-cleaning of the algorithm. More-

over, all the quartets in {a1, a2, a3, a4, s} have the same type of quartet topologies

as {a1, a2, a3, a4, x} have. So the quintet {a1, a2, a3, a4, s} must be resolved. Then

a contradiction occurs again. As to the fourth case of the proof, i.e., the quintets

involving five taxa in Am, their topologies are also determined by (3, 1)-cleaning of

the algorithm, so they must be resolved. Therefore, we have shown that as long as

(2, 2)-cleaning, (3, 1)-cleaning, and (1, 3)-cleaning of the algorithm are done, there

is no unresolved quintet in Ca1 containing taxa in Am except a1. Hence the lemma

follows. 2

Note that there do not always exist ω adjacent taxa in an evolutionary tree for

an arbitrary integer ω. By Lemma 2.3, we know there must be m taxa which are

adjacent in an evolutionary tree, where ω ≤ m ≤ 2ω− 2. Assume that we are given

an integer ω as an additional input. Then to solve the parameterized MQI problem,

first we build a list of unresolved quintet involving s for each s ∈ S, then we run

Algorithm FPA3-MQI for every m ∈ {ω, . . . , 2ω − 2}.
By Lemma 2.4 we know that each unresolved quintet q ∈ Ca1 contains a1 and

the other four taxa from S \Am. The procedure updatem is similar to the procedure

update in Sect. 2.3. Yet if a quartet topology of {a1, w, x, y}, where w, x, y ∈ q\ a1, is

changed, the procedure not only changes quartet topologies according to µ, but also

changes the topologies of {a2, w, x, y}, {a3, w, x, y}, . . . , {am, w, x, y} together into

the same type as {a1, w, x, y} has. Let d denote the number of quartet topologies
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changed by updatem. Then the procedure updates the set Ca1 and the parameter k

to be C ′a1
and k′ respectively, where k′ is k − d.

Correctness.

Recall that we use T to denote an evolutionary tree on S such that QT differs

from Q in at most k quartet topologies. Given an arbitrary integer 2 ≤ ω ≤ n/2,

there exists m adjacent taxa in T , where ω ≤ m ≤ 2ω − 2. So we can assume that

there is a set of adjacent taxa Am = {a1, . . . , am} ⊆ S on T . Since the taxa in Am are

adjacent, the path connecting every two taxa ai, aj ∈ Am and the path connecting

two taxa u, v ∈ S\Am will be disjoint and hence the topology of {ai, aj, u, v}must be

[aiaj|uv]. So (2, 2)-cleaning is valid. In addition, once the topology of {ah, ai, aj, x}
is fixed for ah, ai, aj ∈ Am and some x ∈ S \ Am, the quartets {ah, ai, aj, s} must

have the same type of quartet topologies as {ah, ai, aj, x} has one T . Hence (3, 1)-

cleaning is valid. Furthermore, the path structure connecting ai, w, x, y on T must

be the same for all i ∈ {1, . . . ,m} and every three taxa w, x, y ∈ S \ Am, so (1, 3)-

cleaning is valid. After (2, 2)-cleaning, (3, 1)-cleaning and (1, 3)-cleaning, there are

only unresolved quintets involving a1 by Lemma 2.4. Thus Algorithm ADJ-Resolve

together with the procedure updatem is valid for quintet cleaning. The number of

unresolved quintets in Ca1 can be always decreased untilQ is tree-like. The algorithm

returns ACCEPT only when Ca1 is empty and no more than k quartet topologies are

changed. Therefore by Theorem 2.4 the Algorithm is correct.

2.5.2 Time complexity

Nonrecursive steps.

Building and updating the lists of unresolved quintets. It is clear that

building Cs for every s ∈ S costs O(n5) time. For a fixed Am = {a1, a2, . . . , am}, the

algorithm considers only Ca1 . Whenever a quartet topology is changed, only O(n)

quintets will be examined in order to update Ca1 , so updating the list Ca1 costs O(n)

time for each time.

(2, 2)-cleaning and (3, 1)-cleaning. There are at most O(
(

m
2

)
·
(

n−2
2

)
) = O(m2n2)

quartets examined by (2, 2)-cleaning, so it costs O(m2n3) time for (2, 2)-cleaning (the
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additional n factor here as well as the rest analysis in this paragraph comes from

updating a list of unresolved quintets). As to (3, 1)-cleaning, constructing Tm+1

costs O(h(m)) time, where h(m) depends on m only. After Tm+1 is constructed, for

each T ′ ∈ Tm+1, first the algorithm spends O(
(

m
4

)
· n) = O(m4n) time to change

the quartet topologies in Q over Am to those in QT ′ . Second, the algorithm spends

O(
(

m
3

)
· (n−m− 1) · n) = O(m3n2) time to make every quartet {ah, ai, aj, s} have

the same topology as {ah, ai, aj, x} has, where ah, ai, aj ∈ Am, s, x ∈ S \ Am, while

x is a leaf on T ′.

The procedure updatem. Assume that the list of unresolved quintets is Ca1 for

the moment. It is clear that making an unresolved quintet in Ca1 resolved and

then updating Ca1 cost O(n) time. Moreover, as long as the topology of a quartet

{a1, w, x, y}, where w, x, y ∈ S\Am, is changed, the procedure changes the topologies

of {ai, w, x, y} for i = 2, 3, . . . ,m. Thus the procedure updatem runs in O(mn) time.

Recursive steps.

(1, 3)-cleaning by the recursive algorithm MAKE-ADJ. The preprocessing

for (1, 3)-cleaning builds a list Bm (Line 11 of Algorithm FPA3-MQI), which costs

O(
(

n−m
3

)
m) = O(mn3) time. Then let us consider the quartets {a1, w, x, y}, . . .,

{am, w, x, y}, where w, x, y ∈ S\Am. Without loss of generality, we denote the quar-

tet topologies [aiw|xy], [aix|wy], and [aiy|wx] to be type 0, 1, and 2 respectively, for

all i = 1, . . . ,m. Letmj be the number of quartets in {{a1, w, x, y}, . . . , {am, w, x, y}}
which have topologies of type j. It is clear that m0 +m1 +m2 = m. (1, 3)-cleaning

branches on these three types to make every quartet {ai, w, x, y}, where ai ∈ Am,

have the same type of topology. Then (1, 3)-cleaning of the algorithm has a recur-

rence of T (k) = T (k−(m1+m2))+T (k−(m0+m2))+T (k−(m0+m1)). So we have

a branching vector (m1 +m2,m0 +m2,m0 +m1). Let r0 = m1 +m2, r1 = m1 +m2

and r2 = m0 + m1. Since the order of a branching vector does not change its

branching number, without loss of generality we assume that 0 < r0 ≤ r1 ≤ r2 ≤ m.

Since m0 +m1 +m2 = m, we have r0 + r1 + r2 = 2m and r1, r2 ≥ m/2. The next

lemma shows that the size of the depth-bounded search tree of (1, 3)-cleaning is

O((1 + 5m−1/4)k). Moreover, it can be proved to be O((1 + 2m−1/2)k) if m ≥ 19.
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Lemma 2.5. Given a branching vector (r0, r1, r2), where 0 < r0 ≤ r1 ≤ r2 ≤ m,

r0+r1+r2 = 2m and r1, r2 ≥ m/2, then we have a branching number α < 1+5m−1/4.

Furthermore, α < 1 + 2m−1/2 if m ≥ 19.

Proof. The reflected characteristic polynomial of (r0, r1, r2) is 1 − zr0 − zr1 − zr2 .

Let f(z) = 1− zr0 − zr1 − zr2 . We have f(0) = 1 and f(1) = −2, so there is a root

of f(z) in [0, 1]. The derivative f ′(z) = −r0zr0−1− r1zr1−1− r2zr2−1. We can derive

that f(z) is monotonically decreasing in [0, 1] since f ′(z) ≤ 0 for 0 ≤ z ≤ 1. Let us

define g(z) = 1− z − 2zm/2. Similarly, g(z) has a root in [0, 1] and is monotonically

decreasing in [0, 1]. Since zr0 ≤ z and zr1 , zr2 ≤ zm/2, we have g(z) ≤ f(z). We can

then derive that there is a root of g(z) which is smaller than the root of f(z).

Let 0 ≤ z0 ≤ 1 be a root of g(z), i.e., g(z0) = 0. Let z1 = 1 − m−1/4 and

z2 = 1−m−1/2, so 0 ≤ z1, z2 ≤ 1. Then we have g(z1) = m−1/4− 2(1−m−1/4)m/2 >

m−1/4 − 2e−m3/4/2, and g(z2) = m−1/2 − 2(1 −m−1/2)m/2 > m−1/2 − 2e−m1/2/2. So

g(z1) > 0 when m ≥ 3 and g(z2) > 0 when m ≥ 19. If g(z1) > 0, then z0 must

be bigger than z1 because g(z) is monotonically decreasing in [0, 1]. So we have

z0 > 1−m−1/4 for m ≥ 3. Similarly, we have z0 > 1−m−1/2 if m ≥ 19. Therefore,

the branching number α is smaller than 1/(1−m−1/4) < 1 + 5m−1/4. Furthermore,

if m ≥ 19, α is smaller than 1/(1 − m−1/2) < 1 + 2m−1/2. The lemma is then

proved. 2

Quintet cleaning by the recursive algorithm ADJ-Resolve. Assume that the

list of unresolved quintets is Ca1 . Let q = {a1, w, x, y, z} be an unresolved quintet

in Ca1 , and let vq = (vq(1),vq(2),vq(3),vq(4),vq(5)) denote the topology vec-

tor of q, where vq(1), vq(2), vq(3), vq(4), and vq(5) are the types of topologies

of {a1, w, x, y}, {a1, w, x, z}, {a1, w, y, z}, {a1, x, y, z}, and {w, x, y, z} respectively,

with respect to Q. Recall that V = {µ1, . . . , µ15} is a set of topology vectors of 15

possible quintet topologies for a quintet, such that each µi = (µi(1), µi(2), µi(3), µi(4),

µi(5)) ∈ V stands for the ith topology vector in V . If q is resolved, there exists ex-

actly one µi ∈ V such that vq(j) = µi(j) for each 1 ≤ j ≤ 5. Let vq(j) ⊕ µi(j)

denote whether vq(j) and µi(j) are different. That is, for 1 ≤ j ≤ 5 we denote

vq(j)⊕ µi(j) = 1 if vq(j) 6= µi(j) and vq(j)⊕ µi(j) = 0 otherwise.

For an unresolved quintet q, let b(q) denote the branching vector of the recur-
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rence of the quintet cleaning for q. By the descriptions of quintet cleaning and

the procedure updatem of the algorithm, we derive that b(q) = (b1(q), . . . ,b15(q)),

where bi(q) = m
(∑4

j=1 vq(j)⊕ µi(j)
)

+ vq(5) ⊕ µi(5). Note that bi(q) 6= 0 since

q is unresolved. Let us consider the following lemma.

Lemma 2.6. Given an unresolved quintet q in Ca1. If bi(q) = 1 for some 1 ≤ i ≤
15, then bh(q) = cm for each 1 ≤ h ≤ 15 except i, where 1 ≤ c ≤ 4.

Proof. If bi(q) = 1 for some 1 ≤ i ≤ 15, then we have vq(j) ⊕ µi(j) = 0 for 1 ≤
j ≤ 4 and vq(5)⊕µi(5) = 1. By observing the topology vectors in V , we obtain that

(µi′(1), µi′(2), µi′(3), µi′(4)) and (µi′′(1), µi′′(2), µi′′(3), µi′′(4)) are different, for every

two µi′ , µi′′ ∈ V . Thus for every h ∈ {1, . . . ,m}\{i}, we have
∑4

j=1 vq(j)⊕µh(j) = c,

where 1 ≤ c ≤ 4. Therefore the lemma follows. 2

Let β denote the branching number corresponding to b(q). Since changing the

order of the branching vector does not affect its branching number, without loss

of generality we assume that b(q) = (b1(q), . . . ,b15(q)), where b1(q) ≤ b2(q) ≤
. . . ,b15(q). By Lemma 2.6 and Theorem 2.2, we obtain that the branching number β

is no bigger than that of (1,m1,m2, . . . ,m14), where m1 = m2 = . . . = m14 =

m. Thus the size of the depth-bounded search tree of Algorithm ADJ-Resolve (i.e.,

quintet cleaning) is O(γk), where γ is the branching number of (1,m1,m2, . . . ,m14).

Lemma 2.7 shows that γ is less than 1 + 12m−1/12. Furthermore, it can be proved

to be O((1 + 2m−1/2)k) if m ≥ 17.

Lemma 2.7. Given a branching vector (1,m1,m2, . . . ,m14), where mi = m for

each 1 ≤ i ≤ 14, then we have a branching number γ < 1 + 12m−1/12. Furthermore,

γ < 1 + 2m−1/2 if m ≥ 17.

Proof. The reflected characteristic polynomial of (1,m1,m2, . . . ,m14) is 1 − z −
14zm. Let f(z) = 1 − z − 14zm. We have f(0) = 1 and f(1) = −1, so there

is a root of f(z) in [0, 1]. The derivative of f(z) is f ′(z) = −1 − 14mzm−1, so

it is obvious that f(z) is monotonically decreasing. Let 0 ≤ z0 ≤ 1 be the root

of f(z). Let z1 = 1 − m−1/12 and z2 = 1 − m−1/2, so 0 ≤ z1, z2 ≤ 1. Then

we have f(z1) = m−1/12 − 14(1 − m−1/12)m > m−1/12 − 14e−m11/12
, and f(z2) =

m−1/2 − 14(1 − m−1/2)m > m−1/2 − 14e−m1/2
. Hence f(z1) ≥ 0 for m ≥ 3 and
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f(z2) ≥ 0 for m ≥ 17. Note that z0 ≥ z1 and z0 ≥ z2 if f(z1) > 0 and f(z2) > 0

since f(z) is monotonically decreasing in [0, 1]. Then we have z0 > 1 − m−1/12

for m ≥ 3 and z0 > 1 − m−1/2 for m ≥ 17. Therefore, the branching number γ

is smaller than 1/(1 − m−1/12) < 1 + 12m−1/12. Furthermore, γ is smaller than

1/(1−m−1/2) < 1 + 2m−1/2 if m ≥ 17. 2

Overall time complexity.

Since each leaf node of the depth-bounded search tree of (1, 3)-cleaning is a root

node of the depth-bounded search tree of quintet cleaning, by the analysis in the

previous subsection, we obtain that the size of the depth-bounded search tree the

algorithm in the worst case is O((1 + 2m−1/2)k), for large enough m ≥ 19. When

a set of m adjacent taxa Am is given, since it costs O(mn) time at each node in

the search tree, the time complexity for the search tree is O((1 + 2m−1/2)kmn).

Assume that 1 + 2m−1/2 ≤ 1 + ε for some constant ε > 0. We obtain m ≥ (2/ε)2.

Thus after the lists of unresolved quintets {Cs | s ∈ S} are built, we run Algorithm

FPA3-MQI for every (2/ε)2 ≤ m ≤ 2(2/ε)2 − 2 and every set of m taxa in S. Let

ω denote (2/ε)2. By the analysis in the previous subsection, we obtain the overall

time complexity of the algorithm as follows.

O

(
n5 +

2ω−2∑
m=ω

(
n

m

)(
m2n3 +mn3 + h(m) ·

(
m4n+m3n2 + (1 + ε)kmn

)))
= O

(
n5+(ω − 1)n2ω−2

(
4ω2n3+2ωn3+h(2ω) · (16ω4n+8ω3n2+2(1 + ε)kωn)

))
= O((1 + ε)kn2ω−1 + n2ω+1 + n5)

= O((1 + ε)kn8/ε2−1 + n8/ε2+1 + n5).

Consider the first line of above deduction. Recall that the term n5 comes from

building Cs for s ∈ S. The summation and the term
(

n
m

)
arise due to exhaustively

taking all the possibilities of Am (i.e., the set of m adjacent taxa) into consid-

eration. The term m2n3 comes from (2, 2)-cleaning. The term mn3 comes from

the preprocessing of (1, 3)-cleaning and quintet-cleaning. The term h(m) arises

from the construction of all possible evolutionary trees on Am ∪ {x}, where x is a

taxon not in Am. The terms m4n and m3n2 arise from (3, 1)-cleaning. The rest



48 Chapter 2. Fixed-Parameter Algorithms for Minimum Quartet Inconsistency

term (1 + ε)kmn in the first line is derived from the analysis of the size of depth-

bounded search tree of (1, 3)-cleaning and quintet-cleaning. The second equality

holds since m < 2ω− 2 < 2ω and
(

n
m

)
= O(nm). Therefore we have an O∗((1 + ε)k)

fixed-parameter algorithm for the parameterized MQI problem. Hence the following

concluding theorem follows.

Theorem 2.9. There exists an O∗((1 + ε)k) time fixed-parameter algorithm for the

parameterized minimum quartet inconsistency problem, where ε > 0 is an arbitrarily

small constant and the degree of the involved polynomial in the running time has

dependence on ε.



Chapter 3

A Property Tester for Tree-Likeness of Quar-
tet Topologies

As shown in the previous chapter, there are efficient fixed-parameter algorithms for

the parameterized MQI problem. They are believed to work well when the parameter

k is small. However, when k gets much bigger, our fixed-parameter algorithms are no

more efficient. In particular, say k = c ·
(

n
4

)
, by applying any of our fixed-parameter

algorithms for the parameterized MQI problem we can only derive that the problem

can be solved in 2O(n4) time. This leads us to consider the notion of property testing

for this circumstance.

In this chapter, we focus on the task of testing whether the a complete set of

quartet topologies Q is tree-like. Firstly, in Sect. 3.1 we define the setting of property

testing for this property. In Sect. 3.2 we prove that there exists a complete set of

quartet topologies Q that has at least Ω(n4) quartet errors, hence it is possible for

Q to be ε-far from being tree-like. Then, in Sect. 3.3, we present a non-adaptive

O(n3/ε) property tester with one-sided error for testing if a complete Q is tree-like.

Such a property tester, sayM, fulfills the following conditions:

i. M answers “yes” with probability at least 2/3 if Q is tree-like;

ii. M answers “no” with probability at least 2/3 if Q is ε-far from being tree-like

(i.e., Q is not tree-like unless at least ε
(

n
4

)
quartet topologies are changed).

We end this chapter with discussions for the case that Q is incomplete. We give some

convincing evidences that our property tester seems unlikely to work for incomplete

Q’s due to the reason that local consistency of quintets does not guarantee the global

consistency of the whole set of quartet topologies.

49
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3.1 Preliminaries

Assume that Q is complete and |S| ≥ 5. We regard Q as a function fQ : {{a, b, c, d} |
a, b, c, d ∈ S} 7→ {0, 1, 2}, where fQ({a, b, c, d}) is equal to the type of the topology

of {a, b, c, d} in Q. The domain size of the function fQ is then equal to
(

n
4

)
. By

the above settings, a query of fQ here retrieves the topology of a quartet in Q.

We utilize an array of
(

n
4

)
entries, where each entry stores the type of the topology

of a quartet over S. For two complete sets of quartet topologies Q1 and Q2, let

δ(Q1, Q2) = |Q1 \ Q2|/
(

n
4

)
denote the fraction of the

(
n
4

)
quartets where Q1 differs

from Q2. We define Ptree to be the set of all the functions fQ∗ where Q∗ is tree-like.

Define that ∆(Q,Ptree) = minQ∗∈Ptree δ(Q,Q
∗). Clearly, Q is tree-like if and only if

∆(Q,Ptree) = 0. We say that Q is ε-far from being tree-like if the error number of Q

is at least ε
(

n
4

)
, that is, ∆(Q,Ptree) ≥ ε.

Consider quintet topology (v) and quintet topology (x) in Fig. 2.3. Quintet

topology (v) induces five quartet topologies [ab|cd], [ab|ce], [ab|de],[ac|de], and [bc|de],
while quintet topology (x) induces [ac|bd], [ac|be], [ab|de], [ac|de], and [bc|de], so

there are two quartets (i.e., {a, b, c, d} and {a, b, c, e}) whose topologies induced by

quintet topology (v) are different from those induced by quintet topology (x). By

exhaustively observing the induced quartet topologies of each quintet topology in

Fig 2.3, we can easily obtain the following fact.

Fact 3.1. Any two topologies of a quintet differ in at least two induced quartet

topologies.

3.2 Existence of an Instance Far from Being Tree-Like

In this section, we show that there exists a complete set of quartet topologies that

is at least 0.04-far from being tree-like, that is, its error number is at least 0.04
(

n
4

)
.

The sketch of the proof is as follows. First, we show that there exists a set of γ
(

n
4

)
quintets U over S for some constant γ, such that every two quintets of U do not

share any quartet. We present two ways for constructing such a set U and show that

γ ≥ 0.04. Second, by considering an arbitrary tree-like setQ∗, for each quintet u ∈ U
with respect to Q∗, we change one quartet topology of the subset quartets of u to

make u unresolved. We show that the error number of the resulting set of quartet
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topologies is at least 0.04
(

n
4

)
.

A simple construction of U . Let us label the taxa in S by S = {s1, s2, . . . , sn}.
Let U denote the set {{sn/5+i1 , s2n/5+i2 , s3n/5+i3 , s4n/5+i4 , si1+i2+i3+i4} | 1 ≤ i1, i2, i3, i4

≤ n/20}. Clearly, the five taxa of every element of U are distinct, U is indeed a

set of quintets over S. Moreover, each 4-tuple (i1, i2, i3, i4) corresponds to a quintet

in U , so the size of U is (n/20)4 = n4/160000 > 0.0015
(

n
4

)
.

Lemma 3.1. Any two quintets in U do not share any quartet.

Proof. Assume the contrary that two quintets u,v in U share a quartet. Let u =

{sn/5+i1 , s2n/5+i2 , s3n/5+i3 , s4n/5+i4 , si1+i2+i3+i4} and v = {sn/5+j1 , s2n/5+j2 , s3n/5+j3 ,

s4n/5+j4 , sj1+j2+j3+j4} respectively, where 1 ≤ i1, . . . , i4, j1, . . . , j4 ≤ n/20. If u and

v share the quartet {sn/5+i1 , s2n/5+i2 , s3n/5+i3 , s4n/5+i4}, that is, i1 = j2, i2 = j2, i3 =

j3, i4 = j4, we have i1 + i2 + i3 + i4 = j1 + j2 + j3 + j4. Then u and v are actually the

same quintets, so a contradiction occurs. As for the other possibilities that u and

v share a quartet, without loss of generality, we assume that they share the quartet

{sn/5+i1 , s2n/5+i2 , s3n/5+i3 , si1+i2+i3+i4}. We obtain that i1 = j1, i2 = j2, i3 = j3 and

i1 + i2 + i3 + i4 = j1 + j2 + j3 + j4, then we also have i4 = j4. Hence u and v

are the same quintet, and then another contradiction occurs. Thus, the lemma is

proved. 2

A construction of U by a graph-theoretical approach. Next, we show by

Brooks’ Theorem [35] that the size of the desired set of quintets U is at least 0.04
(

n
4

)
,

which improves the lower bound on the size of U in the previous simple construction.

Lemma 3.2. There exists a set of quintets U over S which has size of at least

0.04
(

n
4

)
such that every two of them do not share a quartet.

Proof. Let G(V,E) be a graph such that vertices in V represent all quintets over

the taxon set S, where two vertices u, v are adjacent if their corresponding quintets

share a quartet. Then the degree of each vertex of G is bounded by 5(n − 5). By

Brooks’ Theorem [35], the chromatic number of G is at most 5(n − 5). Therefore

by giving a proper coloring for G, we can derive that at least one color class (i.e., a
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set of monochromatic vertices of G) has size at least

(
n
5

)
5(n− 5)

=
n(n− 1)(n− 2)(n− 3)(n− 4)

5!(5(n− 5))
>
n(n− 1)(n− 2)(n− 3)

25 · 4!
= 0.04

(
n

4

)
.

As each color class is an independent set, their corresponding quintets pairwise do

not share a quartet. The lemma is proved. 2

Theorem 3.1. There exists a set of quartet topologies Q which is at least 0.04-far

from being tree-like.

Proof. Let Q∗ be a tree-like set of quartet topologies over the taxon set S. We know

that there exists a set of quintets U over S of size at least 0.04
(

n
4

)
such that every

two quintets in U do not share any quartet (by Lemma 3.2). Then, for each quintet

in U , we arbitrarily pick one of its subset quartets and change its corresponding

topology in Q∗ to one of the other two possible topologies arbitrarily. Let Q denote

the resulting set of quartet topologies. Now, every quintet in U with respect to Q

has exactly one subset quartet whose topology is changed. Since one has to change

at least two quartet topologies over a resolved quintet to make this quintet resolved

again (by Fact 3.1), every quintet in U is unresolved with respect to Q. Furthermore,

for each of these unresolved quintets in U , we have to change at least one quartet

topology of its subset quartets to make it resolved (otherwise, the unresolved quintet

stays the same). Hence at least |U| quartet topologies in Q have to be changed to

make the unresolved quintets in U with respect to Q resolved. Therefore, we obtain

that the error number of Q is at least |U| ≥ 0.04
(

n
4

)
, hence Q is at least 0.04-far

from being tree-like, as claimed by the theorem. 2

3.3 An O(n3/ε) Property Tester

Our property tester for tree-likeness of quartet topologies, denoted by Tree-Like-

Tester, is presented in Algorithm 3.1. Theorem 2.4 is used as the building block of

our property tester.
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Tree-Like-Tester(Q) /* Q: a complete set of quartet topologies. */
begin

1: pick an arbitrary taxon ` ∈ S;
2: repeat
3: pick four taxa s1, s2, s3, s4 ∈ S \ {`} uniformly at random;
4: if the quintet {s1, s2, s3, s4, `} is not resolved then
5: return “no”;
6: end if
7: until the loop iterates for 72

ε
n3 times

8: return “yes”.
end

Algorithm 3.1: Tree-Like-Tester: a property tester for testing tree-likeness of quar-
tet topologies.

Remarks. It follows from Theorem 2.4 that we can determine whether Q is tree-

like by examining quintets with respect to Q. If Q is not tree-like (i.e., the error

number ofQ is at least one), by Theorem 2.4, we know that for any fixed taxon ` ∈ S,

there exists an unresolved quintet containing `. Hence it is clear that the number

of unresolved quintets with respect to Q is at least Ω(n), which yields an O(n4)

deterministic algorithm to see ifQ is tree-like. Intuitively, we expect more unresolved

quintets when the error number of Q gets larger. In particular, if the error number

of Q is at least cn4 for some constant c, we expect to have a large number (e.g., c′n5

for some constant c′) of unresolved quintets with respect to Q since each quartet is

contained in n− 4 quintets. The more unresolved quintets exist, the less queries are

required to find one of them. However, it is difficult to give an accurate estimate

of the number of unresolved quintets due to the following reason. Assume that

Q∗ is a tree-like set of quartet topologies such that |Q \ Q∗| is equal to the error

number of Q. Clearly, Q can be derived from Q∗ by changing the quartet topologies

in Q∗ \ Q one by one. However, changing a quartet topology may either make a

set of unresolved quintets resolved or make a set of resolved quintets unresolved.

After |Q\Q∗| changes, it is difficult to say how many unresolved quintets exist with

respect to Q.

We now consider the case that Q is ε-far from being tree-like. That is, one has to

change at least ε
(

n
4

)
quartet topologies to make Q tree-like. The following theorem

provides an improved lower bound on the number of unresolved quintets.
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Theorem 3.2. If Q is ε-far from being tree-like, then for an arbitrary taxon ` ∈ S,

there exist more than εn/36 unresolved quintets containing `.

Proof. Assume that Q is ε-far from being tree-like. First, fix an arbitrary taxon `.

Let S∗ be a maximal subset of S containing ` such that the subset QS∗ of Q

over S∗ is tree-like, and let S ′ = S \ S∗. It is clear that adding any further taxon

of S ′ into S∗ will cause inconsistency (i.e., the set of quartet topologies over S∗

is not tree-like). The size of S ′ can never be o(n), otherwise, Q can be modified

to be tree-like by simply changing the quartet topologies {[a1a2|a3b] | a1, a2, a3 ∈
S∗, b ∈ S ′} ∪ {[a1a2|b1b2] | a1, a2 ∈ S∗, b1, b2 ∈ S ′} ∪ {[ab1|b2b3] | a ∈ S∗, b1, b2, b3 ∈
S ′} ∪ {[b1b2|b3b4] | b1, b2, b3, b4 ∈ S ′}, and the number of these changes of quartet

topologies is at most

(
n− o(n)

3

)
·
(
o(n)

1

)
+

(
n− o(n)

2

)
·
(
o(n)

2

)
+

(
n− o(n)

1

)
·
(
o(n)

3

)
+

(
o(n)

4

)
= o(n4),

which contradicts the assumption that the error number of Q is at least ε
(

n
4

)
. Thus

we let the size of S ′ be αn, where α > 0 is a constant. (S∗∪{x}) must have at least

one unresolved quintet containing ` for every taxon x ∈ S ′ (by Theorem 2.4 and

the assumption that S∗ is maximal). Therefore, the number of unresolved quintets

containing an arbitrarily fixed taxon ` with respect to Q is at least αn. By the

previous discussion, we know that the number of quartet topologies we need to

change to make Q tree-like is at most

4∑
i=0

(
n− αn
4− i

)(
αn

i

)
−
(
n− αn

4

)
=

(
n

4

)
−
(
n− αn

4

)
(by Vandermonde’s identity).

Since the error number of Q is at least ε
(

n
4

)
, we have

ε

(
n

4

)
≤
(
n

4

)
−
(
n− αn

4

)
≤ n4

24
−
(

(1− α)n

2

)4

<
n4(1− (1− α)4)

16
.

So we obtain that

ε <
n4(1− (1− α)4)/16

n(n− 1)(n− 2)(n− 3)/24
=

n4(3/2)(1− (1− α)4)

n(n− 1)(n− 2)(n− 3)
≤ 9(1− (1− α)4).
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The last inequality holds since n ≥ 5 and n(n − 1)(n − 2)(n − 3) ≥ n4/6 for

n ≥ 5. Hence by using Taylor series expansion, we have α > 1 − (1 − ε/9)1/4 =

1− (1− ε/36− ε2/864− . . .) > ε/36. Therefore the theorem follows. 2

The following theorem shows that Algorithm Tree-Like-Tester, is a non-adaptive

property tester which is of one-sided error and makes at most O(n3/ε) queries.

Theorem 3.3. Algorithm Tree-Like-Tester is a non-adaptive and one-sided-error

property tester for tree-likeness of quartet topologies, which makes at most O(n3/ε)

queries.

Proof. If Q is tree-like, then the algorithm will never find an unresolved quintet, it

will always return “yes”, hence it is of one-sided-error. As for the case that Q is ε-far

from being tree-like, consider an arbitrarily fixed taxon ` ∈ S. By Theorem 3.2, the

number of unresolved quintets containing ` with respect to Q is more than εn/36. In

each iteration of the loop of the algorithm, the probability of finding an unresolved

quintet is at least
εn/36(

n−1
4

) ≥ (ε/36)

n3
.

For simplicity, let α denote (ε/36)/n3. Once an unresolved quintet is found during

these 2/α iterations, the algorithm returns “no”, otherwise, it returns “yes”, with

probability at most (1−α)2/α ≤ e−2 < 1/3, where we use the fact that (1−t)−1/t ≥ e

for any t > 0 (Note that e−1 = limt→0(1 − t)1/t). Moreover, checking whether a

quintet is resolved or not requires at most five queries, thus at most O(n3/ε) queries

are made by the algorithm. Since the algorithm makes each query without knowing

the results of previous ones, it is clearly non-adaptive. The theorem is proved. 2

3.4 The Difficulty of Testing Tree-Consistency by Examin-
ing Quintets

We propose a one-sided error property tester for tree-likeness of quartet topologies,

which is non-adaptive and utilizes at most O(n3/ε) queries. However, for the mo-

ment, whether the query complexity of testing tree-likeness of quartet topologies

can be proved to be independent of n still remains open.
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Figure 3.1: The tree structure with the quartet topology [ab|cd]. T1, T2, T3, T4,
and T5 are subtrees.

One might be curious about whether our results can be extended to incomplete

sets of quartet topologies. Unfortunately, it seems to be impossible since Theo-

rem 2.4 is not true when the set of quartet topologies Q is incomplete. Let us say

a quintet is partially resolved if the set of quartet topologies over this quintet in Q

is tree-consistent (but not necessarily tree-like). The following example illustrates

that there exists an incomplete set of quartet topologies Q, such that Q is not

tree-consistent even when each quintet is partially resolved with respect to Q.

Figure 3.2: Q = {[ab|cd], [ab|ce], [ad|bf ], [be|df ], [cd|ef ]}. Each quintet over S =
{a, b, c, d, e, f} is partially resolved.

Let Q = {[ab|cd], [ab|ce], [ad|bf ], [be|df ], [cd|ef ]} be a set of quartet topologies

over S = {a, b, c, d, e, f}. Obviously, Q is not complete. The
(
6
5

)
= 6 quintets

over S are {a, b, c, d, e}, {a, b, c, d, f}, {a, b, c, e, f}, {a, b, d, e, f}, {a, c, d, e, f}, and

{b, c, d, e, f}. Let us first observe the possible topologies of the quintet {a, b, c, d, e}.
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Fig. 3.1 depicts the evolutionary tree with the quartet topology [ab|cd]. Since

[ab|ce] ∈ Q, as Fig. 3.1 shows, e has to be in T3, T4, or T5. Similarly, f has to

be in T2. Then the induced topology of the quartet {b, d, e, f} on the evolutionary

tree can only be [bf |de]. Since this conflicts with the assumption that [be|df ] ∈ Q, we

derive that Q is not tree-consistent (Q is clearly not tree-like since Q is incomplete).

However, as Fig. 3.2 shows, each of these six quintets is partially resolved.

Figure 3.3: The tree structure with the quartet topology [ab|ce].

In the above example, each quintet has at most two of its subset quartets with

topologies in Q. One might conjecture that if the input Q is “dense enough”, that

is, almost all the subset quartets of each quintet have topologies in Q, then we

might be able to derive that Q is tree-consistent if and only if each quintet is par-

tially resolved. However, the following example disproves this conjecture. Let Q =

{[ab|ce], [ac|bf ], [ab|de], [ad|bf ], [ae|bf ], [ad|ce], [ac|df ], [af |ce], [bd|ce], [bf |cd], [bf |ce],
[bf |de], [ce|df ]} be a set of quartet topologies over S = {a, b, c, d, e, f}. There are

only two quartets which do not have topologies in Q (i.e., {a, b, c, d} and {a, d, e, f}).
We observe that Q is “dense” in this case. To be precise, for each quintet, at least

four of its subset quartets have topologies in Q. Similar to the previous example, we

observe from Fig. 3.4 that each quintet is partially resolved. However, Q is not tree-

consistent due to the following observation. Consider the topology of the quintet

{a, b, c, d, e}. The evolutionary tree with the quartet topology [ab|ce] is depicted in

Fig. 3.3. Since [ab|de], [ad|ce] ∈ Q, the taxon d has to be in T3. Similarly, we derive

that f has to be in T2 since [ae|bf ] ∈ Q. Then we obtain that the induced topol-

ogy of the quartet {a, c, d, f} on the evolutionary tree can only be [af |cd], which

contradicts the assumption that [ac|df ] ∈ Q.
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Figure 3.4: A set of thirteen quartet topologies Q, where only two quartets
{a, b, c, d} and {a, d, e, f} do not have topologies in Q. Each quintet over S =
{a, b, c, d, e, f} is partially resolved.

By the above two examples, we conclude that when the input set of quartet

topologies is not complete, “local consistency” (i.e., the property that each quintet

is partially resolved) does not guarantee “global consistency” (i.e., the property that

Q is tree-consistent).



Chapter 4

Testing Tree-Consistency with at Most k
Missing Quartets

In the end of Chapter 3, we learned that the näıve approach of sampling of quintets

over an n-taxon set S and then examining if they are resolved with respect to the

set Q of quartet topologies does not work for testing tree-consistency when Q is

incomplete, even Q is quite dense. In this chapter, we extend the previous result

by introducing a parameter k into the testing for tree-consistency, where k denotes

an upper bound on the number of the quartets whose topologies are missing with

respect to Q. We present two parameterized property testers for tree-consistency

with respect to such a parameter. Both of them are non-adaptive, have one-sided

error, and are uniform on k. The first one runs in O(3kkn3/ε) time, and the second

one runs in O(1.7321kkn3/ε) time.

By the parameterized property testing results, we obtain that the number of

quartets whose topologies are missing is a factor which makes the testing difficult.

To some degree, this coincides with the fact that determining if a set of quartet

topologies is tree-consistent is NP-complete when some quartet topologies over S

are missing [110]. The results in this chapter also complete our assertion that the

problem of determining consistency of quartet topologies can be efficiently solved

through the aspects of fixed-parameter algorithm, property testing, and parameter-

ized property testing.

The setting of property testing for tree-consistency. We introduce the set-

ting of property testing for tree-consistency which is similar to the one for tree-

likeness in Sect. 3.1. Let ≺ be a total order on the n-taxon set S, and Q be a set of

59
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quartet topologies over S. For the three possible topologies of a quartet {a, b, c, d},
we denote the quartet topologies [ab|cd], [ac|bd], and [ad|bc] by type 0, 1, and 2,

respectively, where a ≺ b ≺ c ≺ d (as defined in Sect. 2.3.1). A quartet over S

is called a missing quartet if it does not have a topology in Q. We use a function

f̂Q : {{a, b, c, d} | a, b, c, d ∈ S} 7→ {0, 1, 2,∅} to represent Q as well as the missing

quartets. The function value f̂Q({a, b, c, d}) 6= ∅ is equal to the type of the topology

of {a, b, c, d} in Q, and f̂Q({a, b, c, d}) = ∅ denotes that the quartet {a, b, c, d} is

a missing quartet. The domain size of the function f̂Q is then equal to
(

n
4

)
. Note

that f̂Q is exactly the function fQ defined in Chapter 3 when there are no missing

quartets. We regard f̂Q and an integer k as the input, where k is the number of

missing quartets. Each query of f̂Q retrieves the topology of a quartet in Q or sim-

ply the null symbol ∅. We utilize an array of
(

n
4

)
entries, where each entry stores a

function value of f̂Q. Only the function values of f̂Q which are not ∅ are allowed to

be modified. Changing a topology in Q of a quartet to another one corresponds to

modifying a function value of f̂Q. Recall that Ptree denotes the set of all the func-

tions fQ for tree-like Q’s. We define that ∆(Q,Ptree) = minQ∗∈Ptree |Q \Q∗|/
(

n
4

)
. We

say that f̂Q is tree-consistent if ∆(f̂Q,Ptree) = 0 (i.e., Q is tree-consistent), and f̂Q

is ε-far from being tree-consistent if ∆(f̂Q,Ptree) ≥ ε (i.e., the error number of Q is

at least ε
(

n
4

)
). Testing if Q is tree-consistent turns to testing if f̂Q is tree-consistent.

When the context clear, we simply say that Q is tree-consistent (resp., Q is ε-far

from being tree-consistent) if f̂Q is tree-consistent (resp., f̂Q is ε-far from being tree-

consistent). Note that if |Q| < ε
(

n
4

)
, then Q is ε-close to being tree-consistent since

one can modify less than ε
(

n
4

)
quartet topologies in Q to make Q tree-consistent.

For such a case, since Q can never be ε-far from being tree-consistent, testing if Q

is tree-consistent becomes trivial since one can always answer “yes”. Due to this

reason, we assume that the size of Q is at least ε
(

n
4

)
.

The rest of this chapter is organized as follows. In Sect. 4.1, we introduce

an O(3kkn3/ε) parameterized property tester, which is called TC-Tester, for tree-

consistency of quartet topologies with at most k missing quartets. The tester has

one-sided error and non-adaptive. Based on this tester, in Sect. 4.2 we give an im-

proved parameterized property tester, which is called Improved-TC-Tester, for this

property. The tester has time complexity of O(1.7321kkn3/ε).
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4.1 An O(3kkn3/ε) Parameterized Property Tester

In this section, we propose an algorithm, which is denoted by TC-Tester, for testing

tree-consistency of a set of quartet topologies according which there are at most k

missing quartets. The sketch of the algorithm is as follows. There are two stages

of the algorithm: the sampling stage and the testing stage. In the sampling stage,

the algorithm chooses a taxon ` arbitrarily from S, and then samples a multiset of

quintets over S which contain ` uniformly at random. These quintets are collected

into two sets F1 and F2, where the selected quintets which do not contain any missing

quartet are in F1 and the other ones which contain missing quartets are in F2. Then,

the algorithm enters the testing stage. If any quintet in F1 is unresolved, then it

returns “no”, otherwise it continues to examine the quintets in F2. There are at

most k missing quartets found in the sampling stage. Since a quartet has three

possible topologies, there are at most 3k possible assignments of the topologies of

the found missing quartets. We call them topology assignments for short. The

algorithm exhaustively tries all of these possible assignments, which are generated

and stored in a set A, and returns “yes” if there is one of them under which all

the quintets in F2 are resolved. It returns “no” if there is no such assignment. The

pseudocode of the algorithm is listed in Algorithm 4.1.

For the analysis of Algorithm TC-Tester, we utilize Theorem 3.2, which provides

a lower bound on the number of unresolved quintets containing a fixed taxon with

respect to a complete set of quartet topologies which is ε-far from being tree-like.

Theorem 4.1. Given a set Q of quartet topologies over an n-taxon set S where there

are at most k missing quartets, Algorithm TC-Tester is an O(3kkn3/ε) parameterized

property tester with one-sided error for testing if Q is tree-consistent. Moreover, it

has one-sided error, is non-adaptive and is uniform on k.

Proof. Sampling quintets (Lines 3–13) takes O(kn3/ε) time. To determine if a

quintet without having any missing quartet can be done in O(1) time, so examining

if any quintet in F1 is unresolved takes O(|F1|) time. When the missing quartets

in the sampled quintets are obtained, to generate all possible assignments of their

topologies (at Line 23) requires O(3|Tmiss |) = O(3k) time. To check if all the quintets

in F2 are resolved for any of the O(3k) topology assignments of the found missing
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TC-Tester(Q, k) /* Q: a set of quartet topologies;
k ∈ Z+: an upper bound on the number of missing quartets. */

begin

1: /* Sampling Stage */
2: pick an arbitrary taxon ` ∈ S;
3: repeat
4: pick a quartet {s1, s2, s3, s4} over S \ {`} uniformly at random;
5: let u denote the quintet {s1, s2, s3, s4, `};
6: if u does not contain any missing quartet then
7: F1 ← F1 ∪ {u}; /* F1 ← ∅ initially */
8: else /* u contains a missing quartet */
9: F2 ← F2 ∪ {u}; /* F2 ← ∅ initially */

10: miss(u)← {missing quartets of u};
11: Tmiss ← Tmiss ∪miss(u); /* Tmiss ← ∅ initially; it collects missing quartets

*/
12: end if
13: until the loop iterates for 144(k + 1)n3/ε times
14: /* Testing Stage */
15: for each quintet u ∈ F1 do
16: if u is NOT resolved then
17: return “no”;
18: end if
19: end for
20: if F2 = ∅ then /* no missing quartet is found */
21: return “yes”;
22: else
23: generate the set of all possible topology assignments A = {Qmiss(i) | 1 ≤ i ≤

3|Tmiss |} of the missing quartets in Tmiss ;
24: for each assignment Qmiss(i) do
25: if ALL the quintets in F2 are resolved with respect to Q ∪Qmiss(i) then
26: return “yes”;
27: end if
28: end for
29: return “no”;
30: end if
end

Algorithm 4.1: TC-Tester: a parameterized property tester for tree-consistency
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quartets (the for-loop in Lines 24–28) takes O(3k · |F2|) time. Since |F1| + |F2| =
O(kn3/ε), the overall time complexity of Algorithm TC-Tester is O(|F1|+ |F2|+3k ·
|F2|) = O(3kkn3/ε).

Next, we prove the correctness of Algorithm TC-Tester as follows. First, con-

sider the case that Q is tree-consistent. By definition, there exists an evolutionary

tree T such that Q ⊂ QT . Since the algorithm exhaustively tries every assign-

ment of topologies for the missing quartets in Tmiss (Line 23), there must be some

i ∈ {1, 2, . . . , 3|Tmiss |} such that Qmiss(i) ⊆ QT \ Q for the ith topology assignment

Qmiss(i). Thus the algorithm must return “yes” in this case (hence it has one-sided

error). Consider the case that Q is ε-far from being tree-consistent. Let T ∗
miss be the

set of missing quartets with respect to Q. For any assignment of the topologies, say

Q∗
miss , of the missing quartets in T ∗

miss , it is clear that Q∪Q∗
miss becomes a complete

set of quartet topologies over S and has at least ε
(

n
4

)
quartet errors, hence Q∪Q∗

miss

is ε-far from being tree-like. Note that Tmiss ⊆ T ∗
miss , and Qmiss(i) ⊆ Q∗

miss for some

i ∈ (1, 2, . . . , 3|Tmiss |). By Theorem 3.2, the probability that a randomly sampled

quintet containing a fixed taxon ` is unresolved with respect to Q∪Q∗
miss is at least

(εn/36)/(
(

n−1
4

)
) > εn−3/36. Denote εn−3/36 by α. The algorithm returns “yes” in

this case only when the following two events both occur:

(C1) all the quintets in F1 are resolved (Lines 15–19);

(C2) there exists a topology assignment of the found missing quartets such that all

the quintets in F2 are resolved (Lines 20–30).

The event of (C1) ∩ (C2) is equivalent to the following event.

(C3) there exists an topology assignment of the found missing quartets such that

all the quintets in F1 ∪ F2 are resolved.

Since each quintet in F1 ∪ F2 is sampled independently, for each iteration of the

loop in Lines 24–28, all the quintets in F1∪F2 are resolved with probability at most
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(1− α)|F1∪F2|. Thus by the union bound, the probability of (C3) is at most

(1− α)|F1∪F2| · 3|Tmiss | ≤ (1− α)2(k+1)/α · 3k

< (e−2)k+1 · 3k

<

(
1

3

)k+1

· 3k

<
1

3
.

Therefore, for the case that Q is ε-far from being tree-consistent, the algorithm

returns “yes” with probability less than 1/3.

Since each quintet is sampled without knowing the previous ones (see Lines 3–13

of the algorithm), the algorithm is non-adaptive. Furthermore, it uses a unified

approach for all k’s, hence it is uniform on k. Thus, the theorem is proved.

2

4.2 An O(1.7321kkn3/ε) Parameterized Property Tester

At Line 23 of Algorithm TC-Tester, all the possible 3|Tmiss | topology assignments of

the missing quartets in Tmiss are generated in order to check if all the quintets in F2

are resolved with respect to some topology assignment. This guarantees that the

algorithm always answers “yes” when Q is tree-consistent. Consider a quintet with(
5
4

)
= 5 missing quartets. There are 35 = 243 possible assignments of the topologies

of these five quartets. However, as Fig. 2.3 shows explicitly, there are only fifteen of

them which make the quintet resolved. Such an observation suggests that it may not

need to exhaustively try all the 3|Tmiss | topology assignments of the missing quartets,

where 3|Tmiss | may be up to 3k. Based on this idea, we improve that complexity

of Algorithm TC-Tester by generating a smaller set of topology assignments of the

found missing quartets, which is of size bounded by 1.7321k.

Recall that there are fifteen possible quintet topologies for a quintet {s1, s2, s3, s4, s5}
(see Fig. 2.3) and V denotes the set of topology vectors of all the possible quintet

topologies of a quintet. In particular,

V =


(0, 2, 2, 2, 2), (0, 1, 1, 2, 2), (0, 0, 0, 2, 2), (0, 0, 0, 1, 1), (0, 0, 0, 0, 0),
(1, 2, 2, 2, 1), (1, 0, 2, 1, 1), (1, 1, 2, 0, 1), (1, 1, 1, 0, 2), (1, 1, 0, 0, 0),
(2, 2, 2, 2, 0), (2, 2, 0, 0, 0), (2, 2, 1, 1, 0), (2, 1, 1, 1, 2), (2, 0, 1, 1, 1).

 ,
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which corresponds to the quintet topologies in Fig. 2.3 by letting s1 = a, s2 = b,

s3 = c, s4 = d, and s5 = e respectively.

Lemma 4.1. Let u ⊆ S be a quintet with r missing quartets {qi | 1 ≤ i ≤ 5} with

respect to a set Q of quartet topologies over S, then there exists at most βr topology

assignments of these missing quartets which can make u resolved, where β1 = 1,

β2 = 3, β3 = 3, β4 = 5, and β5 = 15.

Proof. Without loss of generality, let u = {a, b, c, d, e}. First, we consider the

case that r = 1, that is, u contains one missing quartet. Assume that the miss-

ing quartet of u is {a, b, c, d}. Let (vabce, vabde, vacde, vbcde) be a vector, where vabce

denotes the type of the topology of {a, b, c, e}, vabde denotes the type of the topol-

ogy of {a, b, d, e}, vacde denotes the type of the topology of {a, c, d, e}, and vbcde

denotes the type of the topology of {b, c, d, e}. For u to be resolved, from the list

V we know that there are fifteen possibilities of (vabce, vabde, vacde, vbcde). For each

possibility of (vabce, vabde, vacde, vbcde), there is exactly one possible assignment of the

topology of the missing quartet {a, b, c, d} to make u resolved. For example, assume

that (vabce, vabde, vacde, vbcde) = (2, 2, 2, 2), then from V we obtain that {a, b, c, d}
must have the topology [ab|cd] (i.e., the topology of type 0), otherwise u cannot

be resolved. Similarly, for the cases that the missing quartet is either {a, b, c, e},
{a, b, d, e}, {a, c, d, e} or {b, c, d, e}, we obtain that there is at most one assignment

of its topology to make u resolved. Hence, we have β1 = 1.

Consider the case that r = 2. Assume that the missing quartets of u are

{a, b, c, d} and {a, b, c, e}. Similar to the previous paragraph, we let (vabde, vacde, vbcde)

denote a vector, where vabde denotes the type of the topology of {a, b, d, e}, vacde

denotes the type of the topology of {a, c, d, e}, and vbcde denotes the type of the

topology of {b, c, d, e}. For u to be resolved, from the list V we know that there are

thirteen possibilities of (vabde, vacde, vbcde). For each possibility of (vabde, vacde, vbcde),

there are at most three possible assignments of the topologies of the missing quartets

{{a, b, c, d}, {a, b, c, e}} to make u resolved. For example, assume that (vabde, vacde, vbcde)

= (0, 0, 0), then from V we obtain that the topology of {a, b, c, d} and {a, b, c, e}must

be [ab|cd] and [ab|ce], or [ac|bd] and [ac|be], or [ad|bc] and [ae|bc], otherwise u can-

not be resolved. For the other cases of two missing quartets, similar results can be

derived. Hence, we obtain that β2 = 3.
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Similar to the arguments in the previous paragraph, we obtain that β3 = 3 and

β4 = 5. For the case that r = 5, since all the quartets in u are missing, we have

β5 = 15, which is exactly the number of possible topologies of a quintet. Therefore,

the lemma is proved.

2

Instead of using the näıve approach of exhaustively trying all the 3|Tmiss | topol-

ogy assignments, in the following we consider another approach, which is based on

Lemma 4.1, to generate the set of possible topology assignments of Tmiss which con-

tain all the assignments under each of which all the quintets in F2 are resolved. We

call such a set, denoted by ALR, the least required set of topology assignments.

The approach for generating ALR works as a recursive algorithm and can be

regarded as a depth-bounded search tree. The number of recursion calls is the

number of nodes in the search tree. First, for each found missing quartet q, we collect

the picked quintets which contain q into a set L(q). Then, get a copy F ′ of F2. For

each quintet u ∈ F ′, we recursively branch on the possible topology assignments

of its missing quartets according to the list V in order to make u resolved. Denote

by miss(u) the set of missing quartets in u. In each branch, the topologies of the

missing quartets in miss(u) are determined, and a quintet in L(q), for q ∈ miss(u),

is removed from F ′ if all its missing quartets are assigned with topologies. The

number of such quintet removals is at most O(n) due to the reason that there are

O(n) quintets that contain a fixed quartet. The algorithm stops branching if either

all the missing quartets have topologies determined, or the current examined quintet

u ∈ F ′ can never be resolved no matter what topology assignment of the missing

quartets of u is. For the former case, we add the according topology assignment

of Tmiss into ALR.

Let N(k) denote the number of leaf nodes of the search tree. The size of the set

ALR is bounded by N(k). By Lemma 4.1, we obtain the following recursive formula:{
N(k) ≤ max{N(k − 1), 3N(k − 2), 3N(k − 3), 5N(k − 4), 15N(k − 5)},
N(0) = 1.

For example, the inequality N(k) ≤ 3N(k−2) stands for the case that the examined

quintet u has two missing quartets. By Lemma 4.1, there are at most three topology

assignments of these two quartets, so the tree node according to examining u has at
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most three branches each of which has two less quartets with topologies not assigned

yet. Let γ denote the branching number of the search tree. For N(k) ≤ N(k−1), the

search tree does not branch. For N(k) ≤ 3N(k − 2), we obtain a branching vector

of (2, 2, 2) which leads to γ < 1.7321. For N(k) ≤ 3N(k−3), we obtain a branching

vector of (3, 3, 3) which leads to γ < 1.4423. For N(k) ≤ 5N(k − 4), we obtain

a branching vector of (4, 4, 4, 4, 4) which leads to γ < 1.4954. Finally, for N(k) ≤
15N(k−5) we obtain a branching vector of (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5), which

leads to γ < 1.7188. Therefore, the size of ALR is bounded by 1.7321k and the size

of the according search tree is bounded by O(1.7321k). Since |F ′| = O(kn3/ε),

and, for each tree node, the algorithm takes O(n) time to remove the quintets

in F ′ without missing quartets, the overall time complexity of constructing ALR is

O(1.7321kn+ kn3/ε).

By constructing the least required set ALR of topology assignments of Tmiss , we

obtain an improved property tester for testing tree-consistency of quartet topologies.

The property tester is called Improved-TC-Tester and is listed in Algorithm 4.2.

As proved in the previous section, we know that it takes O(1.7321kn + kn3/ε)

time to construct ALR and the size of ALR is bounded by 1.7321k. Since Algorithm

Improved-TC-Tester is basically the same as Algorithm TC-Tester, similar to the proof

of Theorem 4.1, we obtain Theorem 4.2 as follows.

Theorem 4.2. Given a set Q of quartet topologies over an n-taxon set S where there

are at most k missing quartets, Algorithm Improved-TC-Tester is an O(1.7321kkn3/ε)

property tester with one-sided for testing if Q is tree-consistent. Moreover, it has

one-sided error, is non-adaptive and is uniform on k.

Remarks. Our parameterized property testers run in o(n4) time when k is o(log n).

By the results in this chapter, we obtain that tree-consistency of quartet topologies

can be tested more efficiently when k gets smaller. This suggests that the number of

missing quartets is a factor which makes the testing difficult. Actually, to determine

if Q is tree-consistent (i.e., the QCP problem) is NP-complete [110] when missing

quartets exist. However, the following arguments imply that it can be determinis-

tically solved in polynomial time when the number of missing quartets is bounded

by a constant k. First, we scan over the input to find out the missing quartet (it
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Improved-TC-Tester(Q, k) /* Q: a set of quartet topologies;
k ∈ Z+: an upper bound on the number of missing quartets. */

begin

1: /* Sampling Stage */
2: pick an arbitrary taxon ` ∈ S;
3: repeat
4: pick a quartet {s1, s2, s3, s4} over S \ {`} uniformly at random;
5: let u denote the quintet {s1, s2, s3, s4, `};
6: if u does not contain any missing quartet then
7: F1 ← F1 ∪ {u}; /* F1 ← ∅ initially */
8: else /* u contains a missing quartet */
9: F2 ← F2 ∪ {u}; /* F2 ← ∅ initially */

10: miss(u)← {missing quartets of u};
11: for each missing quartet q ∈ miss(u) do
12: L(q) ← L(q) ∪ {u}; /* L(q) collects the chosen quintets which contain

the missing quartet q; L(q)← ∅ initially */
13: end for
14: Tmiss ← Tmiss ∪miss(u); /* Tmiss ← ∅ initially; it collects missing quartets

*/
15: end if
16: until the loop iterates for 144(k + 1)n3/ε times
17: /* Testing Stage */
18: for each quintet u ∈ F1 do
19: if u is NOT resolved then
20: return “no”;
21: end if
22: end for
23: if F2 = ∅ then /* no missing quartet is found */
24: return “yes”;
25: else
26: generate the least required set of topology assignments ALR = {QLR

miss(i) | i ≥
1} of the missing quartets in Tmiss ;

27: if ALR 6= ∅ then
28: for each assignment Qmiss(i) do
29: if ALL the quintets in F2 are resolved with respect to Q∪Qmiss(i) then
30: return “yes”;
31: end if
32: end for
33: end if
34: return “no”;
35: end if
end

Algorithm 4.2: Improved-TC-Tester: an improved parameterized property tester
for tree-consistency
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takes O(n4) time here). Then, for each topology assignment Qmiss(i) of the miss-

ing quartets, check if Q ∪ Qmiss(i) is tree-like. To check if Q ∪ Qmiss(i) is tree-like

takes O(n4) since it is complete. Clearly, the above work takes O(3kn4) time, and

even O(1.7321kn4) time when the least required set of topology assignments for the

missing quartets is applied. This indicates that to determine if Q is tree-consistent

is fixed-parameter tractable with respect to the parameter k, by which the number

of missing quartets is bounded.
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Chapter 5

Parameterized Property Testers for Graph
Properties

In Chapter 4, we extend the property tester for tree-likeness to test tree-consistency

on a set of quartet topologies with at most k missing quartets by parameterized

property testing. This example illustrates how a parameterized property tester is

designed, and reveals that the concepts of property testing and parameterized com-

plexity theory can be fruitfully combined, so that we can tackle with hard problems

making use of the advantages of these two fields.

As mentioned in Sect. 1.3 of Chapter 1, there have been several examples of

graph property testing that fit our setting of parameterized property testing. In

this chapter, we keep studying parameterized property testing for graph properties.

Let us recall the settings of the dense model and the sparse model for graph property

testing as follows.

The dense model. The dense model is suitable for dense graphs. In this model,

adjacency-matrices are commonly used as the representation of graphs. A property

tester is allowed to make queries, where each query is to examine the value of (u, v)

in the adjacent matrix that whether vertices u, v are adjacent or not in the corre-

sponding graph. The distance measure of two graphs refers to the fraction of vertex

pairs which is an edge in one graph yet not an edge in the other, taken over the

domain size which is n2. Hence, we say that an n-vertex graph is ε-far from a graph

property P in the dense model if more than εn2 edge insertions or removals should

be performed on the graph to make the graph have the property. Otherwise, the

graph G is ε-close to P .

71
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The sparse model. In the sparse model, which is suitable for sparse graphs

particularly, adjacency-lists are commonly used. The maximum degree of a graph

in this model is assumed to be bounded by d. In this model, a query of a property

tester is like the question that “who is the ith neighbor of vertex v in the graph?”

A null symbol ∅ is returned if there is no such neighbor of v. A property tester can

probe the adjacency list of the vertices in the graph, where the maximum degree of

the graph is assumed to be bounded (say, at most d). Here the distance measure of

two graphs refers to the fraction of vertex pairs which is an edge in one graph yet

not an edge in the other, taken over the domain size which is dn. Hence, we say

that an n-vertex graph G is ε-far from satisfying a graph property P in the sparse

model if more than εdn edge insertions and removals should be performed to make

G satisfy the property. Otherwise, the graph G is ε-close to P .

Graph property testing in the dense model is well understood. A large number of

graph properties are shown to be testable in the dense model (see [8–11, 67, 74, 106]).

However, on the other hand, the current understanding of graph property testing

in the sparse model is relatively limited. To our knowledge, current known testable

graph properties in the sparse model include Eulerian [76], cycle-freeness [76], con-

nectivity [76, 118]), minor-closed properties [21, 83], hereditary properties of nonex-

panding graphs [53], and properties of hyperfinite graphs [95]. There are still many

graph properties which are neither testable nor known to be testable in the sparse

model. From this point of view, it is worth working on devising parameterized prop-

erty testers in the sparse model to see whether parameterization helps in the testing.

Due to the above reasons, in the rest of this chapter we focus on graph property

testing in the sparse model, and we consider the graph properties which correspond

to NP-complete problems.

Note that there are properties which are trivial to test in the setting of parame-

terized property testing when the associated parameters k’s are small and the size

of the vertex set of the input graph is sufficiently large, even their corresponding pa-

rameterized problems are not in FPT (unless NP = P). Here we say that a graph

property is trivial to test if either one can simply answer “yes” or “no” for any input

graph without observing it. For example, consider the following properties.
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• The property of having a simple k-path and the property of having

a simple k-cycle. A simple k-path is a simple path of length k − 1 and a

simple k-cycle is a simple cycle of length k. To deterministically decide if a

graph has a simple k-path (resp., a simple k-cycle) is NP-complete since it

is equivalent to the notorious Hamiltonian Path problem (resp., Hamiltonian

Cycle problem) when k = n, and it is fixed-parameter tractable [88]. Clearly,

one can add at most k − 1 edges in the graph to make it have a simple k-

path. Any graph is ε-close to satisfying this property in the sparse model

since k − 1 = o(n) for a constant integer k. Thus, for testing this property

in the sparse model, one can simply answer “yes” for any input graph since

it can never be ε-far from having a simple k-path. Similarly, one can simply

answer “yes” for any input graph for testing if a graph has a cycle of length k.

These two properties are both trivial to test.

• The property of having a dominating set of size bounded by k. Given

a graph G = (V,E), a dominating set is a subset V ′ ⊆ V of vertices such that

every vertex of G is either in V ′ or adjacent to at least one vertex in V ′. The

Dominating Set problem asks if a graph has a dominating set of size at most k.

It is well-known to be NP-complete [72], and not in FPT [98]. In the sparse

model, it is proved that testing if a graph has a dominating set of size at most

ρn, for 0 < ρ < 1, requires Ω(
√
n) time [76]. However, for a constant k, the

property of having a dominating set of size bounded by k is trivial to test due

to the following reason. Suppose there is a graph G which has a dominating

set of size k. Since a vertex is adjacent to at most d vertices in the graph, we

derive that n ≤ k ·d+k. Thus, we know that any graph with sufficiently large

vertex set does not satisfy this property in the sparse model. One can simply

answer “no” for testing this property, hence it is trivial to test in the sparse

model.

• The property of having a clique of size k and the property of having

an independent set of size k. The Clique problem and the Independent

Set problem are both well-known NP-complete [72] problems. They are not

in FPT [98]. Recall that a vertex subset S ⊆ V is a clique if each pair of
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vertices in S are adjacent, while S is an independent set if none of the pairs of

vertices in S are adjacent. The Clique problem asks if there exists a clique of

size k while the Independent Set problem asks if there exists an independent

set of size k. Clearly, the Clique problem is equivalent to the Independent Set

problem in the complement graph. For any graph in the sparse model, one

can add (resp., remove) O(k2) = o(n) edges to make it have a clique (resp.,

an independent set) of size k. Hence, any graph is ε-close to having a clique

of size k (resp., having an independent set of size k). Hence, the properties

of having a clique of size k and having an independent set of size k are both

trivial to test since can simply answer “yes” for any input graph.

In the following sections, we focus on the property of having a vertex cover of size

at most k and the property of having a treewidth at most k in the sparse model. Both

the Vertex Cover problem and to determine if the treewidth of a graph is at most k

are well-known to be fixed-parameter tractable [98]. They both admit O(f(k) · n)

fixed-parameter algorithms, which are very efficient since they are linearly solvable

with respect to n when k is a small integer. We show that their corresponding graph

properties both admit efficient parameterized property testers.

5.1 Testing If a Graph Has a Vertex Cover of Size at Most k

Given a graph G = (V,E), a subset S ⊆ V is called a vertex cover of a graph G if for

any edge (u, v) ∈ E(G), {u, v} ∩ S 6= ∅. The Minimum Vertex Cover problem is to

find a vertex cover of minimum size in the graph. It is well-known to be NP-hard.

The linear time 2-approximation algorithm of Gavril (cf. [72]) is considered as one

of the jewels of theoretical computer science. It is shown to be NP-hard even to

approximate up to a factor of 1.3606 [59].

Given a nonnegative integer k, the parameterized Vertex Cover problem is to

decide if a graph has a vertex cover of size at most k. There are abundant of

results on design of fixed-parameter algorithms for this problem. The first fixed-

parameter algorithm for the parameterized Vertex Cover problem is given by Buss

and Goldsmith [38] in 1993, which runs in O(kn+2kk2k+2) time. There has been an

impressive list of improved algorithms for the problem since 1993 (e.g., see [16, 47–
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49, 99, 101, 111]). The current best time bound is O(1.2738k+kn), which is proposed

by Chen et al. [48].

Let PV C≤k denote the property that a graph has a vertex cover of size at most k.

We denote by G ∈ PV C≤k that a graph G satisfies PV C≤k. It is clear that PV C≤k

is a hereditary property. By making use of the result in [3], which is an extension

of Szemerédi’s regularity lemma [113], Alon and Shapira [11] showed that every

hereditary graph property is testable with one-sided error in the dense model, while

the query complexity is only guaranteed to be a function of towers of 2’s of height

O(poly(1/ε)). In the sparse model, Goldreich and Ron [76] proved that it requires

at least Ω(
√
n) queries to test PV C≤ρn for a constant 0 < ρ < 1. Note that in [103],

Parnas and Ron provided an O(dlog d/ε2) algorithm to distinguish the case that a

graph has a vertex cover of size ρn and the case in which it is ε-far from having a

vertex cover of size α ·ρn. Such a setting is slightly weaker than that of the standard

property testing.

In Sect. 5.1.1, we present an adaptive parameterized property tester with two-

sided error for PV C≤k in the sparse model. The tester runs in O(d/ε) time when

k < n/(6d). In Sect. 5.1.2, we present an adaptive parameterized property tester

with one-sided error for PV C≤k in the sparse model. The tester runs in O(kd/ε) time

when k < εn/4.

5.1.1 A simple parameterized property tester with two-sided error

Let [d] denote the set {1, 2, . . . , d}. A graph in the sparse model is represented by an

adjacency list, which can be regarded as a function fG : V (G)× [d] 7→ V (G)∪∅ such

that fG(v, i) = u if (u, v) is the ith edge incident to v (i.e., u is the ith neighbor of v),

and fG(v, i) = ∅ if there is no such edge. Let us consider the following observation.

Observation 5.1. In the sparse model, if a graph G = (V,E) satisfies PV C≤k, then

|E| ≤ kd. Furthermore, if G is ε-far from PV C≤k, then |E| ≥ εdn.

Proof. Suppose that G = (V,E) is a graph that has a vertex cover C ⊆ V of size

at most k. Since each vertex in C can cover at most d edges in the graph, the

number of edges in G is at most k · d. Let us consider the case that G is ε-far

from PV C≤k. If |E| < εdn, then removing all the edges in E results in an empty
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graph, which has ∅ as its vertex cover. The number of edge removals is less than

εdn. This contradicts to the assumption that G is ε-far from PV C≤k. Thus in this

case, we have |E| ≥ εdn. 2

Observation 5.1 implies that a graph having a vertex cover of size k is close to

be empty. Based on this observation, we obtain a simple property tester for PV C≤k,

which is called Simple-VC-Tester and listed in Algorithm 5.1.

Simple-VC-Tester(G)
/* G = (V,E): a graph stored in an adjacency list */
begin

1: if k < n/(6d) then
2: run the O(1.2738k + kn) fixed-parameter algorithm in [48];
3: else /* k ≥ n/(6d) */
4: repeat
5: choose a vertex v ∈ V uniformly at random;
6: for i← 1 to d do
7: if fG(v, i) 6= ∅ then
8: return “no”;
9: end if

10: end for
11: until 2/ε times
12: return “yes”;
13: end if
end

Algorithm 5.1: Simple-VC-Tester: a simple property tester for PV C≤k in the sparse
model.

Theorem 5.1. Algorithm Simple-VC-Tester is an adaptive parameterized property

tester with two-sided error for PV C≤k in the sparse model, which is weakly uniform

on k. In particular, its time complexity is{
O(d/ε) if k < n/(6d);
O(1.2738k + k2d) otherwise.

Proof. When k ≥ n/(6d), we have n ≤ 6kd. Then the O(1.2738k + kn) =

O(1.2738k + k2d) fixed-parameter algorithm in [48] is used to deterministically de-

cide if the input graph satisfies PV C≤k. No mistake is made by the algorithm in this

case. Next, we consider the case that k < n/(6d).



5.1 Testing If a Graph Has a Vertex Cover of Size at Most k 77

Consider the case that the input graph G satisfies PV C≤k. By Observation 5.1,

the probability that the vertex v chosen at Line 5 has at least one neighbor in

the graph is most 2kd/n < 1/3. Thus, the algorithm returns “no” (at Line 8) with

probability at most 1/3. Thus, the algorithm answers “yes” with probability at least

2/3 in this case. Consider the case that G is ε-far from PV C≤k. By Observation 5.1,

we derive that there are at least εdn/d = εn vertices which has at least one neighbor

in the graph. Thus, we obtain that the algorithm returns “yes” (at Line 12) with

probability at most (1− ε)2/ε < e−2 < 1/3. Thus, the algorithm answers “no” with

probability at least 2/3 in this case.

When k < n/(6d), it is easy to see that the algorithm runs in O(d/ε) time.

Since the algorithm could make mistakes in the case that G satisfies PV C≤k and the

case that G is ε-far from PV C≤k, it has two-sided error. It is clearly adaptive since

it examines neighbors of a vertex in the adjacency list. Furthermore, it is weakly

uniform since it uses two different procedures for k < n/(6d) and k ≥ n/(6d).

Therefore, the theorem is proved.

2

5.1.2 A parameterized property tester with one-sided error

In the following we give a parameterized property tester with one-sided error for

PV C≤k in the sparse model. This parameterized property tester is called VC-FPT-

Tester, which is listed in Algorithm 5.2.

For k ≥ εn/4, Algorithm VC-FPT-Tester runs the O(1.2738k+kn) = O(1.2738k+

k2/ε) fixed-parameter algorithm to deterministically decide if the input graph satis-

fies PV C≤k, hence its correctness and complexity is clear for such k’s. In the follow-

ing, we consider the case that k < εn/4, and we prove that Algorithm VC-FPT-Tester

satisfies the following two constraints.

• VC-FPT-Tester returns “yes” if G satisfies PV C≤k;

• VC-FPT-Tester returns “no” with probability at least 2/3 ifG is ε-far from PV C≤k.

First, we consider the case that G ∈ PV C≤k. The algorithm tries to find a

matching of G by looking for a set of disjoint edges (i.e., a set of edges E ′ ⊆ E such

that for every two edges (u, v), (u′, v′) ∈ E ′, {u, v} ∩ {u′, v′} = ∅). Note that the
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VC-FPT-Tester(G, k)
/* G = (V,E): a graph stored in an adjacency list with bounded degree d;
k: an integer parameter */

begin

1: if k ≥ εn/4 then
2: run the O(1.2738k + kn) fixed-parameter algorithm in [48];
3: else /* k < εn/4 */
4: t← 0;
5: repeat
6: choose a vertex v ∈ V uniformly at random;
7: if v is marked then continue;
8: for i← 1 to d do
9: if fG(v, i) 6= ∅, and fG(v, i) is not marked then

10: t← t+ 1;
11: mark v and fG(v, i);
12: break; /* Exit the for-loop */
13: end if
14: end for
15: until d10k/εe times
16: return “no” if t ≥ k + 1, otherwise return “yes”.
17: end if
end

Algorithm 5.2: VC-FPT-Tester: a parameterized property tester for PV C≤k in the
sparse model.

size of a matching is always smaller than or equal to the size of a vertex cover in the

graph since any vertex cover must contain at least one endpoint of each matched

edge. Based on this observation, the algorithm never returns “no” in this case.

Next, let us consider the case that G is ε-far from satisfying PV C≤k. In this case,

it is clear that |E(G)| ≥ εdn. Let Ai be the number of finished iterations of the

loop (in Lines 5–15) such that i disjoint edges are found. Let Xi = Ai−Ai−1, hence

Ai =
∑i

j=0Xj where X0 = A0 = 0. Let Yi be the event that a new edge is found

whose endpoints are not in the previous found i− 1 disjoint edges. Since there are

at least εdn/d = εn vertices of degree greater than 0, we have Pr[Y1] ≥ εn/n = ε.

Similarly, we obtain that Pr[Yi] ≥ (εdn− 2(i− 1)d)/dn = ε− 2(i− 1)/n. Thus, the

expected value of the geometric random variable Xi is E[Xi] ≤ 1/(ε − 2(i − 1)/n),
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and then we have

E[Ak+1] ≤
1

ε
+

1

ε− 2/n
+ . . .+

1

ε− 2k/n

≤ 1

ε
+

k

ε− 2k/n

<
1

ε
+

k

ε− ε/2
(∵ k < εn/4)

≤ 2k + 1

ε
.

Thus, the probability that Algorithm VC-FPT-Tester returns “yes” in this case is

Pr

[
Ak+1 >

⌈
10k

ε

⌉]
≤ Pr

[
Ak+1 ≥

10k

ε

]
≤ (2k + 1)/ε

10k/ε
≤ 3k

10k
<

1

3
,

where the second inequality follows by Markov’s inequality.

As the time complexity of the algorithm depends on the number of queries

performed to seek for disjoint edges, we have that Algorithm VC-FPT-Tester runs

in O(kd/ε) time. It is easy to see, just like Algorithm Simple-VC-Tester, that Algo-

rithm VC-FPT-Tester is adaptive and weakly uniform on k. Furthermore, it never

makes mistakes for the case that G satisfies PV C≤k. Therefore, Theorem 5.2 imme-

diately follows.

Theorem 5.2. Algorithm VC-FPT-Tester is an adaptive parameterized property

tester with one-sided error for PV C≤k in the sparse model, which is weakly uniform

on k. In particular, its time complexity is{
O(kd/ε) if k < εn/4;
O(1.2738k + k2/ε) otherwise.

Remarks. In fact, Algorithm VC-FPT-Tester can be slightly modified so that we

can obtain a parameterized property tester for PV C≤k in the dense model. However,

a graph satisfying PV C≤k is sparse for when k is small since it must have less than kn

edges. Thus, the sparse model is more suitable for the testing for PV C≤k.
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5.2 Testing If a Graph Has Treewidth at Most k

The treewidth of a graph is one of the most important invariants of graphs. This

notion was introduced by Robertson and Seymour as part of their proof of the Graph

Minor Theorem [107]. Treewidth measures how close a graph is to being a tree. It

now plays an important role in algorithmic graph theory, and in particular, has a

large number of applications in fixed-parameter algorithms for parameterized graph

problems. Many graph problems can be solved in polynomial time or even linear

time when the treewidth of the input graph is bounded. Graphs with treewidth at

most k are also known as partial k-trees [87]. A k-tree is a graph defined recursively

as follows. A clique is a k-tree. For a graph G = (V,E) which is a k-tree, adding a

new vertex v to G and making it adjacent to exactly all vertices of a clique of size k

in G form a new k-tree. Any subgraph of a k-tree is called a partial k-tree. See [60]

for more details and [32] for the survey on algorithmic results on determining the

treewidth of a graph.

For an integer k > 0, the property of having treewidth at most k is a minor-

closed graph property [87]. That is, every minor of a graph with treewidth at

most k also has treewidth at most k. To determine whether the treewidth of a

graph is at most k is NP-complete [13], even for graphs with maximum degree

bounded by 9 [30]. Robertson and Seymour [105] proved that this problem is in

FPT [105]. By Alon and Shapira’s result in [11], it is clear that the property of

having treewidth at most k is testable with one-sided error in the dense model.

Since a graph G = (V,E) of treewidth at most k has o(n2) edges (see Fact 5.1), the

sparse model is more suitable than the dense model for the testing of Ptw≤k. Hence,

we focus on the testing of this property in the sparse model. In [21], it is shown

that for every (finite) graph H, the property of being H-minor free is testable in the

sparse model. In one of the deepest results in graph theory, Robertson and Seymour

proved the famous Graph Minor Theorem [107], which states that there is a finite

family of graphs HP such that a graph satisfies P if and only if it is H-minor free

for all H ∈ HP . The set of graphs HP is called the set of forbidden minors of P .

Follows this immediately, every minor-closed graph property is testable, however,

the running time of the property tester in [21] is O(222poly(1/ε)

), and the analysis
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is quite complicated. Using the locality lemma given in [97], Hassidim et al. [83]

simplified the proof in [21] and claimed a better time bound on testing minor-closed

properties, which is O(2poly(1/ε)).

Unfortunately, if the set HP of forbidden graph minors of property P is not

explicitly known, then one does not know how to test property P using their results.

In particular, we do not know the set of forbidden minors of the class of graphs

with treewidth at most k for k > 3 [87]. We denote by Ptw≤k the property of

having treewidth at most k. In this section, we show how to test whether a graph

belongs to Ptw≤k in the sparse model by giving a parameterized property tester.

We utilize the approach in [83] without knowing the set of forbidden graph minors

of Ptw≤k in advance. Our parameterized property testers for Ptw≤k are uniform

on the parameter k. Our first parameterized property tester for Ptw≤k has time

complexity 2dO(kd3/ε2)
. By applying the concept of the local distributed partitioning

oracle in [102], we obtain another parameterized property tester for Ptw≤k, which

runs in time d(k/ε)O(k2)
+ 2poly(k,d,1/ε).

5.2.1 Preliminaries

Definition 5.1. Let G = (V,E) be a graph. A vertex subset I ⊆ V is called a

(δ, α)-nonexpanding set if the following conditions are satisfied:

1. G[I] is connected;

2. |NG(I)|
|I| ≤ δ;

3. |I| ≤ α.

Definition 5.2 (Tree-decomposition [87]). A tree-decomposition of a graph G =

(V,E) is a pair (S, T ) with S = {Xi | i ∈ I} a collection of subsets of vertices of G

and T a tree where each node is associated with one subset in S, such that the

following three conditions are satisfied:

1.
∪

i∈I Xi = V ;

2. for all edges (v, w) ∈ E, there is a subset Xi ∈ S such that both v and w are

contained in Xi;
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3. for each vertex x, the set of nodes {Xi ∈ S | x ∈ Xi} forms a subtree of T .

We call maxi∈I{|Xi| − 1} the width of the tree-decomposition (S, T ). The treewidth

of G, denoted by tw(G), is the minimum width over all tree-decompositions of G.

Furthermore, if T is a rooted tree, then (S, T ) is called a rooted tree decomposition

of G.

Figure 5.1 illustrates a rooted tree-decomposition of a graph. With a slight abuse

of notation, for a tree-decomposition (S, T ) of a graph, we use {Xi | i ∈ I} to denote

the set of nodes in T .

Remark. Since graphs with maximum degree d ≤ 1 have treewidth at most one

so that the testing becomes trivial, we assume that the maximum degree d of the

input graph is as least two.

Figure 5.1: A graph with and one of its rooted tree-decompositions.

Definition 5.3 (Nice tree-decomposition [87]). A nice tree-decomposition (S, T ) of

a graphG = (V,E) is a rooted tree-decomposition ofG with the following conditions:

1. every node of T has at most two children;

2. if a node Xi has two children Xj and Xk, then Xi = Xj = Xk;

3. if a node Xi has only one child Xj, then either |Xi| = |Xj|+ 1 and Xj ⊂ Xi or

|Xi| = |Xj| − 1 and Xi ⊂ Xj.

The rooted tree-decomposition in Figure 5.2 is a nice tree-decomposition of the

graph in left side of Figure 5.1.
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Lemma 5.1 ([87]). Every graph G with treewidth k has a nice tree-decomposition

of width k.

Figure 5.2: A nice tree-decomposition of the graph in Figure 5.1.

Lemma 5.2 ([57]). If a graph has treewidth at most k, then every minor of G has

treewidth at most k.

5.2.2 Partitioning the graph into small connected components

Proposition 5.1 ([65]). Let G = (V,E) be an n-vertex graph with ∆(G) ≤ d and

tw(G) ≤ k. Then for every integer ε ≤ 1/2 there exists a set U ⊆ V such that

|U | ≤ εn and G − U contains no simple path with L edges, where L = d(d(d +

1)(9k + 7)− 1)/2e2/ε.

Proposition 5.1 guarantees that for any graph with vertex degree bounded by d

and treewidth bounded by k, there exists a subset U ⊆ V of size at most εn such

that removing U from the graph G results in connected components of size bounded

by ddL/2e, where L = d(d(d+1)(9k+7)−1)/2e2/ε. Using the nice tree-decomposition

of a graph G with treewidth bounded by k, we improve Proposition 5.1 by giving

a much smaller upper bound on the size of such connected components derived by

removing U . This result is presented in Proposition 5.2 as follows.
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Proposition 5.2. Let G be an n-vertex graph with tw(G) ≤ k, then for any 0 <

ε < 1, there is a set U ⊆ V such that |U | ≤ εn and G−U has connected components

of size at most 2(k + 1)/ε.

Proof. Let (S, T ) be a nice tree-decomposition of width k of G. Let R be the root

of T . For each node X in T , we denote by X` and Xr the left child and the right child,

respectively, of X . If X has only one child, then we let X` = Xr. We denote by TX
the subtree of T rooted at X . Let STX ⊆ S be the set of nodes in TX . We define

ψT (X ) =
∪

Y∈STX
Y to be the set of vertices in the subsets corresponding to the nodes

in STX . Consider the following algorithm for constructing the set U ⊆ V as claimed

in the proposition. The algorithm repeatedly runs until the graph G becomes empty.

In each round of the algorithm, it starts by visiting the rootR. Whenever a node X is

visited, the algorithm computes ψT (X ). If |ψT (X )| > 2(k+1)/ε, then the algorithm

computes X ′ = argmax{|ψT (X`)|, |ψT (Xr)|}, and turns to visit X ′ in the next round.

Otherwise, the algorithm stops visiting nodes after X is visited. Then it adds the

vertices in X into U and removes the vertices in ψT (X ) from the graph G. Denote

by G′ the resulting graph. The algorithm computes a nice tree-decomposition of G′

and continues the next round.

In each round of the algorithm, it stops when a node X with |ψT (X )| ≤ 2(k+1)/ε

is visited. Let Y be the parent node of X in T . Here we claim that |ψT (X )| ≥
(k + 1)/ε. Assume the contrary that |ψT (X )| < (k + 1)/ε. If Y has two children,

say X and Z, then by Condition 2 in Definition 5.3 we know X = Y = Z, hence we

have

|ψT (Y)| = |ψT (X ) ∪ ψT (Z) ∪ Y| = |ψT (X ) ∪ ψT (Z)| < 2(k + 1)

ε
.

If Y has only one child (i.e., X ), then by Condition 3 in Definition 5.3 we know that

either X ⊂ Y and |Y| = |X |+ 1 or Y ⊂ X and |Y| = |X | − 1. Hence

|ψT (Y)| ≤ |ψT (X )|+ 1 <
k + 1

ε
+ 1 ≤ 2(k + 1)

ε
.

By these two cases we obtain that |ψT (Y)| < 2(k + 1)/ε, which implies that the

algorithm stops visiting nodes at Y before X so that a contradiction occurs. Note

that as the vertices in X are removed from the graph, we obtain induced subgraphs

G[ψT (X`)], G[ψT (Xr)], and G[V \(ψT (X`)∪ψT (Xr))] with no edge between them (by
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Condition 3 in Definition 5.2). Both ψT (X`) and ψT (Xr) are of size at most 2(k+1)/ε.

Thus, as the algorithm terminates, we obtain connected components of G each of

which is of size at most 2(k + 1)/ε. Since tw(G) ≤ k and tw(G′) ≤ k for every

induced subgraph G′ of G (by Lemma 5.2), each subset X with its vertices added

into U is of size at most k + 1. Moreover, the algorithm removes at least (k + 1)/ε

vertices from the graph in each round. Thus, the size of U is at most

n

(k + 1)/ε
· (k + 1) = εn.

Therefore, the proposition is proved. 2

Lemma 5.3. Let G = (V,E) be an n-vertex graph with ∆(G) ≤ d and tw(G) ≤ k.

Let G′ be an induced subgraph of G. Then for any ε ∈ (0, 1) and β > 1, the probability

that a vertex chosen uniformly at random in G′ = (V ′, E ′) is not contained in any

(ε/β, ζ(k, d, ε))-nonexpanding set is at most ε/β where ζ(k, d, ε) = 4β2d(k + 1)/ε2.

Proof. Since tw(G) ≤ k, any induced subgraph G′ = (V ′, E ′) of G has treewidth

at most k. By Proposition 5.2 we know that, for any 0 < ε′ < 1, there exists a

set U ′ ⊂ V ′, |U ′| ≤ ε′|V ′| such that every connected component of G′[V ′ \ U ′] has

at most 2(k + 1)/ε′ vertices. Let C be the collection of connected components of

G′[V ′ \ U ′]. For any C ∈ C, we define γ(v) = |NG′(C)|/|C| for each v ∈ C. For

v ∈ U ′, we define γ(v) = d. Note that
∪

C∈C NG′(C) = U ′. Furthermore, since

∆(G′) ≤ d, a vertex in U ′ is adjacent to at most d different connected components

in C so that we have
∑

C∈C |NG′(C)| ≤ d|U ′|. Thus, for a vertex v picked uniformly

at random from G′, we have

Ev∈V ′ [γ(v)] =
∑
C∈C

∑
v∈C

Pr[v is picked] · |NG′(C)|
|C|

+
∑
v∈U

Pr[v is picked] · d

=
∑
C∈C

∑
v∈C

1

|V ′|
· |NG′(C)|
|C|

+
∑
v∈U

1

|V ′|
· d

=
∑
C∈C

|C| · 1

|V ′|
· |NG′(C)|
|C|

+ |U ′| · 1

|V ′|
· d

=
1

|V ′|
·
∑
C∈C

|NG′(C)|+ d · |U
′|

|V ′|

≤ 2d · |U ′|
|V ′|

≤ 2dε′.
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Take ε′ = ε2/(2β2d) for any ε ∈ (0, 1) and any β > 1, we have

Ev∈V ′ [γ(v)] ≤ ε2

β2
.

Each connected component in C is of size at most

ζ(k, d, ε) =
2(k + 1) · 2β2d

ε2
=

4β2d(k + 1)

ε2
.

Similar to the definition of an (ε/β, ζ(k, d, ε))-nonexpanding set, we call a con-

nected component C ∈ C an (ε/β, ζ(k, d, ε))-nonexpanding component if |NG′(C)|/|C|
≤ ε/β. By Markov’s inequality, the probability that a vertex v chosen uniformly

at random in V ′ with γ(v) ≥ ε/β is at most ε/β, so the probability that a vertex

is not contained in any (ε/β, ζ(k, d, ε))-nonexpanding component of G[V ′ \ U ′] is at

most ε/β, that is, the probability that a vertex is contained in an (ε/β, ζ(k, d, ε))-

nonexpanding component of G[V ′ \ U ′] is larger than 1 − ε/β. Since the set of

(ε/β, ζ(k, d, ε))-nonexpanding components ofG′ includes the (ε/β, ζ(k, d, ε))-nonexpanding

components of G[V ′ \U ′], the probability that a vertex chosen uniformly at random

in G′ is contained in an (ε/β, ζ(k, d, ε))-nonexpanding set is larger than 1 − ε/β.

Therefore, the lemma follows. 2

We abbreviate an (ε/β, ζ(k, d, ε))-nonexpanding component to a nonexpanding

component if the context is clear.

Lemma 5.4. Let G = (V,E) be the input of Algorithm Global-Partition with ∆(G) ≤
d and tw(G) ≤ k. Then for any ε ∈ (0, 1) and β > 1, by setting parameters δ = ε/β

and α = ζ(k, d, ε), Algorithm Global-Partition returns a vertex set U whose expected

size is at most 2εdn/β and the probability that |U | ≤ εn/4 is at least 1− 8d/β.

Proof. For a graph G = (V,E) by setting ∆(G) ≤ d and tw(G) ≤ k, Algorithm

Global-Partition partitions V into sets of size at most ζ(k, d, ε) with δ = ε/β and

α = ζ(k, d, ε). We define a sequence of random variables Xi, 1 ≤ i ≤ n, as follows.

Xi corresponds to the ith vertex removed by Algorithm Global-Partition from the

graph. Say, the remaining graph has n− h vertices, and the algorithm is removing

a set I ∪ S = {vh+1, . . . , vh+y} of y vertices. Then for h + 1 ≤ j ≤ h + y, we set

Xj = |S|/|I| if vj ∈ I and Xj = 0 if vj ∈ S. Note that
∑n

i=1Xi equals the number

of vertices in U . Consider the following three cases:
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Global-Partition(G, δ, α)
/* G = (V,E): a graph stored in an adjacency list with ∆(G) ≤ d;
δ, α: the arguments of the nonexpanding sets */

begin

1: (π1, . . . , πn)← random permutation of vertices in V ;
2: U ← ∅; P← ∅;
3: for i← 1 to n do
4: if πi is still in the graph then
5: if there exists a (δ, α)-nonexpanding set I in G that contains πi then
6: S ← NG(I);
7: else
8: I ← {πi}; S ← NG(πi);
9: end if

10: U ← U ∪ S; P← P ∪ {(I ∪ S)};
11: remove vertices in I ∪ S from G;
12: end if
13: end for
end

Algorithm 5.3: Global-Partition: the global partitioning algorithm.

(i) vi is not contained in any nonexpanding set of G;

(ii) vi is contained in some nonexpanding set of G.

Case (i) occurs with probability at most ε/β by Lemma 5.3. By Line 8 of the

algorithm, we derive that Xi ≤ d in this case. Note that in this case if vi ∈ NG(I)

for some nonexpanding set I of G, then by definition we have Xi = 0. As for case

(ii), it is clear that Xi ≤ δ = ε/β. Therefore, for each 1 ≤ i ≤ n, we have

E[Xi] ≤
ε

β
+ d · ε

β
≤ 2εd

β
,

and the expected number of vertices in U is E[
∑n

i=1Xi] ≤ 2εdn/β by the union

bound. Furthermore, Markov’s inequality implies that the probability of |U | > εn/4

is at most 8d/β. Thus, the probability of |U | ≤ εn/4 is at least 1− 8d/β. 2

5.2.3 The partitioning oracle and the property tester for Ptw≤k

Let P be the partition obtained by Algorithm Global-Partition with δ = ε/β and

α = ζ(k, d, ε). Each set A in the partition P is the union of a set I and its open

neighborhood S, which are referred as AI and AS respectively. We use P[v] to denote

the set in P which contains v. Clearly, we have U =
∪

v∈V (P[v])S.
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Definition 5.4 ([83]). We say that O is a (τ, ω)-partitioning oracle for a graph

class G if given query access to a graph G = (V,E) in the adjacency-list model, it

provides query access to a partition P of V such that for a query about v ∈ V , O
either returns P[v]I or answers that v ∈ U . Furthermore, the partition P has the

following properties:

• P is a function of the graph and random bits of the oracle. In particular, it

does not depend on the order of queries to O.

• For every v ∈ V , |(P[v])I | ≤ ω and G[(P[v])I ] is connected.

• If G ∈ G, then |U | ≤ τn with probability at least 82
90

.

Lemma 5.5. For any ε ∈ (0, 1), there is an (ε/4, ζ(k, d, ε))-partitioning oracle for

the graph class Ptw≤k, which consists of graphs G = (V,E) with ∆(G) ≤ d and

tw(G) ≤ k, where ζ(k, d, ε) = 4β2d(k + 1)/ε2 and β = 90d.

Proof. By Lemma 5.4, with parameters δ = ε/β, α = ζ(k, d, ε) = 4β2d(k + 1)/ε2,

and β = 90d, Algorithm Global-Partition computes connected components of G− U
of size at most ζ(k, d, ε). Moreover, the probability that Algorithm Global-Partition

returns set U of size at most εn/4 is at least 1 − 8/90. Hence, Algorithm Global-

Partition is an (ε/4, ζ(k, d, ε))-partitioning oracle for the graph class Ptw≤k. The

lemma is then proved. 2

Define by BG(v, r) = {u ∈ V (G) | d(u, v) ≤ r} the set of vertices in G of distance

at most r from v. Our property tester for testing tw(G) ≤ k is given as Algorithm

Treewidth-Tester, whereO is an (ε/4, ζ(k, d, ε))-partitioning oracle for the graph class

Ptw≤k. Be noted that we do not care about the complexity of constructing the oracle

O for the moment. In the next subsection, we shall present how to simulate O in

time independent of n.

We say that the set U obtained by the partitioning oracle O of Algorithm

Treewidth-Tester is a helpful dividing set if |U | ≤ εn/4. It is easy to see that for

any graph G = (V,E) with ∆(G) ≤ d and tw(G) ≤ k, Lemma 5.5 implies that there

exists an (ε/4, ζ(k, d, ε))-partitioning oracle which derives a helpful U .
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Treewidth-Tester(G,O, k)
/* G = (V,E): a graph stored in an adjacency list with ∆(G) ≤ d;
O: an (ε/4, ζ(k, d, ε))-partitioning oracle for Ptw≤k;
k: an integer parameter. */

begin

1: /* Stage I: */
2: f ← 0;
3: for j ← 1 to t1 do
4: pick a vertex v ∈ V uniformly at random;
5: if O says v ∈ U then
6: f ← f + 1;
7: end if
8: end for
9: if f/t1 ≥ 3ε/8 then

10: return “no”;
11: end if
12: /* Stage II: */
13: select independently and uniformly at random a set S ⊂ V of size t2;
14: if G[

∪
s∈S BG(s, ζ(k, d, ε)− 1)] has treewidth greater than k then

15: return “no”;
16: else
17: return “yes”;
18: end if
end

Algorithm 5.4: Treewidth-Tester: a property tester for testing Ptw≤k in the sparse
model.

Lemma 5.6. Let G = (V,E) be a graph with ∆(G) ≤ d. If the set U computed

by the (ε/4, ζ(k, d, ε))-partitioning oracle of Algorithm Treewidth-Tester is a helpful

dividing set and t1 = 256/ε2, then the probability that f/t1 ≥ ε/2 (in other words,

f ≥ t1ε/2) is at most 1/1000.

Proof. Let χU
v be an indicator random variable such that, for v ∈ V , χU

v = 1 if

v ∈ U and χU
v = 0 otherwise. Then f =

∑
v∈S χ

U
v denotes the sum of the indicator

random variables χU
v for v ∈ S. By the assumption that U is a helpful dividing set,

we have Pr[χU
v = 1] ≤ ε

4
. Let µ denote E[f ]. Hence, we have

µ = E

[∑
v∈S

χU
v

]
≤ ε

4
· |S| = ε

4
· 256

ε2
=

64

ε
.
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Thus by the Chernoff bound, we have

Pr

[
f ≥ 3ε

8
t1

]
= Pr

[
f ≥ 96

ε

]
≤ Pr

[
f ≥

(
1 +

1

2

)
· µ
]

≤
(

e1/2

(1 + 1/2)(1+1/2)

)64/ε

≤
(

e1/2

(1 + 1/2)(1+1/2)

)64

< 0.001.

2

To make discussions concise, herein we say that Algorithm Treewidth-Tester ac-

cepts the input graph G if it answers “yes” and rejects G if it answers “no”.

Theorem 5.3. With t1 = 256/ε2 and t2 = 4/ε, Algorithm Treewidth-Tester accepts

a graph of treewidth no larger than k and rejects a graph ε-far from having treewidth

at most k both with probability greater than 2/3, respectively.

Proof. Algorithm Treewidth-Tester uses the (ε/4, ζ(k, d, ε))-partitioning oracle de-

scribed in Lemma 5.5. The probability that the oracle computes a helpful dividing

set U is at least 82/90. For a graph G of tw(G) ≤ k, Algorithm Treewidth-Tester

might reject it in Step 10 if the set U is not a helpful dividing set or U is a helpful

dividing set but f/t1 > ε/2. By Lemma 5.6, the probability that U is not a helpful

dividing set but f/t1 > ε/2 is less than 1/1000. Thus Algorithm Treewidth-Tester

rejects G in Step 10 with probability at most 8/90 + (82/90) · (1/1000) < 0.1. Since

every induced subgraph of G must have treewidth at most k, Algorithm Treewidth-

Tester never rejects G in Step 15. Thus, G is accepted by Algorithm Treewidth-Tester

with probability at least 9/10 > 2/3.

Consider the case when G is ε-far from tw(G) ≤ k. Algorithm Treewidth-Tester

can only accept G in Step 17. We finished the proof by the following two cases that

whether the set U computed by the oracle is a helpful dividing set or not.

(1) Suppose that the set U computed by the oracle is of size greater than εn/2.

We claim that G will be rejected by Algorithm Treewidth-Tester in Step 10

with probability at least 0.86. Similar to the proof of Lemma 5.6, let zU
v

be an indicator random variable such that zU
v = 1 if v ∈ U and zU

v = 0
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otherwise. Then f =
∑

v∈S z
U
v denotes the number of vertices picked in Step 4

of Algorithm Treewidth-Tester which are in U . Let µ′ denote E[f ]. Since

|U | > εn/2, we derive that Pr[zU
v = 1] > ε/2, which implies that µ′ > (ε/2) ·

|S| = (ε/2) · t1 = (ε/2) · 256/ε2 = 128/ε. Hence, by the Chernoff bound we

obtain that G is accepted with probability at most

Pr

[
f <

3ε

8
t1

]
= Pr

[
f <

96

ε

]
= Pr

[
f <

3

4
· 128

ε

]
≤ Pr

[
f ≤

(
1− 1

4

)
µ′
]

≤ e−µ′·( 1
4)

2
· 1
2

≤ e−
2
ε

< 0.14,

so G is rejected with probability at least 0.86 > 2
3
.

(2) Consider the case that the set U computed by the oracle is of size at most εn/2.

With probability at most 1 the algorithm enters Stage II (Step 12). Note that

G can be accepted by Algorithm Treewidth-Tester only when the algorithm

enters Stage II. Then, by the definition of U we derive that every connected

component of G − U is of size at most ζ(k, d, ε), and hence of diameter no

more than ζ(k, d, ε) − 1. In other words, by removing at most εdn/2 edges

that are incident with vertices in U from G we obtain a graph G′ such that

the diameter of every connected component of G′ is no greater than ζ(k, d, ε).

By the assumption that G is ε-far from tw(G) ≤ k, we know that G′ is still

(ε/2)-far from tw(G) ≤ k. This implies that at least εn/2 vertices belong

to components of treewidth greater than k. Therefore, the probability that

no vertex of S selected in Step 13 is in a connected component of treewidth

greater than k is (1−ε/2)t2 , which is at most ((1−ε/2)−2/ε)−2 < e−2 < 0.14 by

setting t2 = 4/ε. Thus in this case, G is rejected with probability at least 0.86.
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By the above analysis in cases (1) and (2), the probability that G is accepted is

Pr
[
G is accepted by Algorithm Treewidth-Tester : |U | > εn

2

]
+

Pr
[
G is accepted by Algorithm Treewidth-Tester : |U | ≤ εn

2

]
≤ 1 · 0.14 + 1 · 0.14

≤ 1

3
.

Therefore, the algorithm rejects G with probability at least 1 − 1/3 > 2/3. The

theorem is then proved. 2

By Lemma 5.4, we know that the number of vertices in U found in Algo-

rithm Global-Partition is at most εn/4 with probability 1− 8d/β = 82/90 by taking

β = 90d. Next, we describe how to simulate Algorithm Global-Partition in time

independent of n to have an efficient constant-time partitioning oracle.

5.2.4 Simulating the partitioning oracle in constant-time

Given a vertex v of G = (V,E), the partitioning oracle has to answer the question

that whether v is in U or v is in (P[u])I for some u ∈ V . To fulfill this task efficiently,

in the following we slightly modify the algorithm proposed by Hassidim et al. [83]

which simulates the oracle locally.

The simulating algorithm. Instead of generating a random permutation in Al-

gorithm Global-Partition, for each query of a vertex v ∈ V , we independently assign

v a number r(v) in [0, 1] uniformly at random1, and then compute Iv and Sv. Note

that we only generate r(v) when it is necessary. To compute Iv and Sv, we first

recursively compute Iu and Su for each u with r(u) < r(v) and distance to v at

most λ, where λ will be determined later. If v ∈ Iu for one of those u, then set

Iv = Iu, Sv = Su, and return v 6∈ U . If v ∈ Su for one of those u, then return v ∈ U .

Otherwise, we exhaustively search for a nonexpanding component containing v. If

such a nonexpanding component, say I, is found, we set Iz = I and Sz = NG(I)

for all z ∈ I. If no such a nonexpanding component exists, we set Iv = {v} and

1An arbitrary random real numbers in [0, 1] cannot be generated in practice, nevertheless, it
suffices to “discretize” the range [0, 1] so that the probability that two edges are assigned the same
number is negligibly small.
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Sv = NG(v) and return v 6∈ U . Note that all vertices in Iu that we recursively

computed are no longer left in the graph.

We set λ = 2·ζ(k, d, ε) ≤ 8β2d(k+1)/ε2 = 64800d3(k+1)/ε2 due to the following

reasons. For each vertex u with r(u) < r(v), Iu and Su are supposed to be computed

earlier than Iv and Sv. Moreover, since the graph induced by a nonexpanding set I

and its open neighborhood NG(I) has diameter at most ζ(k, d, ε), a vertex u could

be either in Iv ∪ Sv or in Iw ∪ Sw, where v and w are two vertices of distance

λ = 2 · ζ(k, d, ε) in the graph. Thus, Iv and Sv should be computed after Iu and Su,

for all vertices u with r(u) < r(v) and distance to v at most λ, are computed.

Let Ĝ = (V, Ê) be a graph where Ê = {(u, v) | u, v ∈ V, dG(u, v) ≤ λ}. The

degree of Ĝ is bounded by d+ d2 + . . .+ dλ = d(dλ − 1)/(d− 1) < 2dλ. We denote

that D = 2dλ. We define a function fr : V 7→ A recursively, using a function

g : V × (V × A)∗ 7→ A, where A =
∪

v∈V (P[v])I ∪ U , as follows. For each vertex v,

we define that

fr(v) = g(v, {(u, fr(u)) | (v, w) ∈ Ê, r(u) < r(v)}).

The function value fr(v) depends on fr(u) for r(u) < r(v) and (v, u) ∈ Ê (i.e., u

is of distance at most D in the graph G). Clearly, fr(v) corresponds to a query to

a partitioning oracle O at a vertex v. Note that the computation time required to

compute fr(v) is in proportion to the number of queries incurred in its recursive

computation. These queries form a rooted tree when we regard each of them as a

node of the tree and fr(v) as the root. Hence the number of queries incurred during

computing fr(v) is equal to the size of such a tree of recursion, which consists of

paths starting at the node fr(v). Lemma 5.7, which is basically proved by Nguyen

and Onak [97], gives the expected number of queries to O during computing fr(v).

To make our analysis self-contained, we present the lemma as well as its proof as

follows.

Lemma 5.7 (Nguyen and Onak [97], Lemma 12). Given Ĝ = (V, Ê) with ∆(Ĝ) ≤ D

and for each query to the partitioning oracle O at a vertex v ∈ V , the simulating

algorithm computes fr(v) = g(v, {(u, fr(u)) | (v, w) ∈ Ê, r(u) < r(v)}), then the

expected number of queries to O performed by the algorithm during computing fr(v)

is at most 4D.
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Proof. To compute fr(v), the simulating algorithm starts from computing fr(v)

with r(v) ∈ [0, 1] chosen uniformly at random and explores all paths w0 = v, w1, . . . , wh

in Ĝ such that r(w0) > r(w1) > . . . > r(wh) such that r(w0) > r(w1) > . . . > r(wh)

for some integer h ≥ 0. Let Q(x) be an upper bound on the expected num-

ber of queries to O for any vertex v with r(v) = x. By the definition of fr(v)

we know that Q(x) ≤ Q(y) whenever x ≤ y. Let u1, u2, . . . , u` be the neigh-

bors of v in Ĝ, where ` ≤ D, and let r(ui) = yi for each i ∈ [`]. To compute

fr(v), we first examine its neighbors, and then for each of its neighbors ui with

yi < r, we explore all paths starting from ui. The expected number of queries

incurred on each path starting from ui is then bounded by Q(yi). Thus we have

Q(x) ≤ 1 +
∑`

i=1 Pr[yi ≤ x] · E[Q(yi) | yi < x]. If we substitute x by i/2D for

1 ≤ i ≤ 2D, we have

Q

(
i

2D

)
≤ 1 +

D∑
j=1

E

[
Q(yj)

∣∣∣∣ yj <
i

2D

]
·Pr

[
yj <

i

2D

]

≤ 1 +
D∑

j=1

i∑
h=1

E

[
Q(yj)

∣∣∣∣ yj ∈
[
h− 1

2D
,
h

2D

)]
·Pr

[
yj ∈

[
h− 1

2D
,
h

2D

)]

≤ 1 +
D∑

j=1

i∑
h=1

Q

(
h

2D

)
· 1

2D

≤ 1 +
1

2
·

i∑
h=1

Q

(
h

2D

)

= 1 +
1

2
·Q
(

i

2D

)
+

1

2
·

i−1∑
h=1

Q

(
h

2D

)
.

Hence we obtain that

Q

(
i

2D

)
≤ 2 +

i−1∑
h=1

Q

(
h

2D

)
.

We prove that Q(i/2D) ≤ 2i by induction on i as follows. For i = 1, it clearly holds

that Q(1/2D) = 2 ≤ 21. Assume that it holds for i ≤ a− 1, a ≥ 2. Then for i = a,

Q

(
h

2D

)
≤ 2 +

a−1∑
h=1

Q

(
h

2D

)
≤ 2 +

a−1∑
h=1

2h = 2a.

Therefore, since Q(.) is a monotonically increasing, for each v ∈ V we have

Q(r(v)) ≤ Q(1) ≤ 22D = 4D.
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Thus, the lemma is proved. 2

Lemma 5.7 implies that the expected number of queries to the oracle performed

in Stage I of Algorithm Treewidth-Tester is at most t1·4D. To have a bounded number

of queries to the oracle, we modify Algorithm Treewidth-Tester by halting the oracle

and ending the execution of Algorithm Treewidth-Tester (at Step 5) whenever a query

to the oracle incurs more than 25600·4D/ε2 queries. By Markov’s inequality, such an

event happens in a query with probability at most 4D/(25600 · 4D/ε2) = ε2/25600.

By the union bound, the probability that this event happens during any one of

the t1 queries is at most t1 · ε2/25600 = (256/ε2) · ε2/25600 = 0.01. Although

the modified Algorithm Treewidth-Tester may stop executing with probability at

most 0.01, together with the error probability clarified in the proof of Theorem 5.3,

Theorem 5.3 still holds. The total number of queries to the oracle is then bounded

by O(t1 · 4D/ε2) = O(4D/ε4).

For each vertex v of G, a nonexpanding component containing v can be found

in O(2dζ(k,d,ε)−1 · d · ζ(k, d, ε)) time by exhaustively exploring the subsets of vertices

that are at distance at most ζ(k, d, ε) − 1 from v, and then checking if any one of

these subsets fulfills the three conditions of Definition 5.1. The following lemma

shows that the complexity of finding such a nonexpanding set can be improved to

O(2ζ(k,d,ε) log ζ(k,d,ε)) by exhaustively examining connected induced subgraphs contain-

ing v.

Lemma 5.8. Given a graph G = (V,E) with ∆(G) = d and a designated vertex

v. Then all the connected induced subgraphs of G of size at most α that contain

v can be found in O((α − 1)!dα−1) time. Furthermore, a nonexpanding component

containing v can be found in O(2ζ(k,d,ε) log(d·ζ(k,d,ε))) time.

Proof. To search for a connected induced subgraph of G of size at most α that

contains the designated vertex v, we use a search tree algorithm which works recur-

sively and starts branching at v to exhaustively search for connected components

containing v. Whenever the algorithm branches on a vertex u, it visits u then re-

cursively branches on every unvisited vertex which is adjacent to any visited one.

Whenever the number of visited vertices achieves α, the algorithm stops branching

(the recursion stops). The behavior of this algorithm can be represented as a tree,
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say T. Each tree node of T corresponds to a vertex on which the algorithm branches.

Thus, the path on T from the root to any node corresponds to a connected induced

subgraph of G. In particular, the path on T from the root to any leaf node corre-

sponds to a connected induced subgraph of G with α vertices. Since it is clear that

every connected induced subgraph of G containing v can be found by this search tree

algorithm, the number of induced subgraphs of G of size at most α that contains v

is bounded by the number of nodes of T. Next, we prove by induction on α that

the number of nodes in T, say T (α), is at most (α− 1)!dα−1.

Since T (1) = 1 (i.e., the connected induced subgraph of G is simply a vertex

v), it is easy to see that T (α) ≤ (α − 1)!dα−1 holds for α = 1. Assume that

T (α) ≤ (α− 1)!dα−1 holds for α = `− 1, that is, T (`− 1) ≤ (`− 2)!d`−2. Since each

vertex in a connected induced subgraph of G has at most d− 1 neighbors that are

unvisited by the algorithm and each connected induced subgraph of G computed for

T (`− 1) has at most `− 1 vertices, we obtain that

T (`) = T (`− 1) + T (`− 1) · (`− 1)(d− 1)

= (`− 2)!d`−2 + (`− 1)!d`−2 · (d− 1)

= (`− 2)!d`−2 + (`− 1)!d`−1 · (1− 1/d)

= (`− 1)!d`−1 + ((`− 2)!d`−2 − (`− 1)!d`−2)

≤ (`− 1)!d`−1.

Thus, by the principle of mathematical induction, we proved that T (α) ≤ (α −
1)!dα−1. Furthermore, for each connected induced subgraph of G of size at most

ζ(k, d, ε) that contains v, we can check whether it is a nonexpanding component by

examining its neighbors. Therefore, the time complexity for finding a nonexpanding

component containing v is

O((ζ(k, d, ε)− 1)!dζ(k,d,ε)−1 · d · ζ(k, d, ε))

= O(ζ(k, d, ε)!dζ(k,d,ε))

= O(2ζ(k,d,ε) log ζ(k,d,ε) · 2log dζ(k,d,ε)

)

= O(2ζ(k,d,ε) log ζ(k,d,ε) · 2ζ(k,d,ε) log d)

= O(2ζ(k,d,ε) log(dζ(k,d,ε))).

2
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Therefore, the time complexity for computing all the queries to O is O((4D/ε4) ·
2ζ(k,d,ε) log(d·ζ(k,d,ε))) = O(42dλ · 2ζ(k,d,ε) log(dζ(k,d,ε))/ε4) = O(24dλ+ζ(k,d,ε) log(dζ(k,d,ε))/ε4) =

O(24d2ζ(k,d,ε)+ζ(k,d,ε) log(dζ(k,d,ε))/ε4). Thus, we have the following lemma.

Lemma 5.9. The time complexity of Stage I of Algorithm Treewidth-Tester is

O

(
24d2ζ(k,d,ε)+ζ(k,d,ε) log(dζ(k,d,ε))

ε4

)
,

where ζ(k, d, ε) = 32400d3(k + 1)/ε3.

Theorem 5.4. The time complexity of Algorithm Treewidth-Tester is

O

(
24d2ζ(k,d,ε)+ζ(k,d,ε) log(dζ(k,d,ε))

ε4
+
ck

3 · dζ(k,d,ε)−1

ε

)
= 2dO(kd3/ε2)

,

where ζ(k, d, ε) = 32400d3(k + 1)/ε2, and c > 1 is a constant.

Proof. In Stage II, we select t2 = 4/ε vertices in G, each of them is contained in

some component of size at most dζ(k,d,ε)−1. Since checking whether one of the above

connected components has treewidth at most k can be done in O(ck
3 ·dζ(k,d,ε)−1) time

for a constant c > 1 [28], to see whether the induced subgraph of these t2 vertices

has treewidth at most k only takes O(t2 · ck
3 · dζ(k,d,ε)−1) = O(ck

3 · dζ(k,d,ε)−1/ε) time.

Thus, together with Lemma 5.9 we obtain that the running time complexity of

Algorithm Treewidth-Tester as claimed in the theorem. 2

5.2.5 An improved partitioning oracle

Czygrinow et al. [55] proposed distributed approximation algorithms for several NP-

hard optimization problems. Inspired by the partitioning algorithm used in [55],

Onak [102] proposed a distributed algorithm to derive a much simpler partitioning

oracle for minor-closed properties. Using this simple and efficient partitioning oracle,

Onak derived an O(dpoly(1/ε)) property tester for minor-closed properties. we show

that Algorithm Treewidth-Tester runs in time d(k/d)O(k2)
+ 2poly(k,d,1/ε) based on the

approaches in [55, 102] for constructing an efficient partitioning oracle.

The arboricity of an undirected graph G = (V,E) is the minimum number of

forests into which E can be partitioned. Compared with the facts used in [102]

on H-minor free graphs for an arbitrary fixed minor H, we use the following facts
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about treewidth and arboricity of a graph. Fact 5.1 is mentioned in Bodlaender’s

work in [28], and Fact 5.2 follows from the well-known Nash-Williams Theorem [91]

and Proposition 2 in [61].

Fact 5.1 ([28]). For every finite graph G = (V,E) ∈ Ptw≤k, |E| < k · |V |.

Fact 5.2 ([61, 91]). For every finite graph G = (V,E) ∈ Ptw≤k, E can be partitioned

into at most k forests.

Assume that the input graph has weights on its edges. The following we define

what a partition contraction is.

Definition 5.5. Let (V1, . . . , Vp) be a partition of the vertex set V of a weighted

graph G = (V,E,w), where p ≥ 1 is a positive integer. The partition contraction

G | (V1, . . . , Vp) ofG with respect to (V1, . . . , Vp) is a weighted graphG′ = (V ′, E ′, w′)

such that the following conditions hold.

• V ′ = {z1, . . . , zp}, where zi corresponds to Vi for i ∈ [p];

• E ′ = {(zi, zj) | zi, zj ∈ V ′, and there exist vi ∈ Vi, vj ∈ Vj, i 6= j, such that

(vi, vj) ∈ E};

• w′((zi, zj)) =
∑

v∈Vi, v′∈Vj

w(v, v′).

Note that if G[Vi] is connected for each i ∈ [p], then G | (V1, . . . , Vp) is actually

formed by a series of edge contractions in G[Vi]’s. Hence the following fact holds

since Ptw≤k is minor-closed.

Fact 5.3. Let G = (V,E) be a graph in Ptw≤k and (V1, . . . , Vp) be a partition of V .

If G[Vi] is connected for each i ∈ [p], then G | (V1, . . . , Vp) is also in Ptw≤k.

Algorithm Improved-Partition iterates for 7 · (36k− 1) · dlog(1−1/(36k))(ε/k)e times.

Initially, each edge of the input graph G has weight 1. In each iteration (i.e., Line 5–

25), the algorithm finds stars (i.e., a tree with exactly one internal node and other

vertices as leaves). For each of these stars, each leaf, say zj, is labelled by 1, the

internal node, say zi, is labelled by 0, and the edge weight of (zi, zj) is maximum

among all the edges incident to zj. Then, the algorithm contracts these stars (see

Lines 16–25) to construct the corresponding partition contraction and proceeds to
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Improved-Partition(G)
/* G: a weighted graph stored in an adjacency list with ∆(G) ≤ d. */
/* Each edge of G has weight 1 initially. */
begin

1: P← {{v} | v ∈ V }; /* the initial partition of V ; */
/* G̃← G | ({v1}, {v2}, . . . , {vn}) for vi ∈ V */;

2: p← n;
3: Vi ← {vi} and zi stands for Vi for each i ∈ [p];
4: repeat
5: for each vertex zi of G̃ do
6: label zi by a number in {0, 1, 2} uniformly at random;
7: end for
8: for each vertex zi of G̃ do
9: z′i ← arg max

zj∈NG̃(zi)

w(zi, zj);

10: end for
11: for each vertex zi of G̃ do
12: if zi is labelled by 0 then
13: construct Li = {j ∈ [p] | z′j = zi and zj is labelled by 1};
14: end if
15: end for
16: for each vertex zi of G̃ do /* contract the 0-1 stars and update G̃ */
17: if zi is labelled by 0 then
18: Vi ← Vi ∪

∪
j∈Li

Vj;

19: E(G̃)← E(G̃) ∪
{

(zi, zh) | zh ∈ NG̃

(∪
j∈Li

zj

)
\NG̃[zi]

}
;

20: for zh ∈ NG̃

(∪
j∈Li

zj

)
\ {zi} do

21: w(zi, zh)← w(zi, zh) +
∑

j∈Li,u∈Vj ,v∈Vh
w(u, v);

22: end for
23: remove

∪
j∈Li

zj from G̃;

24: end if
25: end for
26: until 7 · (36k − 1) · dlog(1−1/(36k))(ε/k)e times
end

Algorithm 5.5: Improved-Partition: an improved partitioning oracle for Ptw≤k.
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next iteration. Note that these stars found in each iteration, say them 0-1 stars, are

vertex-disjoint due to the following reasons. Every vertex zi is labelled by exactly

one number in {0, 1, 2} (by Line 6). Suppose that a vertex zi is labelled by 1, then

it can only be selected as a leaf of a star by the algorithm. Since the algorithm picks

exactly one neighbor z′i of zi, zi can only be in at most one found star. On the other

hand (i.e., zi is labelled by 0), zi can only be selected as an internal node of a star

by the algorithm, and hence it can only be in at most one found star.

As the 0-1 stars found in each iteration are vertex-disjoint, to simplify the analysis

of the time complexity of the algorithm, we regard Algorithm Improved-Partition as

a local distributed algorithm. It runs on a synchronous network G, where each

vertex corresponds to a computation unit and each edge represents an underlying

communication link. Such an algorithm consists of a constant number of rounds. In

each communication round, every vertex in G can send messages to all its neighbors,

receive messages from all its neighbors, and perform some local computations. Note

that in each iteration of Lines 5–25, the number of communication rounds of the

algorithm is O(1).

Lemma 5.10. Let (V1, . . . , Vp) be a partition of V of a graph G = (V,E,w) ∈ Ptw≤k

such that G[Vi] is connected for each i ∈ [p]. Then Line 5–25 in Algorithm Improved-

Partition turns G1 = G | (V1, . . . , Vp) into a graph G2 = G | (V ′
1 , . . . , V

′
p′) such

that with probability at least 1/(36k − 1) the total weight of edges in G′ is at most

(1− 1/(36k)) of the total weight of edges in G.

Proof. Let W be the sum of all the edge weights in G1. By Fact 5.2, we know that

the edge set of G1 can be partitioned into at most k forests. Thus, at least one of

these forests has weight at leastW/k by the pigeonhole principle. Note that if we root

every tree in this forest and put orientation on each edge towards the corresponding

root, then there is at most one edge directed from each vertex in the forest. We

denote by av the weight of such an edge directed from vertex v. When running

Algorithm Improved-Partition on G1, every vertex zi (regarded as a computation

unit) selects an incident edge with maximum weight (Line 9), which is clearly at

least azi
, and an edge can be selected at most twice by its two endpoints, the total

weight of selected edges is at least W/2k. By the labelling process (Line 6), we
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have that each of these edges is contracted with probability 1/9 (i.e., the probability

that zi is labelled by 1 and z′i is labelled by 0 for a selected edge (wi, w
′
i)). Thus the

expected weight of contracted edges is (W/2k)/9 = W/18k. By Markov’s inequality,

we obtain that with probability at most

1− 1/(18k)

1− 1/(36k)
= 1− 1

36k − 1

the total weight of uncontracted edges is greater than W (1− 1/(36k)). Hence, the

proposition is proved. 2

Proposition 5.3. Let ε ∈ (0, 1). For every graph G = (V,E) ∈ Ptw≤k, there exists a

local distributed partitioning algorithm that requires (k/ε)O(k2) communication rounds

and determines a partition (V1, . . . , Vp) of G such that:

• the diameter of each connected component Vi is (k/ε)O(k2);

• the number of cut edges is at most ε|V | with probability at least 82/90.

Furthermore, the total amount of computation for each vertex is bounded by d(k/ε)O(k2)
.

Proof. Algorithm Improved-Partition iteratively runs the loop in Lines 5–25 for 7 ·
(36k−1) · dlog(1−1/(36k))(ε/k)e times. Each iteration produces a partition of V based

on the one obtained in the previous iteration. Here we claim that the diameter of

each connected component in the ith iteration is bounded by 3i − 1. We prove the

claim by induction on i as follows. For i = 0, each connected component is simply

a single vertex hence the claim is clearly true. Assume that the claim holds for

i ≤ ` − 1 and denote by di the diameter of each connected component in the ith

iteration. Recall that each connected component in the `th iteration is formed by

contracting a 0-1 star in which each node of the star corresponds to a connected

component formed in the (` − 1)th iteration. It is easy to see that the diameter

of each connected component in the `th iteration is bounded by 3d`−1 + 2 due to

the structure of a star. Since d`−1 ≤ 3`−1 − 1 by induction hypothesis, we have

d` ≤ 3d`−1 +2 ≤ 3(3`−1−1)+2 ≤ 3`−1. Hence the claim is proved. Thus we obtain

that at the end of all the iterations, the diameter of each connected component is

bounded by 37·(36k−1)·dlog(1−1/(36k))(ε/k)e ≤ 37·36k·log(1+1/(36k−1))(k/ε) · 37·36k. Since

log1+ 1
36k−1

(
k

ε

)
≤ log1+ 1

36k

(
k

ε

)
= log3

(
k

ε

)log−1
3 (1+1/(36k))

,
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we have

37·36k·log(1+1/(36k−1))(k/ε) =

(
k

ε

) 7·36k
log3(1+1/(36k))

≤
(
k

ε

) 7·36k
log

e2
(1+1/(36k))

≤
(
k

ε

) 2·7·36k
1/(36k)−1/(36k)2/2

=

(
k

ε

)O(k2)

.

Thus, the diameter of each connected component is eventually bounded by (k/ε)O(k2).

The number of required communication rounds of the algorithm is then bounded

by (k/ε)O(k2).

By Lemma 5.10, an iteration of the loop decreases the number of edges cut

by the current partition by a factor of at most 1 − 1/(36k) with probability at

least 1/(36k− 1). Thus, the expected number of times that this happens is at least

7·dlog(1−1/(36k))(ε/k)e. By the Chernoff bound, we have that this happens fewer than

dlog(1−1/(36k))(ε/k)e times with probability at most e−7·(6/7)2/2 < 8/90. Therefore,

the algorithm finally produces a partition that cuts at most

|E| · (1− 1/(36k))log(1−1/(36k))(ε/k) < k|V | · (ε/k) = ε|V |

edges with probability at least 82/90. Since the size of each resulting connected

component is bounded by d(k/ε)O(k2)
and the degree of each vertex in any parti-

tion contraction of G is bounded by d · d(k/ε)O(k2)
= d(k/ε)O(k2)

, the total amount of

computation for each vertex is bounded by d(k/ε)O(k2)
. 2

In order to derive an (ε/4, ζ(k, d, ε))-partitioning oracle for Ptw≤k, we consider

the following further construction work. We substitute ε in Algorithm Improved-

Partition by ε/8. For each cut edge, we distinguish arbitrary one of its endpoints

by a cut vertex and add it into U . To simulate Algorithm Improved-Partition on a

queried vertex v, we first generate the subgraph BG(v, 2r) of G induced by vertices

with distance 2r from v, where r = 27·(36k−1)·dlog(1−1/(36k))(ε/k)e = (k/ε)O(k2). As the

algorithm simulating a local distributed algorithm [103], we run Algorithm Improved-

Partition sequentially on BG(v, 2r), which requires additional factor |BG(v, 2r)| ≤
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d(k/d)O(k2)
of the running time. Note that it makes the same decision about v as it

runs for r rounds on the whole graph G. No information originated from a vertex

with distance greater than r from v can reach v. The additional factor 2 of the term

BG(v, 2r) is due to that reason that the decision on the vertices at distance exactly

r from v can depend on those at distance at most 2r from v. Next, let us consider

the following well-known theorem.

Theorem 5.5 ([27, 30, 105]). Let G = (V,E) ∈ Ptw≤k, then there exists a subset

S ⊆ V of size at most k such that removing S from G results in connected components

of size at most |V |/2. Moreover, there exists an O(k2 · |V |) algorithm to find such a

set S.

Assume that C is a connected component obtained by Improved-Partition for

the queried vertex v and |C| is larger than ζ(k, d, ε). Using Theorem 5.5, we fur-

ther recursively partition C into smaller connected components until each com-

ponent is of size at most ζ(k, d, ε). Note that the computation of these smaller

connected components is independent of which vertex is the queried vertex. We add

the vertices removed during this further recursive partitioning algorithm into U .

Since ζ(k, d, ε) = O(32400d3(k + 1)/ε2), the depth of the recursion is at most

log(d(k/ε)O(k2)
/(kd3/ε2)) ≤ (log d) · (k/ε)O(k2). During each recursion of the further

partitioning algorithm, the ratio of the number of removed vertices to the size of

each connected component is at most k/(kd3/ε2) = ε2/d3 ≤ ε/8. Thus, plus the

previous εn/8 cut vertices added by Algorithm Improved-Partition, we derive that

|U | ≤ εn/4. Hence, we obtain an (ε/4, ζ(k, d, ε))-partitioning oracle for Ptw≤k.

Using the recursion-tree method [51], we obtain that the total time complexity

of this further recursive partitioning algorithm is (k2 ·d(k/ε)O(k2)
) ·(log d) ·(k/ε)O(k2) =

d(k/ε)O(k2)
. Therefore, substitute the partitioning oracle in Sect. 5.2.4 by the above

one for Ptw≤k, we obtain the following theorem.

Theorem 5.6. The time complexity of Algorithm Treewidth-Tester is

O

(
d(k/ε)O(k2)

+
ck

3 · dζ(k,d,ε)−1

ε

)
= d(k/ε)O(k2)

+ 2poly(k,d,1/ε),

where ζ(k, d, ε) = 32400d3(k + 1)/ε2, and c > 1 is a constant.
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Chapter 6

Concluding Remarks and Future Work

6.1 Minimum Quartet Inconsistency and Minimum Triplet
Inconsistency

There are another aspect of evolutionary tree reconstruction which focuses on rooted

evolutionary trees [1, 36, 73, 81, 96, 115]. A rooted evolutionary tree T is a rooted,

leaf-labeled binary tree such that the leaves of T are bijectively labeled by the taxa in

the taxon set S, and each internal node of T has exactly two children (see Figure 6.1

for an illustrating example).

Figure 6.1: A rooted evolutionary tree with six leaves.

Similar to quartets and quartet topologies, triplets and triplet topologies can be

defined as follows. A triplet topology is an evolutionary tree with three leaves. A

triplet {a, b, c} has a triplet topology either ((ab)c), ((ac)b), or ((bc)a) induced by a

rooted evolutionary tree, as Fig. 6.2 shows. Let Y be a set of triplet topologies over S.

We say that Y is complete if each triplet over S has exactly one topology in Y . We

denote by YT the set of all induced triplet topologies in a rooted evolutionary tree T .

105
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We say that Y is rooted tree-consistent if there exists a rooted evolutionary tree T

such that Y ⊆ YT . The parameterized Minimum Triplet Inconsistency problem

(parameterized MTI) is defined as follows.

The Parameterized Minimum Triplet Inconsistency problem (param-
eterized MTI)
Input: Given a complete set of

(
n
3

)
triplet topologies Y over a set S of n taxa

and a parameter k
Task: Determine if changing at most k triplet topologies in Y makes Y rooted
tree-consistent.

For the case that the set Y of triplet topologies is not necessarily complete,

determining if a set of triplet topologies Y is rooted tree-consistent can be done in

polynomial time [1] (In particular, it is O(min{|Y |n1/2, |Y | + n2 log n}) solvable by

Henzinger et al. [84]). This is different from that Quartet Compatibility problem for

unrooted evolutionary trees. The Maximum Consensus Tree from Rooted Triplets

problem (MCTT) is to find a rooted evolutionary tree that satisfies as many triplet

topologies in Y as possible. Wu [115] proved that the MCTT problem is NP-hard.

They also provided an O((|Y |+ n2)3n) algorithm for this problem.

For the case that the set Y of triplets topologies is complete (cf., minimally dense

in [39, 81]), Byrka et al. [39] showed that the minimum Triplet Inconsistency problem

is NP-hard, which implies that the parameterized MTI problem is NP-complete.

Recently, Guillemot and Mnich [81] gave a subexponential fixed-parameter algorithm

for the parameterized MTI problem, which runs in 2O(k1/3 log k) +O(n4) time.

Figure 6.2: Possible topologies of a triplet {a, b, c}.

One might be curious about whether our approaches for solving the parameter-

ized MQI problem can be applied to the parameterized MTI problem. Actually,

Proposition 1 in [81] implies that Y is rooted tree-consistent if and only if every
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Y ′ ⊆ Y over four taxa is rooted tree-consistent. A set of four taxa {a, b, c, d} is called

a local triplet conflict if the set of triplet topologies over {a, b, c, d} is not rooted tree-

consistent. Due to this proposition, our approaches using depth-bounded search tree

can be applied and it is likely to derive an O∗((1 + ε)k) fixed-parameter algorithm

for this problem, where ε > 0 can be arbitrarily small. It is also interesting to devise

a subexponential fixed-parameter algorithm for the parameterized MQI problem. It

deserves to be noted that the subexponential fixed-parameter algorithm in [81] relies

on an observation that one can focus on an obstruction subset Y ′ ⊆ Y which involves

the taxa belonging to local triplet conflicts. This observation is helpful since if Y is

a “yes” instance of the parameterized MTI problem, then Y ′ involves at most O(k2)

taxa. However, for the parameterized MQI problem, we could not obtain a similar

obstruction Q′ ⊆ Q of size bounded by a function of k since every taxon appears

in Q′ when the input Q of quartet topologies is not tree-like.

In addition, similar to the property testing and parameterized property testing

results on tree-consistency of quartet topologies, it is also interesting to consider

testing rooted tree-consistency of triplet topologies.

6.2 Concluding Remarks and Future Work on Parameter-
ized Property Testing

In Chapter 5, we have presented parameterized property testers for two graph prop-

erties PV C≤k and Ptw≤k in the sparse model, both of which are weakly uniform on k.

The parameterized problems corresponding to PV C≤k and Ptw≤k both admit efficient

fixed-parameter algorithms. This suggests the possibilities of devising parameterized

property testers for graph properties whose corresponding parameterized problems

are in FPT. Here, we propose a conjecture below.

Conjecture 6.1. Every parameterized graph problem in FPT admits an O(φ(k, 1/ε))

parameterized property tester that is weakly uniform on k, where φ is an arbitrary

function solely depending on the parameter k and ε.

As clarified in Chapter 5, there are some graph properties that are trivial to test,

even though their corresponding parameterized problems are in FPT. However,

there exist graph theoretical problems that are hard in both respects. Take k-
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coloring as an example. To determine if a graph admits a k-coloring is not in FPT

since it is NP-complete for even for k = 3 [72]. On the other hand, testing k-

colorability in the sparse model requires Ω(n) time [33]. This illustrates the cases

where introducing parameters for the property testing is not much helpful.

Naturally, we could relax the constraint on the time complexity of a parameter-

ized property tester to φ(k, 1/ε)·poly(n) for the properties corresponding to NP-hard

problems, where φ is an arbitrary function that solely depends on k and ε. However,

it might not be easy to devise such algorithms due to the reason that there are prop-

erties which do not admit O(poly(n/ε)) property testers unless NP ⊆ BPP [75].
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[81] S. Guillemot and M. Mnich: Kernel and fast algorithm for dense triplet in-

consistency. In Proceedings of the 7th Annual Conference on Theory and Ap-

plications of Model of Computation (TAMC 2010), Lecture Notes in Comput.

Sci., Vol. 6108, Springer-Verlag, 2010, pp. 247–257.

[82] S. Halevy, O. Lachish, I. Newman, and D. Tsur: Testing properties of

constraint-graphs. In Proceedings of the 22nd IEEE Annual Conference on

Computational Complexity (CCC 2007), pp. 264–277.

[83] A. Hassidim, J. A. Kelner, H. N. Nguyen, and K. Onak: Local graph par-

titions for approximation and testing. Proceedings of the 50th Annual IEEE

Symposium on Foundations of Computer Science (FOCS 2009), pp. 22–31.



BIBLIOGRAPHY 117

[84] M. R. Henzinger, V. King, and T. Warnow: Constructing a tree from home-

omorphic subtrees, with applications to computational evolutionary biology.

Algorithmica 24 (1999) 1–13.

[85] T. Jiang, P. E. Kearney, and M. Li: Some open problems in computational

molecular biology. J. Algorithms 34 (2000) 194–201.

[86] T. Jiang, P. E. Kearney, and M. Li: A polynomial time approximation scheme

for inferring evolutionary tree from quartet topologies and its application.

SIAM J. Comput. 30 (2001) 1942–1961.

[87] T. Kloks: Treewidth. Computations and Approximations. Lecture Notes in

Comput. Sci., Vol. 842, Springer-Verlag, 1994.

[88] J. Kneis, D. Mölle, S. Richter, P. Rossmanith: Divide-and-color. In Proceedings

of the 32nd International Workshop on Graph-Theoretic Concepts in Com-

puter Science WG 2006, Lecture Notes in Comput. Sci., Vol. 4271, Springer-

Verlag, 2006, pp. 58–67.

[89] C.-C. Lin: A program computing the branching number of a branching vector.

http://www.cs.ccu.edu.tw/~lincc/Program/fbr.exe

(The source code: http://www.cs.ccu.edu.tw/~lincc/Program/fbr.c)

[90] K. Mehlhorm: Data Structures and Algorithms, Volume 2: NP-Completeness

and Graph Algorithms. EATCS Monographs on Theoretical Computer Science,

Springer-Verlag, 1984.

[91] C. St.J. A. Nash-Williams: Decomposition of finite graphs into forests. J.

London Math. Soc. 39 (1964) p. 12.

[92] I. Newman: Testing of functions that have small width branching programs. In

Proceedings of the 41st IEEE Symposium on Foundations of Computer Science

(FOCS 2000), 2000, pp. 251–258.

[93] I. Newman: Testing of function that have small width branching programs.

SIAM J. Computing 31 (2002) 1557–1570.



118 BIBLIOGRAPHY

[94] I. Newman: Property testing of massively parametrized problems - A survey.

Property Testing - Current Research and Surveys, Lecture Notes in Comput.

Sci., Vol. 6390, Springer-Verlag, 2010, pp. 142–157.

[95] I. Newman and C. Sohler: Every property of hyperfinite graphs is testable.

In Proceedings of the 43th Annual ACM Symposium on Theory of Computing

(STOC 2011). Accepted.

[96] M. P. Ng and N. C.Wormald: Reconstruction of rooted trees from subtrees.

Discrete Appl. Math. 69 (1996) 19–31.

[97] H. N. Nguyen and K. Onak: Constant-time approximation algorithms via local

improvements. Proceedings of the 49th Annual IEEE Symposium on Founda-

tions of Computer Science (FOCS 2008), pp. 327–336.

[98] R. Niedermeier: Invitation to Fixed-Parameter Algorithms. Oxford University

Press, 2006.

[99] R. Niedermeier and P. Rossmanith: Upper bounds for vertex cover further

improved. In Proceedings of the 16th International Symposium on Theoretical

Aspects of Computer Science (STACS 1999), Lecture Notes in Comput. Sci.,

Vol. 1563, Springer-Verlag, 1999, pp. 561–570.

[100] R. Niedermeier and P. Rossmanith: A general method to speed up fixed-

parameter-tractable algorithms. Inform. Process. Lett. 73 (2000) 125–129.

[101] R. Niedermeier and P. Rossmanith: On efficient fixed-parameter algorithms

for weighted vertex cover. J. Algorithms 47 (2003) 63–77.

[102] K. Onak: New sublinear methods in the struggle against classical problems.

Ph.D. Thesis. Massachusetts Institute of Technology, 2010.

[103] M. Parnas and D. Ron: Approximating the minimum vertex cover in sublinear

time and a connection to distributed algorithms. Theoret. Comput. Sci. 381

(2007) 183–196.

[104] M. Parnas, D. Ron and R. Rubinfeld: Tolerant property testing and distance

approximation, J. Comput. System Sci. 72 (2006) 1012–1042.



BIBLIOGRAPHY 119

[105] N. Robertson and P. D. Seymour: Graph minors. II: Algorithmic aspects of

tree-width. J. Algorithms 7 (1986) 309–322.

[106] D. Ron: Property testing, in Handbook of Randomized Computing, Vol. II.

S. Rajasekaran, P. M. Pardalos, J. H. Reif, and J. D. P. Rolim, eds., Kluwer

Academic Publishers, Dordrecht, The Netherlands, 2001, 597–649.

[107] N. Robertson and P. D. Seymour: Graph minors, XX. Wagner’s conjecture.

J. Combin. Theory Ser. B 92 (2004) 325–357.

[108] R. Rubinfeld and M. Sudan: Robust characterization of polynomials with

applications to program testing. SIAM J. Comput. 25 (1996) 252–271.

[109] S. Snir, T. Warnow, and S. Rao: Short quartet puzzling: A new quartet-based

phylogeny reconstruction algorithm. J. Comput. Biol. 15 (2008) 91–103.

[110] M. Steel: The complexity of reconstructing trees from qualitative characters

and subtrees. J. Classification 9 (1992) 91–116.

[111] U. Stege and M. Fellows: An improved fixed-parameter-tractable algorithm for

vertex cover. Technical Report 318, Department of Computer Science, ETH
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Appendix A

Fundamental Notions on Graphs

Basic definitions of graphs. A graph is a pair G = (V,E) of sets such that

E ⊆ V × V . Thus, E consists of 2-element subsets of V . The elements of V are

the vertices and the elements of E are the edges of the graph G. Sometimes we also

denote by V (G) and E(G) the vertex set and the edge set of G, respectively. In this

dissertation, graphs are always finite (i.e., V and E are finite) and simple (i.e., no

two elements of E are equal). An edge of an undirected graph with endpoints u and

v is denoted by (u, v) or (v, u), while in a directed graph, an directed edge from u

to v is always denoted by (u, v). The endpoints of an edge (u, v) ∈ E are said to

be adjacent, and one is said to be a neighbor of the other. We say that a vertex v

is incident with an edge e ∈ E or e is incident to v if v is an endpoint of e. For a

graph G = (V,E), we set |V | = n and |E| = m unless they are specified otherwise.

Let degG(v) be the number of edges incident to v in the graph G, that is, the vertex

degree of v in G). Let NG(v) = {u ∈ V | (u, v) ∈ E} denote the set of vertices

adjacent to v (i.e., the open neighborhood of v) in G . For a subset V ′ ⊆ V , we

define NG(V ′) = {u ∈ V \ V ′ | ∃v ∈ V ′, (u, v) ∈ E}. Let NG[v] = NG(v) ∪ {v} and

NG[V ′] = NG(V ′) ∪ V ′ denote the closed neighborhood of v and V ′ respectively. We

say that a vertex is isolated if its vertex degree is 0. A graph G = (V,E) is empty if

E = ∅. Given a graph G = (V,E), the complement of G is Ḡ = (V, V × V \ E).

Subgraphs and induced subgraphs. For two graphs G′ and G with V ′ =

V (G′) ⊆ V = V (G) and E ′ = E(G′) ⊆ E = E(G), we say that G′ is a sub-

graph of G. Furthermore, if G′ is a subgraph of G and G′ contains all the edges

(u, v) ∈ E(G) with u, v ∈ V (G′), we say that G′ is an induced subgraph of G or
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the subgraph of G induced by V ′. For a subset S ⊂ V , we denote by G[S] the

subgraph of G induced by S. With a slight abuse of notation, we denote by G− S
the subgraph of G induced by V \ S. A graph H is said to be a minor of a graph

G if H can be obtained from G using a sequence of vertex removals, edge removals

and edge contractions. For example, in Figure A, (b) is a minor of (a), and (c) is

a minor of (b). Note that both (b) and (c) are minors of (a). It is easy to see that

any subgraph of G is also a minor of G.

Figure A.1: Minors of a graph. (b) can be obtained by a series of vertex removals,
edge removals, and edge contractions on (a). (c) can be obtained by several edge
contractions on (b).

Paths, cycles, distance, and connected components. A path of length k is

a non-empty graph P = (V,E) with V = {v0, v1, . . . , vk}, E = {(v0, v1), (v1, v2), . . . ,

(vk−1, vk)}, and all vi 6= vj for any 0 ≤ i, j ≤ k, i 6= j. A path is simple if it has no

repeated vertices. A cycle of length k is obtained from a path P of length k − 1 by

adding an edge (vk, v0). Similarly, a cycle is simple if it has no repeated vertices. We

denote by d(u, v) the distance between u and v in the graph G, which is the shortest

length of a path between u and v. The greatest distance between any two vertices in

G is the diameter. A graph is said to be connected if there is a path between every

pair of vertices u and v in the graph, otherwise it is said to be disconnected. A tree is

a connected graph without any cycle as its subgraph. A connected component C of

a graph G is a connected subgraph of G with maximal size, i.e., adding any vertex

v ∈ V (G) \ V (C) results in a disconnected subgraph of G. G is called k-connected
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for an integer k > 0 if |V (G)| > k and G − X is still connected for every subset

X ⊆ V with |X| < k.

Independent sets and cliques. An subset I ⊆ V of a graph G = (V,E) is

called an independent set if u and v are not adjacent for each pair of vertices in I. A

clique C of a graph G = (V,E) is a subset of V such that vertices in C are pairwise

adjacent.

Graph coloring. A coloring of a graph G = (V,E) is a map f : V 7→ S such that

f(u) 6= f(v) whenever (u, v) ∈ E. The elements in S are called colors. We call f a

k-coloring of G if |S| = k. We say that G is k-colorable if it admits a k-coloring. The

chromatic number of a graph G is the minimum integer k such that G is k-colorable.

Matchings. A matching M of a graph G = (V,E) is a subset of E such that no

two edges in M share a common endpoint.

Monotone and hereditary graph properties. A graph property can be re-

garded as a set of graphs. We say that a graph property P is hereditary if for

each G ∈ P , every induced subgraph G′ of G is still in P . A graph property P is

monotone if for each G ∈ P , every subgraph G′ of G is still in P. Equivalently, a

graph property P is hereditary if removing any vertex from a graph that satisfying

P results a graph that still satisfies P , while a graph property P is monotone if

removing any vertex or any edge from a graph satisfying P results a graph that still

satisfies P .

Hyperfinite graphs. A graph G is called (ε, k)-hyperfinite if one can remove at

most εn edges from G to obtain a graph which has connected components of size

bounded by k. For a function ρ : R+ 7→ R+, a collection H of graphs is called

ρ-hyperfinite if every graph in H is (ε, ρ(ε))-hyperfinite for every ε > 0.

We refer to the textbooks or monographs, such as [22, 34, 57, 77], for more

information on graph theory.
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Appendix B

Selected Probabilistic Equations and In-
equalities

Here we give the probabilistic inequalities used in this dissertation. We focus on

discrete probabilities and discrete random variables. We denote by Pr[E] the prob-

ability of an event E, where Pr[·] denotes the probability function. The expectation

of a discrete random variable X is E[X] =
∑

i i · Pr[X = i], where the summation

is over all values in the range of X.

The union bound. For any finite or countably infinite sequence of eventsE1, E2, . . .,

Pr

[∪
i≥1

Ei

]
≤
∑
i≥1

Pr[Ei].

Mutually independent events. Events E1, E2, . . . , En are mutually independent

if and only if for any subset I ⊆ {1, 2, . . . , n},

Pr

[∩
i∈I

Ei

]
=
∏
i∈I

Pr[Ei].

Linearity of expectations. For any finite collection of discrete random variables

X1, X2, . . . , Xn with finite expectations,

E

[
n∑

i=1

aiXi

]
=

n∑
i=1

aiE[Xi],

where a1, a2, . . . , an are real numbers.
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Expectations of geometric random variables. A geometric random variable

X with parameter p is given by the following probability distribution on n = 1, 2, . . .:

Pr[X = n] = (1− p)n−1p.

Furthermore, the expectation of X is E[X] = 1/p.

Markov’s inequality. Let X be a nonnegative random variable. Then for any

a > 0,

Pr[X ≥ a] ≤ E[X]

a
.

Chernoff bounds. LetX1, . . . , Xn be mutually independent 0–1 random variables

such that Pr[Xi] = pi. Let S =
∑n

i=1Xi and µ = E[S]. Then the following

inequalities holds.

• for any δ > 0,

Pr[S ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ

;

• for any 0 < δ < 1,

Pr[S ≥ (1 + δ)µ] ≤ e−µδ2/3,

and

Pr[S ≤ (1− δ)µ] ≤ e−µδ2/2.
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Branching Vectors and Branching Num-
bers for FPA1-MQI

We list all the possible branching vectors as well as the corresponding branching

numbers for Algorithm FPA1-MQI in Tables C.1–C.3. Note that we abbreviate

topology vectors, branching vectors and branching numbers to be t.v., b.v., and

b.n. respectively, and NB means there is no branching for the topology vector.

t.v. b.v. b.n. t.v. b.v. b.n.
(0, 0, 0, 0, 0) NB NB (0, 0, 0, 0, 1) (1, 3, 3, 5, 5, 1, 3, 3, 3, 4, 2, 4, 4, 4, 5) 3.04454
(0, 0, 0, 0, 2) (1, 3, 3, 5, 5, 2, 4, 4, 4, 5, 1, 3, 3, 3, 4) 3.04454 (0, 0, 0, 1, 0) (1, 3, 3, 3, 4, 1, 3, 3, 5, 5, 2, 4, 4, 5, 4) 3.04454
(0, 0, 0, 1, 1) NB NB (0, 0, 0, 1, 2) (2, 4, 4, 4, 5, 1, 3, 3, 5, 5, 1, 3, 3, 4, 3) 3.04454
(0, 0, 0, 2, 0) (1, 3, 3, 4, 3, 2, 4, 4, 5, 4, 1, 3, 3, 5, 5) 3.04454 (0, 0, 0, 2, 1) (2, 4, 4, 5, 4, 1, 3, 3, 4, 3, 1, 3, 3, 5, 5) 3.04454
(0, 0, 0, 2, 2) NB NB (0, 0, 1, 0, 0) (1, 3, 3, 3, 4, 3, 3, 4, 4, 5, 3, 4, 3, 3, 4) 2.55234
(0, 0, 1, 0, 1) (2, 4, 4, 4, 5, 2, 2, 3, 3, 4, 3, 4, 3, 3, 4) 2.46596 (0, 0, 1, 0, 2) (2, 4, 4, 4, 5, 3, 3, 4, 4, 5, 2, 3, 2, 2, 3) 2.54314
(0, 0, 1, 1, 0) (2, 4, 4, 2, 4, 2, 2, 3, 5, 5, 3, 4, 3, 4, 3) 2.54314 (0, 0, 1, 1, 1) (3, 5, 5, 3, 5, 1, 1, 2, 4, 4, 3, 4, 3, 4, 3) 3.04454
(0, 0, 1, 1, 2) (3, 5, 5, 3, 5, 2, 2, 3, 5, 5, 2, 3, 2, 3, 2) 2.67102 (0, 0, 1, 2, 0) (2, 4, 4, 3, 3, 3, 3, 4, 5, 4, 2, 3, 2, 4, 4) 2.46596
(0, 0, 1, 2, 1) (3, 5, 5, 4, 4, 2, 2, 3, 4, 3, 2, 3, 2, 4, 4) 2.54314 (0, 0, 1, 2, 2) (3, 5, 5, 4, 4, 3, 3, 4, 5, 4, 1, 2, 1, 3, 3) 3.04454
(0, 0, 2, 0, 0) (1, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 4, 5) 2.55234 (0, 0, 2, 0, 1) (2, 4, 4, 5, 4, 2, 3, 2, 2, 3, 3, 3, 4, 4, 5) 2.54314
(0, 0, 2, 0, 2) (2, 4, 4, 5, 4, 3, 4, 3, 3, 4, 2, 2, 3, 3, 4) 2.46596 (0, 0, 2, 1, 0) (2, 4, 4, 3, 3, 2, 3, 2, 4, 4, 3, 3, 4, 5, 4) 2.46596
(0, 0, 2, 1, 1) (3, 5, 5, 4, 4, 1, 2, 1, 3, 3, 3, 3, 4, 5, 4) 3.04454 (0, 0, 2, 1, 2) (3, 5, 5, 4, 4, 2, 3, 2, 4, 4, 2, 2, 3, 4, 3) 2.54314
(0, 0, 2, 2, 0) (2, 4, 4, 4, 2, 3, 4, 3, 4, 3, 2, 2, 3, 5, 5) 2.54314 (0, 0, 2, 2, 1) (3, 5, 5, 5, 3, 2, 3, 2, 3, 2, 2, 2, 3, 5, 5) 2.67102
(0, 0, 2, 2, 2) (3, 5, 5, 5, 3, 3, 4, 3, 4, 3, 1, 1, 2, 4, 4) 3.04454 (0, 1, 0, 0, 0) (1, 1, 2, 4, 4, 3, 5, 5, 3, 5, 3, 4, 3, 3, 4) 3.04454
(0, 1, 0, 0, 1) (2, 2, 3, 5, 5, 2, 4, 4, 2, 4, 3, 4, 3, 3, 4) 2.54314 (0, 1, 0, 0, 2) (2, 2, 3, 5, 5, 3, 5, 5, 3, 5, 2, 3, 2, 2, 3) 2.67102
(0, 1, 0, 1, 0) (2, 2, 3, 3, 4, 2, 4, 4, 4, 5, 3, 4, 3, 4, 3) 2.46596 (0, 1, 0, 1, 1) (3, 3, 4, 4, 5, 1, 3, 3, 3, 4, 3, 4, 3, 4, 3) 2.55234
(0, 1, 0, 1, 2) (3, 3, 4, 4, 5, 2, 4, 4, 4, 5, 2, 3, 2, 3, 2) 2.54314 (0, 1, 0, 2, 0) (2, 2, 3, 4, 3, 3, 5, 5, 4, 4, 2, 3, 2, 4, 4) 2.54314
(0, 1, 0, 2, 1) (3, 3, 4, 5, 4, 2, 4, 4, 3, 3, 2, 3, 2, 4, 4) 2.46596 (0, 1, 0, 2, 2) (3, 3, 4, 5, 4, 3, 5, 5, 4, 4, 1, 2, 1, 3, 3) 3.04454
(0, 1, 1, 0, 0) (2, 2, 3, 3, 4, 4, 4, 5, 3, 5, 4, 4, 2, 2, 3) 2.54314 (0, 1, 1, 0, 1) (3, 3, 4, 4, 5, 3, 3, 4, 2, 4, 4, 4, 2, 2, 3) 2.46596
(0, 1, 1, 0, 2) (3, 3, 4, 4, 5, 4, 4, 5, 3, 5, 3, 3, 1, 1, 2) 3.04454 (0, 1, 1, 1, 0) (3, 3, 4, 2, 4, 3, 3, 4, 4, 5, 4, 4, 2, 3, 2) 2.46596
(0, 1, 1, 1, 1) (4, 4, 5, 3, 5, 2, 2, 3, 3, 4, 4, 4, 2, 3, 2) 2.54314 (0, 1, 1, 1, 2) (4, 4, 5, 3, 5, 3, 3, 4, 4, 5, 3, 3, 1, 2, 1) 3.04454
(0, 1, 1, 2, 0) (3, 3, 4, 3, 3, 4, 4, 5, 4, 4, 3, 3, 1, 3, 3) 2.55234 (0, 1, 1, 2, 1) (4, 4, 5, 4, 4, 3, 3, 4, 3, 3, 3, 3, 1, 3, 3) 2.55234
(0, 1, 1, 2, 2) NB NB (0, 1, 2, 0, 0) (2, 2, 3, 4, 3, 4, 5, 4, 2, 4, 4, 3, 3, 3, 4) 2.46596
(0, 1, 2, 0, 1) (3, 3, 4, 5, 4, 3, 4, 3, 1, 3, 4, 3, 3, 3, 4) 2.55234 (0, 1, 2, 0, 2) (3, 3, 4, 5, 4, 4, 5, 4, 2, 4, 3, 2, 2, 2, 3) 2.54314
(0, 1, 2, 1, 0) (3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3) 2.30042 (0, 1, 2, 1, 1) (4, 4, 5, 4, 4, 2, 3, 2, 2, 3, 4, 3, 3, 4, 3) 2.46596
(0, 1, 2, 1, 2) (4, 4, 5, 4, 4, 3, 4, 3, 3, 4, 3, 2, 2, 3, 2) 2.46596 (0, 1, 2, 2, 0) (3, 3, 4, 4, 2, 4, 5, 4, 3, 3, 3, 2, 2, 4, 4) 2.46596
(0, 1, 2, 2, 1) (4, 4, 5, 5, 3, 3, 4, 3, 2, 2, 3, 2, 2, 4, 4) 2.54314 (0, 1, 2, 2, 2) (4, 4, 5, 5, 3, 4, 5, 4, 3, 3, 2, 1, 1, 3, 3) 3.04454
(0, 2, 0, 0, 0) (1, 2, 1, 3, 3, 3, 5, 5, 4, 4, 3, 3, 4, 4, 5) 3.04454 (0, 2, 0, 0, 1) (2, 3, 2, 4, 4, 2, 4, 4, 3, 3, 3, 3, 4, 4, 5) 2.46596
(0, 2, 0, 0, 2) (2, 3, 2, 4, 4, 3, 5, 5, 4, 4, 2, 2, 3, 3, 4) 2.54314 (0, 2, 0, 1, 0) (2, 3, 2, 2, 3, 2, 4, 4, 5, 4, 3, 3, 4, 5, 4) 2.54314
(0, 2, 0, 1, 1) (3, 4, 3, 3, 4, 1, 3, 3, 4, 3, 3, 3, 4, 5, 4) 2.55234 (0, 2, 0, 1, 2) (3, 4, 3, 3, 4, 2, 4, 4, 5, 4, 2, 2, 3, 4, 3) 2.46596

Table C.1: The possible branching vectors and branching numbers of Algorithm
FPA1-MQI (part 1).
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t.v. b.v. b.n. t.v. b.v. b.n.
(0, 2, 0, 2, 0) (2, 3, 2, 3, 2, 3, 5, 5, 5, 3, 2, 2, 3, 5, 5) 2.67102 (0, 2, 0, 2, 1) (3, 4, 3, 4, 3, 2, 4, 4, 4, 2, 2, 2, 3, 5, 5) 2.54314
(0, 2, 0, 2, 2) (3, 4, 3, 4, 3, 3, 5, 5, 5, 3, 1, 1, 2, 4, 4) 3.04454 (0, 2, 1, 0, 0) (2, 3, 2, 2, 3, 4, 4, 5, 4, 4, 4, 3, 3, 3, 4) 2.46596
(0, 2, 1, 0, 1) (3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4) 2.30042 (0, 2, 1, 0, 2) (3, 4, 3, 3, 4, 4, 4, 5, 4, 4, 3, 2, 2, 2, 3) 2.46596
(0, 2, 1, 1, 0) (3, 4, 3, 1, 3, 3, 3, 4, 5, 4, 4, 3, 3, 4, 3) 2.55234 (0, 2, 1, 1, 1) (4, 5, 4, 2, 4, 2, 2, 3, 4, 3, 4, 3, 3, 4, 3) 2.46596
(0, 2, 1, 1, 2) (4, 5, 4, 2, 4, 3, 3, 4, 5, 4, 3, 2, 2, 3, 2) 2.54314 (0, 2, 1, 2, 0) (3, 4, 3, 2, 2, 4, 4, 5, 5, 3, 3, 2, 2, 4, 4) 2.54314
(0, 2, 1, 2, 1) (4, 5, 4, 3, 3, 3, 3, 4, 4, 2, 3, 2, 2, 4, 4) 2.46596 (0, 2, 1, 2, 2) (4, 5, 4, 3, 3, 4, 4, 5, 5, 3, 2, 1, 1, 3, 3) 3.04454
(0, 2, 2, 0, 0) (2, 3, 2, 3, 2, 4, 5, 4, 3, 3, 4, 2, 4, 4, 5) 2.54314 (0, 2, 2, 0, 1) (3, 4, 3, 4, 3, 3, 4, 3, 2, 2, 4, 2, 4, 4, 5) 2.46596
(0, 2, 2, 0, 2) (3, 4, 3, 4, 3, 4, 5, 4, 3, 3, 3, 1, 3, 3, 4) 2.55234 (0, 2, 2, 1, 0) (3, 4, 3, 2, 2, 3, 4, 3, 4, 3, 4, 2, 4, 5, 4) 2.46596
(0, 2, 2, 1, 1) (4, 5, 4, 3, 3, 2, 3, 2, 3, 2, 4, 2, 4, 5, 4) 2.54314 (0, 2, 2, 1, 2) (4, 5, 4, 3, 3, 3, 4, 3, 4, 3, 3, 1, 3, 4, 3) 2.55234
(0, 2, 2, 2, 0) (3, 4, 3, 3, 1, 4, 5, 4, 4, 2, 3, 1, 3, 5, 5) 3.04454 (0, 2, 2, 2, 1) (4, 5, 4, 4, 2, 3, 4, 3, 3, 1, 3, 1, 3, 5, 5) 3.04454
(0, 2, 2, 2, 2) NB NB (1, 0, 0, 0, 0) (1, 1, 2, 4, 4, 3, 4, 3, 3, 4, 3, 5, 5, 3, 5) 3.04454
(1, 0, 0, 0, 1) (2, 2, 3, 5, 5, 2, 3, 2, 2, 3, 3, 5, 5, 3, 5) 2.67102 (1, 0, 0, 0, 2) (2, 2, 3, 5, 5, 3, 4, 3, 3, 4, 2, 4, 4, 2, 4) 2.54314
(1, 0, 0, 1, 0) (2, 2, 3, 3, 4, 2, 3, 2, 4, 4, 3, 5, 5, 4, 4) 2.54314 (1, 0, 0, 1, 1) (3, 3, 4, 4, 5, 1, 2, 1, 3, 3, 3, 5, 5, 4, 4) 3.04454
(1, 0, 0, 1, 2) (3, 3, 4, 4, 5, 2, 3, 2, 4, 4, 2, 4, 4, 3, 3) 2.46596 (1, 0, 0, 2, 0) (2, 2, 3, 4, 3, 3, 4, 3, 4, 3, 2, 4, 4, 4, 5) 2.46596
(1, 0, 0, 2, 1) (3, 3, 4, 5, 4, 2, 3, 2, 3, 2, 2, 4, 4, 4, 5) 2.54314 (1, 0, 0, 2, 2) (3, 3, 4, 5, 4, 3, 4, 3, 4, 3, 1, 3, 3, 3, 4) 2.55234
(1, 0, 1, 0, 0) (2, 2, 3, 3, 4, 4, 3, 3, 3, 4, 4, 5, 4, 2, 4) 2.46596 (1, 0, 1, 0, 1) (3, 3, 4, 4, 5, 3, 2, 2, 2, 3, 4, 5, 4, 2, 4) 2.54314
(1, 0, 1, 0, 2) (3, 3, 4, 4, 5, 4, 3, 3, 3, 4, 3, 4, 3, 1, 3) 2.55234 (1, 0, 1, 1, 0) (3, 3, 4, 2, 4, 3, 2, 2, 4, 4, 4, 5, 4, 3, 3) 2.46596
(1, 0, 1, 1, 1) (4, 4, 5, 3, 5, 2, 1, 1, 3, 3, 4, 5, 4, 3, 3) 3.04454 (1, 0, 1, 1, 2) (4, 4, 5, 3, 5, 3, 2, 2, 4, 4, 3, 4, 3, 2, 2) 2.54314
(1, 0, 1, 2, 0) (3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4) 2.30042 (1, 0, 1, 2, 1) (4, 4, 5, 4, 4, 3, 2, 2, 3, 2, 3, 4, 3, 3, 4) 2.46596
(1, 0, 1, 2, 2) (4, 4, 5, 4, 4, 4, 3, 3, 4, 3, 2, 3, 2, 2, 3) 2.46596 (1, 0, 2, 0, 0) (2, 2, 3, 4, 3, 4, 4, 2, 2, 3, 4, 4, 5, 3, 5) 2.54314
(1, 0, 2, 0, 1) (3, 3, 4, 5, 4, 3, 3, 1, 1, 2, 4, 4, 5, 3, 5) 3.04454 (1, 0, 2, 0, 2) (3, 3, 4, 5, 4, 4, 4, 2, 2, 3, 3, 3, 4, 2, 4) 2.46596
(1, 0, 2, 1, 0) (3, 3, 4, 3, 3, 3, 3, 1, 3, 3, 4, 4, 5, 4, 4) 2.55234 (1, 0, 2, 1, 1) NB NB
(1, 0, 2, 1, 2) (4, 4, 5, 4, 4, 3, 3, 1, 3, 3, 3, 3, 4, 3, 3) 2.55234 (1, 0, 2, 2, 0) (3, 3, 4, 4, 2, 4, 4, 2, 3, 2, 3, 3, 4, 4, 5) 2.46596
(1, 0, 2, 2, 1) (4, 4, 5, 5, 3, 3, 3, 1, 2, 1, 3, 3, 4, 4, 5) 3.04454 (1, 0, 2, 2, 2) (4, 4, 5, 5, 3, 4, 4, 2, 3, 2, 2, 2, 3, 3, 4) 2.54314
(1, 1, 0, 0, 0) NB NB (1, 1, 0, 0, 1) (3, 1, 3, 5, 5, 3, 4, 3, 1, 3, 4, 5, 4, 2, 4) 3.04454
(1, 1, 0, 0, 2) (3, 1, 3, 5, 5, 4, 5, 4, 2, 4, 3, 4, 3, 1, 3) 3.04454 (1, 1, 0, 1, 0) (3, 1, 3, 3, 4, 3, 4, 3, 3, 4, 4, 5, 4, 3, 3) 2.55234
(1, 1, 0, 1, 1) (4, 2, 4, 4, 5, 2, 3, 2, 2, 3, 4, 5, 4, 3, 3) 2.54314 (1, 1, 0, 1, 2) (4, 2, 4, 4, 5, 3, 4, 3, 3, 4, 3, 4, 3, 2, 2) 2.46596
(1, 1, 0, 2, 0) (3, 1, 3, 4, 3, 4, 5, 4, 3, 3, 3, 4, 3, 3, 4) 2.55234 (1, 1, 0, 2, 1) (4, 2, 4, 5, 4, 3, 4, 3, 2, 2, 3, 4, 3, 3, 4) 2.46596
(1, 1, 0, 2, 2) (4, 2, 4, 5, 4, 4, 5, 4, 3, 3, 2, 3, 2, 2, 3) 2.54314 (1, 1, 1, 0, 0) (3, 1, 3, 3, 4, 5, 4, 4, 2, 4, 5, 5, 3, 1, 3) 3.04454
(1, 1, 1, 0, 1) (4, 2, 4, 4, 5, 4, 3, 3, 1, 3, 5, 5, 3, 1, 3) 3.04454 (1, 1, 1, 0, 2) NB NB
(1, 1, 1, 1, 0) (4, 2, 4, 2, 4, 4, 3, 3, 3, 4, 5, 5, 3, 2, 2) 2.54314 (1, 1, 1, 1, 1) (5, 3, 5, 3, 5, 3, 2, 2, 2, 3, 5, 5, 3, 2, 2) 2.67102
(1, 1, 1, 1, 2) (5, 3, 5, 3, 5, 4, 3, 3, 3, 4, 4, 4, 2, 1, 1) 3.04454 (1, 1, 1, 2, 0) (4, 2, 4, 3, 3, 5, 4, 4, 3, 3, 4, 4, 2, 2, 3) 2.46596
(1, 1, 1, 2, 1) (5, 3, 5, 4, 4, 4, 3, 3, 2, 2, 4, 4, 2, 2, 3) 2.54314 (1, 1, 1, 2, 2) (5, 3, 5, 4, 4, 5, 4, 4, 3, 3, 3, 3, 1, 1, 2) 3.04454
(1, 1, 2, 0, 0) (3, 1, 3, 4, 3, 5, 5, 3, 1, 3, 5, 4, 4, 2, 4) 3.04454 (1, 1, 2, 0, 1) NB NB
(1, 1, 2, 0, 2) (4, 2, 4, 5, 4, 5, 5, 3, 1, 3, 4, 3, 3, 1, 3) 3.04454 (1, 1, 2, 1, 0) (4, 2, 4, 3, 3, 4, 4, 2, 2, 3, 5, 4, 4, 3, 3) 2.46596
(1, 1, 2, 1, 1) (5, 3, 5, 4, 4, 3, 3, 1, 1, 2, 5, 4, 4, 3, 3) 3.04454 (1, 1, 2, 1, 2) (5, 3, 5, 4, 4, 4, 4, 2, 2, 3, 4, 3, 3, 2, 2) 2.54314
(1, 1, 2, 2, 0) (4, 2, 4, 4, 2, 5, 5, 3, 2, 2, 4, 3, 3, 3, 4) 2.54314 (1, 1, 2, 2, 1) (5, 3, 5, 5, 3, 4, 4, 2, 1, 1, 4, 3, 3, 3, 4) 3.04454
(1, 1, 2, 2, 2) (5, 3, 5, 5, 3, 5, 5, 3, 2, 2, 3, 2, 2, 2, 3) 2.67102 (1, 2, 0, 0, 0) (2, 1, 1, 3, 3, 4, 5, 4, 3, 3, 4, 4, 5, 3, 5) 3.04454
(1, 2, 0, 0, 1) (3, 2, 2, 4, 4, 3, 4, 3, 2, 2, 4, 4, 5, 3, 5) 2.54314 (1, 2, 0, 0, 2) (3, 2, 2, 4, 4, 4, 5, 4, 3, 3, 3, 3, 4, 2, 4) 2.46596
(1, 2, 0, 1, 0) (3, 2, 2, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 4, 4) 2.46596 (1, 2, 0, 1, 1) (4, 3, 3, 3, 4, 2, 3, 2, 3, 2, 4, 4, 5, 4, 4) 2.46596
(1, 2, 0, 1, 2) (4, 3, 3, 3, 4, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3) 2.30042 (1, 2, 0, 2, 0) (3, 2, 2, 3, 2, 4, 5, 4, 4, 2, 3, 3, 4, 4, 5) 2.54314
(1, 2, 0, 2, 1) (4, 3, 3, 4, 3, 3, 4, 3, 3, 1, 3, 3, 4, 4, 5) 2.55234 (1, 2, 0, 2, 2) (4, 3, 3, 4, 3, 4, 5, 4, 4, 2, 2, 2, 3, 3, 4) 2.46596
(1, 2, 1, 0, 0) (3, 2, 2, 2, 3, 5, 4, 4, 3, 3, 5, 4, 4, 2, 4) 2.54314 (1, 2, 1, 0, 1) (4, 3, 3, 3, 4, 4, 3, 3, 2, 2, 5, 4, 4, 2, 4) 2.46596
(1, 2, 1, 0, 2) (4, 3, 3, 3, 4, 5, 4, 4, 3, 3, 4, 3, 3, 1, 3) 2.55234 (1, 2, 1, 1, 0) (4, 3, 3, 1, 3, 4, 3, 3, 4, 3, 5, 4, 4, 3, 3) 2.55234
(1, 2, 1, 1, 1) (5, 4, 4, 2, 4, 3, 2, 2, 3, 2, 5, 4, 4, 3, 3) 2.54314 (1, 2, 1, 1, 2) (5, 4, 4, 2, 4, 4, 3, 3, 4, 3, 4, 3, 3, 2, 2) 2.46596

Table C.2: The possible branching vectors and branching numbers of Algorithm
FPA1-MQI (part 2).
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t.v. b.v. b.n. t.v. b.v. b.n.
(1, 2, 1, 2, 0) (4, 3, 3, 2, 2, 5, 4, 4, 4, 2, 4, 3, 3, 3, 4) 2.46596 (1, 2, 1, 2, 1) (5, 4, 4, 3, 3, 4, 3, 3, 3, 1, 4, 3, 3, 3, 4) 2.55234
(1, 2, 1, 2, 2) (5, 4, 4, 3, 3, 5, 4, 4, 4, 2, 3, 2, 2, 2, 3) 2.54314 (1, 2, 2, 0, 0) (3, 2, 2, 3, 2, 5, 5, 3, 2, 2, 5, 3, 5, 3, 5) 2.67102
(1, 2, 2, 0, 1) (4, 3, 3, 4, 3, 4, 4, 2, 1, 1, 5, 3, 5, 3, 5) 3.04454 (1, 2, 2, 0, 2) (4, 3, 3, 4, 3, 5, 5, 3, 2, 2, 4, 2, 4, 2, 4) 2.54314
(1, 2, 2, 1, 0) (4, 3, 3, 2, 2, 4, 4, 2, 3, 2, 5, 3, 5, 4, 4) 2.54314 (1, 2, 2, 1, 1) (5, 4, 4, 3, 3, 3, 3, 1, 2, 1, 5, 3, 5, 4, 4) 3.04454
(1, 2, 2, 1, 2) (5, 4, 4, 3, 3, 4, 4, 2, 3, 2, 4, 2, 4, 3, 3) 2.46596 (1, 2, 2, 2, 0) (4, 3, 3, 3, 1, 5, 5, 3, 3, 1, 4, 2, 4, 4, 5) 3.04454
(1, 2, 2, 2, 1) NB NB (1, 2, 2, 2, 2) (5, 4, 4, 4, 2, 5, 5, 3, 3, 1, 3, 1, 3, 3, 4) 3.04454
(2, 0, 0, 0, 0) (1, 2, 1, 3, 3, 3, 3, 4, 4, 5, 3, 5, 5, 4, 4) 3.04454 (2, 0, 0, 0, 1) (2, 3, 2, 4, 4, 2, 2, 3, 3, 4, 3, 5, 5, 4, 4) 2.54314
(2, 0, 0, 0, 2) (2, 3, 2, 4, 4, 3, 3, 4, 4, 5, 2, 4, 4, 3, 3) 2.46596 (2, 0, 0, 1, 0) (2, 3, 2, 2, 3, 2, 2, 3, 5, 5, 3, 5, 5, 5, 3) 2.67102
(2, 0, 0, 1, 1) (3, 4, 3, 3, 4, 1, 1, 2, 4, 4, 3, 5, 5, 5, 3) 3.04454 (2, 0, 0, 1, 2) (3, 4, 3, 3, 4, 2, 2, 3, 5, 5, 2, 4, 4, 4, 2) 2.54314
(2, 0, 0, 2, 0) (2, 3, 2, 3, 2, 3, 3, 4, 5, 4, 2, 4, 4, 5, 4) 2.54314 (2, 0, 0, 2, 1) (3, 4, 3, 4, 3, 2, 2, 3, 4, 3, 2, 4, 4, 5, 4) 2.46596
(2, 0, 0, 2, 2) (3, 4, 3, 4, 3, 3, 3, 4, 5, 4, 1, 3, 3, 4, 3) 2.55234 (2, 0, 1, 0, 0) (2, 3, 2, 2, 3, 4, 2, 4, 4, 5, 4, 5, 4, 3, 3) 2.54314
(2, 0, 1, 0, 1) (3, 4, 3, 3, 4, 3, 1, 3, 3, 4, 4, 5, 4, 3, 3) 2.55234 (2, 0, 1, 0, 2) (3, 4, 3, 3, 4, 4, 2, 4, 4, 5, 3, 4, 3, 2, 2) 2.46596
(2, 0, 1, 1, 0) (3, 4, 3, 1, 3, 3, 1, 3, 5, 5, 4, 5, 4, 4, 2) 3.04454 (2, 0, 1, 1, 1) NB NB
(2, 0, 1, 1, 2) (4, 5, 4, 2, 4, 3, 1, 3, 5, 5, 3, 4, 3, 3, 1) 3.04454 (2, 0, 1, 2, 0) (3, 4, 3, 2, 2, 4, 2, 4, 5, 4, 3, 4, 3, 4, 3) 2.46596
(2, 0, 1, 2, 1) (4, 5, 4, 3, 3, 3, 1, 3, 4, 3, 3, 4, 3, 4, 3) 2.55234 (2, 0, 1, 2, 2) (4, 5, 4, 3, 3, 4, 2, 4, 5, 4, 2, 3, 2, 3, 2) 2.54314
(2, 0, 2, 0, 0) (2, 3, 2, 3, 2, 4, 3, 3, 3, 4, 4, 4, 5, 4, 4) 2.46596 (2, 0, 2, 0, 1) (3, 4, 3, 4, 3, 3, 2, 2, 2, 3, 4, 4, 5, 4, 4) 2.46596
(2, 0, 2, 0, 2) (3, 4, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3) 2.30042 (2, 0, 2, 1, 0) (3, 4, 3, 2, 2, 3, 2, 2, 4, 4, 4, 4, 5, 5, 3) 2.54314
(2, 0, 2, 1, 1) (4, 5, 4, 3, 3, 2, 1, 1, 3, 3, 4, 4, 5, 5, 3) 3.04454 (2, 0, 2, 1, 2) (4, 5, 4, 3, 3, 3, 2, 2, 4, 4, 3, 3, 4, 4, 2) 2.46596
(2, 0, 2, 2, 0) (3, 4, 3, 3, 1, 4, 3, 3, 4, 3, 3, 3, 4, 5, 4) 2.55234 (2, 0, 2, 2, 1) (4, 5, 4, 4, 2, 3, 2, 2, 3, 2, 3, 3, 4, 5, 4) 2.54314
(2, 0, 2, 2, 2) (4, 5, 4, 4, 2, 4, 3, 3, 4, 3, 2, 2, 3, 4, 3) 2.46596 (2, 1, 0, 0, 0) (2, 1, 1, 3, 3, 4, 4, 5, 3, 5, 4, 5, 4, 3, 3) 3.04454
(2, 1, 0, 0, 1) (3, 2, 2, 4, 4, 3, 3, 4, 2, 4, 4, 5, 4, 3, 3) 2.46596 (2, 1, 0, 0, 2) (3, 2, 2, 4, 4, 4, 4, 5, 3, 5, 3, 4, 3, 2, 2) 2.54314
(2, 1, 0, 1, 0) (3, 2, 2, 2, 3, 3, 3, 4, 4, 5, 4, 5, 4, 4, 2) 2.54314 (2, 1, 0, 1, 1) (4, 3, 3, 3, 4, 2, 2, 3, 3, 4, 4, 5, 4, 4, 2) 2.46596
(2, 1, 0, 1, 2) (4, 3, 3, 3, 4, 3, 3, 4, 4, 5, 3, 4, 3, 3, 1) 2.55234 (2, 1, 0, 2, 0) (3, 2, 2, 3, 2, 4, 4, 5, 4, 4, 3, 4, 3, 4, 3) 2.46596
(2, 1, 0, 2, 1) (4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3) 2.30042 (2, 1, 0, 2, 2) (4, 3, 3, 4, 3, 4, 4, 5, 4, 4, 2, 3, 2, 3, 2) 2.46596
(2, 1, 1, 0, 0) (3, 2, 2, 2, 3, 5, 3, 5, 3, 5, 5, 5, 3, 2, 2) 2.67102 (2, 1, 1, 0, 1) (4, 3, 3, 3, 4, 4, 2, 4, 2, 4, 5, 5, 3, 2, 2) 2.54314
(2, 1, 1, 0, 2) (4, 3, 3, 3, 4, 5, 3, 5, 3, 5, 4, 4, 2, 1, 1) 3.04454 (2, 1, 1, 1, 0) (4, 3, 3, 1, 3, 4, 2, 4, 4, 5, 5, 5, 3, 3, 1) 3.04454
(2, 1, 1, 1, 1) (5, 4, 4, 2, 4, 3, 1, 3, 3, 4, 5, 5, 3, 3, 1) 3.04454 (2, 1, 1, 1, 2) NB NB
(2, 1, 1, 2, 0) (4, 3, 3, 2, 2, 5, 3, 5, 4, 4, 4, 4, 2, 3, 2) 2.54314 (2, 1, 1, 2, 1) (5, 4, 4, 3, 3, 4, 2, 4, 3, 3, 4, 4, 2, 3, 2) 2.46596
(2, 1, 1, 2, 2) (5, 4, 4, 3, 3, 5, 3, 5, 4, 4, 3, 3, 1, 2, 1) 3.04454 (2, 1, 2, 0, 0) (3, 2, 2, 3, 2, 5, 4, 4, 2, 4, 5, 4, 4, 3, 3) 2.54314
(2, 1, 2, 0, 1) (4, 3, 3, 4, 3, 4, 3, 3, 1, 3, 5, 4, 4, 3, 3) 2.55234 (2, 1, 2, 0, 2) (4, 3, 3, 4, 3, 5, 4, 4, 2, 4, 4, 3, 3, 2, 2) 2.46596
(2, 1, 2, 1, 0) (4, 3, 3, 2, 2, 4, 3, 3, 3, 4, 5, 4, 4, 4, 2) 2.46596 (2, 1, 2, 1, 1) (5, 4, 4, 3, 3, 3, 2, 2, 2, 3, 5, 4, 4, 4, 2) 2.54314
(2, 1, 2, 1, 2) (5, 4, 4, 3, 3, 4, 3, 3, 3, 4, 4, 3, 3, 3, 1) 2.55234 (2, 1, 2, 2, 0) (4, 3, 3, 3, 1, 5, 4, 4, 3, 3, 4, 3, 3, 4, 3) 2.55234
(2, 1, 2, 2, 1) (5, 4, 4, 4, 2, 4, 3, 3, 2, 2, 4, 3, 3, 4, 3) 2.46596 (2, 1, 2, 2, 2) (5, 4, 4, 4, 2, 5, 4, 4, 3, 3, 3, 2, 2, 3, 2) 2.54314
(2, 2, 0, 0, 0) NB NB (2, 2, 0, 0, 1) (3, 3, 1, 3, 3, 3, 3, 4, 3, 3, 4, 4, 5, 4, 4) 2.55234
(2, 2, 0, 0, 2) (3, 3, 1, 3, 3, 4, 4, 5, 4, 4, 3, 3, 4, 3, 3) 2.55234 (2, 2, 0, 1, 0) (3, 3, 1, 1, 2, 3, 3, 4, 5, 4, 4, 4, 5, 5, 3) 3.04454
(2, 2, 0, 1, 1) (4, 4, 2, 2, 3, 2, 2, 3, 4, 3, 4, 4, 5, 5, 3) 2.54314 (2, 2, 0, 1, 2) (4, 4, 2, 2, 3, 3, 3, 4, 5, 4, 3, 3, 4, 4, 2) 2.46596
(2, 2, 0, 2, 0) (3, 3, 1, 2, 1, 4, 4, 5, 5, 3, 3, 3, 4, 5, 4) 3.04454 (2, 2, 0, 2, 1) (4, 4, 2, 3, 2, 3, 3, 4, 4, 2, 3, 3, 4, 5, 4) 2.46596
(2, 2, 0, 2, 2) (4, 4, 2, 3, 2, 4, 4, 5, 5, 3, 2, 2, 3, 4, 3) 2.54314 (2, 2, 1, 0, 0) (3, 3, 1, 1, 2, 5, 3, 5, 4, 4, 5, 4, 4, 3, 3) 3.04454
(2, 2, 1, 0, 1) (4, 4, 2, 2, 3, 4, 2, 4, 3, 3, 5, 4, 4, 3, 3) 2.46596 (2, 2, 1, 0, 2) (4, 4, 2, 2, 3, 5, 3, 5, 4, 4, 4, 3, 3, 2, 2) 2.54314
(2, 2, 1, 1, 0) NB NB (2, 2, 1, 1, 1) (5, 5, 3, 1, 3, 3, 1, 3, 4, 3, 5, 4, 4, 4, 2) 3.04454
(2, 2, 1, 1, 2) (5, 5, 3, 1, 3, 4, 2, 4, 5, 4, 4, 3, 3, 3, 1) 3.04454 (2, 2, 1, 2, 0) (4, 4, 2, 1, 1, 5, 3, 5, 5, 3, 4, 3, 3, 4, 3) 3.04454
(2, 2, 1, 2, 1) (5, 5, 3, 2, 2, 4, 2, 4, 4, 2, 4, 3, 3, 4, 3) 2.54314 (2, 2, 1, 2, 2) (5, 5, 3, 2, 2, 5, 3, 5, 5, 3, 3, 2, 2, 3, 2) 2.67102
(2, 2, 2, 0, 0) (3, 3, 1, 2, 1, 5, 4, 4, 3, 3, 5, 3, 5, 4, 4) 3.04454 (2, 2, 2, 0, 1) (4, 4, 2, 3, 2, 4, 3, 3, 2, 2, 5, 3, 5, 4, 4) 2.54314
(2, 2, 2, 0, 2) (4, 4, 2, 3, 2, 5, 4, 4, 3, 3, 4, 2, 4, 3, 3) 2.46596 (2, 2, 2, 1, 0) (4, 4, 2, 1, 1, 4, 3, 3, 4, 3, 5, 3, 5, 5, 3) 3.04454
(2, 2, 2, 1, 1) (5, 5, 3, 2, 2, 3, 2, 2, 3, 2, 5, 3, 5, 5, 3) 2.67102 (2, 2, 2, 1, 2) (5, 5, 3, 2, 2, 4, 3, 3, 4, 3, 4, 2, 4, 4, 2) 2.54314
(2, 2, 2, 2, 0) NB NB (2, 2, 2, 2, 1) (5, 5, 3, 3, 1, 4, 3, 3, 3, 1, 4, 2, 4, 5, 4) 3.04454
(2, 2, 2, 2, 2) (5, 5, 3, 3, 1, 5, 4, 4, 4, 2, 3, 1, 3, 4, 3) 3.04454

Table C.3: The possible branching vectors and branching numbers of Algorithm
FPA1-MQI (part 3).
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Appendix D

Branching Vectors and Branching Num-
bers for FPA2-MQI

We list all the possible branching vectors as well as the corresponding branching

numbers for Algorithm FPA2-MQI in Tables D.1–D.3. There are 39 = 19683 pos-

sible {a, b}-reduced topology vectors of a sextet containing a, b and there are only

141 different branching numbers obtained by the program. In order to save pages,

we only list these 141 different branching numbers as well as their corresponding

branching vectors here. Note that we abbreviate topology vectors, branching vec-

tors and branching numbers to be t.v., b.v., and b.n. respectively.

t.v. b.v. b.n.
(0, 0, 0, 0, 0, 0, 0, 0, 1) (1, 5, 5, 9, 9, 2, 6, 6, 6, 8, 3, 7, 7, 7, 9) 2.01615
(0, 0, 0, 0, 0, 0, 0, 1, 0) (1, 5, 5, 7, 8, 2, 6, 6, 8, 9, 3, 7, 7, 8, 8) 2.00904
(0, 0, 0, 0, 0, 0, 0, 1, 2) (2, 6, 6, 8, 9, 2, 6, 6, 8, 9, 2, 6, 6, 7, 7) 1.89925
(0, 0, 0, 0, 0, 0, 1, 0, 0) (1, 5, 5, 7, 8, 4, 6, 7, 7, 9, 4, 7, 6, 6, 8) 1.81753
(0, 0, 0, 0, 0, 0, 1, 0, 1) (2, 6, 6, 8, 9, 3, 5, 6, 6, 8, 4, 7, 6, 6, 8) 1.72707
(0, 0, 0, 0, 0, 0, 1, 0, 2) (2, 6, 6, 8, 9, 4, 6, 7, 7, 9, 3, 6, 5, 5, 7) 1.73388
(0, 0, 0, 0, 0, 0, 1, 1, 0) (2, 6, 6, 6, 8, 3, 5, 6, 8, 9, 4, 7, 6, 7, 7) 1.72411
(0, 0, 0, 0, 0, 0, 1, 1, 1) (3, 7, 7, 7, 9, 2, 4, 5, 7, 8, 4, 7, 6, 7, 7) 1.74034
(0, 0, 0, 0, 0, 0, 1, 1, 2) (3, 7, 7, 7, 9, 3, 5, 6, 8, 9, 3, 6, 5, 6, 6) 1.70862
(0, 0, 0, 0, 0, 0, 1, 2, 0) (2, 6, 6, 7, 7, 4, 6, 7, 8, 8, 3, 6, 5, 7, 8) 1.71943
(0, 0, 0, 0, 0, 0, 1, 2, 1) (3, 7, 7, 8, 8, 3, 5, 6, 7, 7, 3, 6, 5, 7, 8) 1.69968
(0, 0, 0, 0, 0, 0, 1, 2, 2) (3, 7, 7, 8, 8, 4, 6, 7, 8, 8, 2, 5, 4, 6, 7) 1.74161
(0, 0, 0, 0, 0, 1, 0, 0, 0) (1, 3, 4, 8, 8, 4, 8, 8, 6, 9, 4, 7, 6, 6, 8) 1.90721
(0, 0, 0, 0, 0, 1, 0, 0, 1) (2, 4, 5, 9, 9, 3, 7, 7, 5, 8, 4, 7, 6, 6, 8) 1.75615
(0, 0, 0, 0, 0, 1, 0, 0, 2) (2, 4, 5, 9, 9, 4, 8, 8, 6, 9, 3, 6, 5, 5, 7) 1.76893
(0, 0, 0, 0, 0, 1, 0, 2, 0) (2, 4, 5, 8, 7, 4, 8, 8, 7, 8, 3, 6, 5, 7, 8) 1.74980
(0, 0, 0, 0, 0, 1, 0, 2, 1) (3, 5, 6, 9, 8, 3, 7, 7, 6, 7, 3, 6, 5, 7, 8) 1.70416
(0, 0, 0, 0, 0, 1, 0, 2, 2) (3, 5, 6, 9, 8, 4, 8, 8, 7, 8, 2, 5, 4, 6, 7) 1.75447
(0, 0, 0, 0, 0, 1, 1, 0, 0) (2, 4, 5, 7, 8, 5, 7, 8, 6, 9, 5, 7, 5, 5, 7) 1.69753
(0, 0, 0, 0, 0, 1, 1, 0, 1) (3, 5, 6, 8, 9, 4, 6, 7, 5, 8, 5, 7, 5, 5, 7) 1.65103
(0, 0, 0, 0, 0, 1, 1, 0, 2) (3, 5, 6, 8, 9, 5, 7, 8, 6, 9, 4, 6, 4, 4, 6) 1.67693
(0, 0, 0, 0, 0, 1, 1, 1, 0) (3, 5, 6, 6, 8, 4, 6, 7, 7, 9, 5, 7, 5, 6, 6) 1.63986
(0, 0, 0, 0, 0, 1, 1, 1, 2) (4, 6, 7, 7, 9, 4, 6, 7, 7, 9, 4, 6, 4, 5, 5) 1.64801
(0, 0, 0, 0, 0, 1, 1, 2, 0) (3, 5, 6, 7, 7, 5, 7, 8, 7, 8, 4, 6, 4, 6, 7) 1.64700

Table D.1: The possible branching vectors and branching numbers of Algorithm
FPA2-MQI (part 1).
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t.v. b.v. b.n.
(0, 0, 0, 0, 0, 1, 1, 2, 1) (4, 6, 7, 8, 8, 4, 6, 7, 6, 7, 4, 6, 4, 6, 7) 1.63135
(0, 0, 0, 0, 0, 1, 1, 2, 2) (4, 6, 7, 8, 8, 5, 7, 8, 7, 8, 3, 5, 3, 5, 6) 1.68110
(0, 0, 0, 0, 0, 1, 2, 0, 0) (2, 4, 5, 8, 7, 5, 8, 7, 5, 8, 5, 6, 6, 6, 8) 1.69101
(0, 0, 0, 0, 0, 1, 2, 0, 1) (3, 5, 6, 9, 8, 4, 7, 6, 4, 7, 5, 6, 6, 6, 8) 1.65385
(0, 0, 0, 0, 0, 1, 2, 0, 2) (3, 5, 6, 9, 8, 5, 8, 7, 5, 8, 4, 5, 5, 5, 7) 1.65797
(0, 0, 0, 0, 0, 1, 2, 1, 0) (3, 5, 6, 7, 7, 4, 7, 6, 6, 8, 5, 6, 6, 7, 7) 1.62890
(0, 0, 0, 0, 0, 1, 2, 1, 1) (4, 6, 7, 8, 8, 3, 6, 5, 5, 7, 5, 6, 6, 7, 7) 1.63569
(0, 0, 0, 0, 0, 1, 2, 1, 2) (4, 6, 7, 8, 8, 4, 7, 6, 6, 8, 4, 5, 5, 6, 6) 1.62715
(0, 0, 0, 0, 0, 1, 2, 2, 0) (3, 5, 6, 8, 6, 5, 8, 7, 6, 7, 4, 5, 5, 7, 8) 1.64254
(0, 0, 0, 0, 0, 1, 2, 2, 1) (4, 6, 7, 9, 7, 4, 7, 6, 5, 6, 4, 5, 5, 7, 8) 1.63283
(0, 0, 0, 0, 0, 1, 2, 2, 2) (4, 6, 7, 9, 7, 5, 8, 7, 6, 7, 3, 4, 4, 6, 7) 1.66287
(0, 0, 0, 0, 0, 2, 0, 0, 0) (1, 4, 3, 7, 7, 4, 8, 8, 7, 8, 4, 6, 7, 7, 9) 1.90020
(0, 0, 0, 0, 0, 2, 0, 0, 1) (2, 5, 4, 8, 8, 3, 7, 7, 6, 7, 4, 6, 7, 7, 9) 1.74332
(0, 0, 0, 0, 0, 2, 0, 0, 2) (2, 5, 4, 8, 8, 4, 8, 8, 7, 8, 3, 5, 6, 6, 8) 1.75277
(0, 0, 0, 0, 0, 2, 1, 0, 0) (2, 5, 4, 6, 7, 5, 7, 8, 7, 8, 5, 6, 6, 6, 8) 1.68337
(0, 0, 0, 0, 0, 2, 1, 0, 1) (3, 6, 5, 7, 8, 4, 6, 7, 6, 7, 5, 6, 6, 6, 8) 1.63148
(0, 0, 0, 0, 0, 2, 1, 0, 2) (3, 6, 5, 7, 8, 5, 7, 8, 7, 8, 4, 5, 5, 5, 7) 1.64683
(0, 0, 0, 0, 0, 2, 1, 2, 1) (4, 7, 6, 7, 7, 4, 6, 7, 7, 6, 4, 5, 5, 7, 8) 1.62210
(0, 0, 0, 0, 0, 2, 1, 2, 2) (4, 7, 6, 7, 7, 5, 7, 8, 8, 7, 3, 4, 4, 6, 7) 1.65861
(0, 0, 0, 0, 0, 2, 2, 0, 0) (2, 5, 4, 7, 6, 5, 8, 7, 6, 7, 5, 5, 7, 7, 9) 1.68985
(0, 0, 0, 0, 0, 2, 2, 0, 1) (3, 6, 5, 8, 7, 4, 7, 6, 5, 6, 5, 5, 7, 7, 9) 1.64413
(0, 0, 0, 0, 0, 2, 2, 0, 2) (3, 6, 5, 8, 7, 5, 8, 7, 6, 7, 4, 4, 6, 6, 8) 1.64963
(0, 0, 0, 0, 0, 2, 2, 1, 2) (4, 7, 6, 7, 7, 4, 7, 6, 7, 7, 4, 4, 6, 7, 7) 1.62625
(0, 0, 0, 0, 0, 2, 2, 2, 0) (3, 6, 5, 7, 5, 5, 8, 7, 7, 6, 4, 4, 6, 8, 9) 1.65822
(0, 0, 0, 0, 0, 2, 2, 2, 1) (4, 7, 6, 8, 6, 4, 7, 6, 6, 5, 4, 4, 6, 8, 9) 1.64222
(0, 0, 0, 0, 0, 2, 2, 2, 2) (4, 7, 6, 8, 6, 5, 8, 7, 7, 6, 3, 3, 5, 7, 8) 1.67378
(0, 0, 0, 0, 1, 1, 0, 0, 0) (2, 2, 4, 8, 8, 5, 8, 7, 5, 8, 5, 8, 7, 5, 8) 1.80618
(0, 0, 0, 0, 1, 1, 0, 0, 1) (3, 3, 5, 9, 9, 4, 7, 6, 4, 7, 5, 8, 7, 5, 8) 1.70704
(0, 0, 0, 0, 1, 1, 1, 1, 0) (4, 4, 6, 6, 8, 5, 6, 6, 6, 8, 6, 8, 6, 5, 6) 1.61250
(0, 0, 0, 0, 1, 1, 1, 1, 1) (5, 5, 7, 7, 9, 4, 5, 5, 5, 7, 6, 8, 6, 5, 6) 1.61557
(0, 0, 0, 0, 1, 1, 1, 2, 0) (4, 4, 6, 7, 7, 6, 7, 7, 6, 7, 5, 7, 5, 5, 7) 1.60907
(0, 0, 0, 0, 1, 1, 1, 2, 1) (5, 5, 7, 8, 8, 5, 6, 6, 5, 6, 5, 7, 5, 5, 7) 1.60136
(0, 0, 0, 0, 1, 1, 1, 2, 2) (5, 5, 7, 8, 8, 6, 7, 7, 6, 7, 4, 6, 4, 4, 6) 1.62463
(0, 0, 0, 0, 1, 2, 0, 0, 0) (2, 3, 3, 7, 7, 5, 8, 7, 6, 7, 5, 7, 8, 6, 9) 1.75946
(0, 0, 0, 0, 1, 2, 0, 0, 1) (3, 4, 4, 8, 8, 4, 7, 6, 5, 6, 5, 7, 8, 6, 9) 1.67266
(0, 0, 0, 0, 1, 2, 0, 0, 2) (3, 4, 4, 8, 8, 5, 8, 7, 6, 7, 4, 6, 7, 5, 8) 1.66839
(0, 0, 0, 0, 1, 2, 1, 0, 0) (3, 4, 4, 6, 7, 6, 7, 7, 6, 7, 6, 7, 7, 5, 8) 1.64007
(0, 0, 0, 0, 1, 2, 1, 0, 1) (4, 5, 5, 7, 8, 5, 6, 6, 5, 6, 6, 7, 7, 5, 8) 1.60762
(0, 0, 0, 0, 1, 2, 1, 0, 2) (4, 5, 5, 7, 8, 6, 7, 7, 6, 7, 5, 6, 6, 4, 7) 1.61154
(0, 0, 0, 0, 1, 2, 1, 1, 0) (4, 5, 5, 5, 7, 5, 6, 6, 7, 7, 6, 7, 7, 6, 7) 1.59884
(0, 0, 0, 0, 1, 2, 1, 1, 1) (5, 6, 6, 6, 8, 4, 5, 5, 6, 6, 6, 7, 7, 6, 7) 1.59739
(0, 0, 0, 0, 1, 2, 1, 1, 2) (5, 6, 6, 6, 8, 5, 6, 6, 7, 7, 5, 6, 6, 5, 6) 1.58751
(0, 0, 0, 0, 1, 2, 2, 0, 0) (3, 4, 4, 7, 6, 6, 8, 6, 5, 6, 6, 6, 8, 6, 9) 1.64951
(0, 0, 0, 0, 1, 2, 2, 0, 1) (4, 5, 5, 8, 7, 5, 7, 5, 4, 5, 6, 6, 8, 6, 9) 1.62864
(0, 0, 0, 0, 1, 2, 2, 0, 2) (4, 5, 5, 8, 7, 6, 8, 6, 5, 6, 5, 5, 7, 5, 8) 1.61404
(0, 0, 0, 0, 1, 2, 2, 1, 0) (4, 5, 5, 6, 6, 5, 7, 5, 6, 6, 6, 6, 8, 7, 8) 1.60370
(0, 0, 0, 0, 1, 2, 2, 1, 1) (5, 6, 6, 7, 7, 4, 6, 4, 5, 5, 6, 6, 8, 7, 8) 1.61402
(0, 0, 0, 0, 1, 2, 2, 1, 2) (5, 6, 6, 7, 7, 5, 7, 5, 6, 6, 5, 5, 7, 6, 7) 1.58891
(0, 0, 0, 0, 2, 2, 0, 0, 0) (2, 4, 2, 6, 6, 5, 7, 8, 7, 8, 5, 7, 8, 7, 8) 1.78846
(0, 0, 0, 0, 2, 2, 0, 0, 1) (3, 5, 3, 7, 7, 4, 6, 7, 6, 7, 5, 7, 8, 7, 8) 1.67105
(0, 0, 0, 0, 2, 2, 1, 0, 0) (3, 5, 3, 5, 6, 6, 6, 8, 7, 8, 6, 7, 7, 6, 7) 1.65456
(0, 0, 0, 0, 2, 2, 1, 0, 1) (4, 6, 4, 6, 7, 5, 5, 7, 6, 7, 6, 7, 7, 6, 7) 1.60511
(0, 0, 0, 0, 2, 2, 1, 0, 2) (4, 6, 4, 6, 7, 6, 6, 8, 7, 8, 5, 6, 6, 5, 6) 1.61003
(0, 0, 1, 0, 0, 0, 1, 0, 0) (2, 6, 6, 6, 8, 5, 5, 7, 7, 9, 5, 7, 5, 5, 7) 1.67707
(0, 0, 1, 0, 0, 0, 1, 0, 1) (3, 7, 7, 7, 9, 4, 4, 6, 6, 8, 5, 7, 5, 5, 7) 1.65557
(0, 0, 1, 0, 0, 0, 1, 0, 2) (3, 7, 7, 7, 9, 5, 5, 7, 7, 9, 4, 6, 4, 4, 6) 1.67159
(0, 0, 1, 0, 0, 0, 1, 1, 1) (4, 8, 8, 6, 9, 3, 3, 5, 7, 8, 5, 7, 5, 6, 6) 1.68546
(0, 0, 1, 0, 0, 0, 1, 1, 2) (4, 8, 8, 6, 9, 4, 4, 6, 8, 9, 4, 6, 4, 5, 5) 1.67159
(0, 0, 1, 0, 0, 0, 1, 2, 1) (4, 8, 8, 7, 8, 4, 4, 6, 7, 7, 4, 6, 4, 6, 7) 1.64932
(0, 0, 1, 0, 0, 0, 1, 2, 2) (4, 8, 8, 7, 8, 5, 5, 7, 8, 8, 3, 5, 3, 5, 6) 1.68845
(0, 0, 1, 0, 0, 0, 2, 0, 0) (2, 6, 6, 7, 7, 5, 6, 6, 6, 8, 5, 6, 6, 6, 8) 1.65859
(0, 0, 1, 0, 0, 0, 2, 1, 0) (3, 7, 7, 6, 7, 4, 5, 5, 7, 8, 5, 6, 6, 7, 7) 1.63311
(0, 0, 1, 0, 0, 0, 2, 1, 1) (4, 8, 8, 7, 8, 3, 4, 4, 6, 7, 5, 6, 6, 7, 7) 1.66127
(0, 0, 1, 0, 0, 0, 2, 1, 2) (4, 8, 8, 7, 8, 4, 5, 5, 7, 8, 4, 5, 5, 6, 6) 1.63797
(0, 0, 1, 0, 0, 1, 1, 0, 2) (4, 6, 7, 7, 9, 6, 6, 8, 6, 9, 5, 6, 3, 3, 5) 1.68248
(0, 0, 1, 0, 0, 1, 1, 1, 0) (4, 6, 7, 5, 8, 5, 5, 7, 7, 9, 6, 7, 4, 5, 5) 1.62613

Table D.2: The possible branching vectors and branching numbers of Algorithm
FPA2-MQI (part 2).
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t.v. b.v. b.n.
(0, 0, 1, 0, 0, 1, 1, 1, 1) (5, 7, 8, 6, 9, 4, 4, 6, 6, 8, 6, 7, 4, 5, 5) 1.63537
(0, 0, 1, 0, 0, 1, 1, 1, 2) (5, 7, 8, 6, 9, 5, 5, 7, 7, 9, 5, 6, 3, 4, 4) 1.66684
(0, 0, 1, 0, 0, 1, 1, 2, 1) (5, 7, 8, 7, 8, 5, 5, 7, 6, 7, 5, 6, 3, 5, 6) 1.62884
(0, 0, 1, 0, 0, 1, 1, 2, 2) (5, 7, 8, 7, 8, 6, 6, 8, 7, 8, 4, 5, 2, 4, 5) 1.70414
(0, 0, 1, 0, 0, 1, 2, 0, 0) (3, 5, 6, 7, 7, 6, 7, 7, 5, 8, 6, 6, 5, 5, 7) 1.62214
(0, 0, 1, 0, 0, 1, 2, 0, 2) (4, 6, 7, 8, 8, 6, 7, 7, 5, 8, 5, 5, 4, 4, 6) 1.63127
(0, 0, 1, 0, 0, 1, 2, 1, 0) (4, 6, 7, 6, 7, 5, 6, 6, 6, 8, 6, 6, 5, 6, 6) 1.59355
(0, 0, 1, 0, 0, 2, 1, 0, 0) (3, 6, 5, 5, 7, 6, 6, 8, 7, 8, 6, 6, 5, 5, 7) 1.62469
(0, 0, 1, 0, 0, 2, 1, 0, 1) (4, 7, 6, 6, 8, 5, 5, 7, 6, 7, 6, 6, 5, 5, 7) 1.60127
(0, 0, 1, 0, 0, 2, 1, 1, 2) (5, 8, 7, 5, 8, 5, 5, 7, 8, 8, 5, 5, 4, 5, 5) 1.62455
(0, 0, 1, 0, 0, 2, 1, 2, 1) (5, 8, 7, 6, 7, 5, 5, 7, 7, 6, 5, 5, 4, 6, 7) 1.60518
(0, 0, 1, 0, 0, 2, 2, 0, 0) (3, 6, 5, 6, 6, 6, 7, 7, 6, 7, 6, 5, 6, 6, 8) 1.61396
(0, 0, 1, 0, 0, 2, 2, 1, 0) (4, 7, 6, 5, 6, 5, 6, 6, 7, 7, 6, 5, 6, 7, 7) 1.59498
(0, 0, 1, 0, 1, 0, 1, 0, 0) (3, 5, 6, 6, 8, 6, 5, 6, 6, 8, 6, 8, 6, 4, 7) 1.63405
(0, 0, 1, 0, 1, 0, 1, 1, 0) (4, 6, 7, 5, 8, 5, 4, 5, 7, 8, 6, 8, 6, 5, 6) 1.62053
(0, 0, 1, 0, 1, 0, 1, 1, 2) (5, 7, 8, 6, 9, 5, 4, 5, 7, 8, 5, 7, 5, 4, 5) 1.63274
(0, 0, 1, 0, 1, 0, 1, 2, 1) (5, 7, 8, 7, 8, 5, 4, 5, 6, 6, 5, 7, 5, 5, 7) 1.61157
(0, 0, 1, 0, 1, 2, 1, 2, 0) (5, 6, 6, 5, 6, 7, 6, 7, 7, 6, 6, 6, 5, 5, 7) 1.58515
(0, 0, 1, 0, 1, 2, 2, 1, 0) (5, 6, 6, 5, 6, 6, 6, 5, 6, 6, 7, 6, 7, 6, 7) 1.58142
(0, 0, 1, 1, 0, 0, 1, 1, 0) (4, 8, 8, 4, 8, 3, 3, 5, 9, 9, 5, 7, 5, 7, 5) 1.71452
(0, 0, 1, 1, 0, 0, 1, 1, 1) (5, 9, 9, 5, 9, 2, 2, 4, 8, 8, 5, 7, 5, 7, 5) 1.82326
(0, 0, 1, 1, 0, 0, 1, 1, 2) (5, 9, 9, 5, 9, 3, 3, 5, 9, 9, 4, 6, 4, 6, 4) 1.74055
(0, 0, 1, 1, 0, 0, 1, 2, 0) (4, 8, 8, 5, 7, 4, 4, 6, 9, 8, 4, 6, 4, 7, 6) 1.66043
(0, 0, 1, 1, 0, 0, 1, 2, 1) (5, 9, 9, 6, 8, 3, 3, 5, 8, 7, 4, 6, 4, 7, 6) 1.70234
(0, 0, 1, 1, 0, 0, 1, 2, 2) (5, 9, 9, 6, 8, 4, 4, 6, 9, 8, 3, 5, 3, 6, 5) 1.71416
(0, 0, 1, 1, 0, 0, 2, 1, 0) (4, 8, 8, 5, 7, 3, 4, 4, 8, 8, 5, 6, 6, 8, 6) 1.67106
(0, 0, 1, 1, 0, 0, 2, 1, 1) (5, 9, 9, 6, 8, 2, 3, 3, 7, 7, 5, 6, 6, 8, 6) 1.76722
(0, 0, 1, 1, 0, 0, 2, 1, 2) (5, 9, 9, 6, 8, 3, 4, 4, 8, 8, 4, 5, 5, 7, 5) 1.68861
(0, 0, 1, 1, 0, 0, 2, 2, 1) (5, 9, 9, 7, 7, 3, 4, 4, 7, 6, 4, 5, 5, 8, 7) 1.67874
(0, 0, 1, 1, 0, 1, 1, 2, 0) (5, 7, 8, 5, 7, 5, 5, 7, 8, 8, 5, 6, 3, 6, 5) 1.63559
(0, 0, 1, 1, 0, 1, 1, 2, 2) (6, 8, 9, 6, 8, 5, 5, 7, 8, 8, 4, 5, 2, 5, 4) 1.71650
(0, 0, 1, 1, 0, 1, 2, 1, 2) (6, 8, 9, 6, 8, 4, 5, 5, 7, 8, 5, 5, 4, 6, 4) 1.64208
(0, 0, 1, 1, 0, 1, 2, 2, 1) (6, 8, 9, 7, 7, 4, 5, 5, 6, 6, 5, 5, 4, 7, 6) 1.62207
(0, 0, 1, 1, 0, 1, 2, 2, 2) (6, 8, 9, 7, 7, 5, 6, 6, 7, 7, 4, 4, 3, 6, 5) 1.65122
(0, 0, 1, 1, 1, 0, 2, 1, 0) (5, 7, 8, 5, 7, 4, 4, 3, 7, 7, 6, 7, 7, 7, 6) 1.64437
(0, 0, 1, 1, 1, 0, 2, 1, 1) (6, 8, 9, 6, 8, 3, 3, 2, 6, 6, 6, 7, 7, 7, 6) 1.74882
(0, 0, 1, 1, 1, 1, 2, 2, 0) (6, 6, 8, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 6) 1.58005
(0, 0, 1, 1, 1, 1, 2, 2, 1) (7, 7, 9, 7, 7, 5, 5, 4, 5, 5, 6, 6, 5, 6, 6) 1.60915
(0, 0, 1, 2, 0, 0, 1, 2, 0) (4, 8, 8, 6, 6, 5, 5, 7, 9, 7, 3, 5, 3, 7, 7) 1.68272
(0, 0, 1, 2, 0, 0, 1, 2, 1) (5, 9, 9, 7, 7, 4, 4, 6, 8, 6, 3, 5, 3, 7, 7) 1.69959
(0, 0, 1, 2, 0, 0, 1, 2, 2) (5, 9, 9, 7, 7, 5, 5, 7, 9, 7, 2, 4, 2, 6, 6) 1.80572
(0, 0, 1, 2, 0, 1, 1, 2, 0) (5, 7, 8, 6, 6, 6, 6, 8, 8, 7, 4, 5, 2, 6, 6) 1.67859
(0, 0, 1, 2, 0, 1, 1, 2, 1) (6, 8, 9, 7, 7, 5, 5, 7, 7, 6, 4, 5, 2, 6, 6) 1.68505
(0, 0, 1, 2, 0, 1, 1, 2, 2) (6, 8, 9, 7, 7, 6, 6, 8, 8, 7, 3, 4, 1, 5, 5) 1.86175
(0, 0, 1, 2, 0, 2, 1, 2, 2) (6, 9, 8, 6, 6, 6, 6, 8, 9, 6, 3, 3, 2, 6, 6) 1.75660
(0, 0, 1, 2, 1, 0, 1, 2, 2) (6, 8, 9, 7, 7, 6, 5, 6, 8, 6, 3, 5, 3, 5, 6) 1.66603
(0, 0, 1, 2, 1, 1, 1, 2, 1) (7, 7, 9, 7, 7, 6, 5, 6, 6, 5, 5, 6, 3, 5, 6) 1.62625
(0, 0, 1, 2, 1, 1, 1, 2, 2) (7, 7, 9, 7, 7, 7, 6, 7, 7, 6, 4, 5, 2, 4, 5) 1.69519
(0, 1, 1, 2, 0, 1, 1, 2, 0) (6, 6, 8, 6, 6, 7, 7, 9, 7, 7, 5, 5, 1, 5, 5) 1.77858
(0, 1, 2, 1, 0, 1, 2, 1, 0) (6, 6, 8, 6, 6, 5, 7, 5, 5, 7, 7, 5, 5, 7, 5) 1.59510
(0, 1, 2, 1, 0, 1, 2, 1, 1) (7, 7, 9, 7, 7, 4, 6, 4, 4, 6, 7, 5, 5, 7, 5) 1.63029

Table D.3: The possible branching vectors and branching numbers of Algorithm
FPA2-MQI (part 3).
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Index of Special Symbols

BG(v, r) the set of vertices in G of distance at most r from a vertex v, 88

Bm a list of sets of three taxa for the (1, 3)-cleaning, 38

NG(v) the open neighborhood of a vertex v in a graph G, 121

NG[v] the closed neighborhood of v in a graph G, 121

QT the set of quartet topologies induced by an evolutionary tree T , 21

YT the set of all induced triplet topologies in a rooted evolutionary tree T , 105

[d] {1, 2, . . . , d} for positive integer d, 75

Υ the set of all tree-like sets of quartet topologies over the taxon set, 21

∅ an empty set, 7

R+ nonnegative real numbers, 7

Z+ nonnegative integers, 7

ALR the set of least required set of topology assignments for missing quartets, 66

Cf a list of unresolved quintets containing the taxon f , 28

HP the set of forbidden minors of a minor-closed graph property P, 80

M a property tester, 6

O a partitioning oracle, 88

PV C≤k the property of having a vertex cover of size at most k, 16

Ptree tree-consistency of quartet topologies, 16

Ptw≤k the property of having treewidth at most k, 16

V the list of topologies vectors of possible quintet topologies for a quintet, 28

V2 the set of {a, b}-reduced topology vectors of all possible sextet topologies, 32

degG(v) the number of edges incident a vertex v in the graph G, 121

tw(G) treewidth of a graph G, 82
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Index

(1, 3)-cleaning, 38
(2, 2)-cleaning, 38
(3, 1)-cleaning, 38
k-coloring, 13
k-tree, 80

partial, 80

adjacent taxa, 37
arboricity, 97

characteristic polynomial, 23
reflected, 24
root, 24

Chernoff bounds, 90, 91, 126
clique, 73, 80, 123
coloring, 123

k-coloring, 108, 123
chromatic number, 51, 123
colors, 123

connected, 122
k-connected, 14, 122
component, 83, 122

cycle, 122
simple, 122

dense model, 7, 71
depth-bounded search tree, 20, 23, 66

branching number, 25, 67
branching vector, 23, 67

discrete random variable, 125
geometric, 78
indicator, 89, 90

distance, 88, 122
dominating set, 73
Dominating Set (DS), 4

evolutionary tree, 20
bifurcating (binary), 19
path structure, 21
rooted, 105

sibling, 31
unrooted, 19

fixed-parameter algorithms, 1
fixed-parameter tractable (FPT), 1

graph, 1, 121
adjacent, 7, 71, 121
complement, 74, 121
diameter, 91, 122
edge, 2, 121
empty, 121
incident, 2, 121
neighbor, 3, 121
neighborhood, 121

closed, 121
open, 87, 121

subgraph, 13, 121
induced, 84, 121

vertex, 2, 121
degree, 2, 121
isolated, 2, 121

Graph Minor Theorem, 80
graph property

H-free, 9, 13
induced, 9

bipartite, 9
connectivity, 72
cycle-free, 72
emptiness, 7
Eulerian, 72
hereditary, 9, 123
hyperfinite, 72, 123
minor-closed, 9, 80
monotone, 9, 123

Hamiltonian Cycle, 4, 73
Hamiltonian Path, 73
helpful dividing set, 88
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independent set, 52, 73, 123
Independent Set (IS), 4

local distributed algorithm, 100
communication round, 100

Markov’s inequality, 79, 86, 87, 95, 126
matching, 123
Maximum Consensus Tree from Rooted

Triplets (MCTT), 106
Maximum Quartet Consistency (MQC), 22
Minimum Quartet Inconsistency

two-siblings-determined (2SDMQI), 32
Minimum Quartet Inconsistency (MQI),

19, 20, 22
parameterized, 14, 21, 22

Minimum Triplet Inconsistency (MTI)
parameterized MTI, 106

minor, 80, 83, 122
monadic second-order logic (MSO), 4

nonexpanding
component, 86
set, 81

parameterized problem, 1
parameterized property tester, 13, 71

uniform, 13, 16, 81
weakly, 13, 14

parameterized property testing, 13, 14
testable, 13

easily, 13
partition contraction, 98
partitioning oracle, 88
path, 21, 122

k-path, 73
shortest, 122
simple, 83, 122

program checking, 8
property testing, 6–9

ε-close, 6, 71, 72
ε-far, 7, 50, 71
query, 7
testable, 7

easily, 7
tester, 6, 49

non-adaptive, 7
one-sided error, 6

trivial to test, 72

quartet, 20
errors, 21
missing, 15
topology, 21

complete, 21
type, 27

Quartet Compatibility Problem (QCP), 22
quintet, 25

resolved, 25, 50
topology, 25

partially resolved, 56
topology vector, 28

quintet cleaning, 38

sextet, 31
reduced topology vector, 31
topology, 31

sparse model, 9, 72

taxa, 14, 19
topology assignment, 61

least required, 66
tree

star, 98
tree-consistency, 21, 59

local conflict, 26
tree-like, 21, 49

tree-decomposition, 4, 81
rooted, 82

nice, 82
treewidth, 3, 74, 80
width, 82

triplet, 105
topology, 105

complete, 105
minimally dense, 106

union bound, 64, 87, 95, 125

vertex cover, 2, 74
Vertex Cover (VC), 2, 74

parameterized, 74


