A survey of genomic traces reveals a common sequencing error, RNA editing, and DNA editing

Alexander Wait Zaranek, E. Y. Levanon, T. Zecharia, T. Clegg, and G. M. Church

PLoS Genetics 6 (2010) 1-11.

Speaker: Joseph Chuang-Chieh Lin

The Comparative & Evolutionary Genomics/Transcriptomics Lab. Genomics Research Center, Academia Sinica Taiwan

26 September 2012

The word cloud

Joseph C.-C. Lin (GRC, Academia Sinica) Sequencing error, DNA & RNA editing

Outline

2 Materials & methods

3 Results

- Sequencing artifact
- DNA editing
- RNA editing

Discussion & conclusion

- It is widely believed that an organism's genomic content should be fixed throughout its lifetime with the exception of infrequent somatic mutations.
- However, proteins that can modify genomic content have been identified in human and many other organisms.

Proteins which can modify DNA/RNA

- The family of adenosine deaminase acting on RNA (ADAR).
 - $\bullet\,$ Adenosine (A) \rightarrow Inosine (I) (read as Guanosine (G) in turn).
 - On RNA nucleotides.
- The families of activation-induced deaminase (AID) & apolipoprotein **B** edting complex (APOBEC) deaminase.
 - Cytosine (C) \rightarrow Uracil (U).
 - On both DNA & RNA nucleotides.

Summary of the paper

- Analyze the raw data used to assemble the reference genomes (in NCBI Trace Archive) of ten organisms to discover:
 - Sequencing error;
 - DNA editing;
 - RNA editing.
- The ten organisms:
 - Mosquito (anoGam1), Marmoset (calJac1), Dog (canFam2), Drosophila (dm3), Chicken (galGal3), Human (hg18), Mouse (mm9), Chimp (panTro2), Fugu (fr2), and *Xenopus tropicalis* (xenTro2).
- The criteria of clusters of consecutive mismatches of the same type.
- The first investigation of extensive RNA editing in Xenopus tropicalis.

African/Western (Tropical) Clawed Frogs

Xenopus laevis

Xenopus tropicalis

• ADAR activity was first observed in Xenopus laevis oocytes [Bass & Weintraub Cell 1987].

More about AID/APOBEC family of deaminases

APOBEC1:

The first family member to be found and studied.

- Edit the apolipoprotein B (ApoB) RNA, which is involved in lipid transport.
 - Navaratnam et al. J. Biol. Chem. 1993.
 - Teng et al. Science 1993.
- Deaminate cytidine in DNA.
 - Harris et al. Mol. Cell 2002.

AID:

Discovered to be vital for antigen-driven diversification of immunoglobulin genes in the vertebrate adaptive immune system.

- Muramatsu et al. Jm Biol. Chem. 1999 & Cell 2000.
- Revy et al. Cell 2000.

More about AID/APOBEC family of deaminases (contd.)

APOBEC3s:

Involved in the restriction of retrovirus proliferation in primates.

- Jarmuz et al. Genomics 2002.
- Sheehy et al. Nature 2002.

APOBEC3G:

Serve as a potent **inhibitor** of a wide range of retroviruses, including endogenous retrotransposons.

- Harris et al. Cell 2003.
- Mangeat et al. Nature 2003.
- Θ...

Capable of editing the mouse IAP retrotransposon.

- Esnault et al. Nature 2005.
- IAP (intracisternal A-particle): endogenous sequences: retrovirus-like mobile elements; \approx 1,000 copies in the mouse genome.

Faithful repair of uracil in DNA

★ Uracil is repaired by a conserved and ubiquitous pathway: uracil nucleoside glycosylase (UNG) removes the uracil base (orange), AP endonuclease 1 (APE1) cleaves the phosphodiester backbone at the abasic site, and DNA polymerase and ligases repair the gap.

[Refer to N. Maizels: Immunoglobulin Gene Diversification Annu. Rev. Genet. 2005]

AID overrides uracil DNA repair in E. coli

* AID expression can overwhelm the normally efficient uracil DNA repair pathway to cause mutagenesis in *E. coli*.

[Refer to N. Maizels: Immunoglobulin Gene Diversification Annu. Rev. Genet. 2005]

"C-to-U" vs. "G-to-A" (DNA editing)

- C-to-U DNA editing by various APOBEC protein families is characterized by clusters of "G-to-A" mismatches between the reference genome and the edited sequence.
- These mismatches are the end product of deamination of "C" into "U" in the other DNA strand (newly formed) after reverse transcription.

Materials & methods

Joseph C.-C. Lin (GRC, Academia Sinica) Sequencing error, DNA & RNA editing

Materials & methods (data preparation)

- Obtain all traces for 10 organisms (603,249,815 traces in total) in NCBI Trace Archive (May 2008) and align them with their reference genomes.
 - $\bullet~pprox$ 300 million that aligned uniquely.
- Download **SCF** raw binary data from the trace archive and analyze them using Phred version 0.071220.b.
 - SCF data: chromatogram files used to store data from DNA sequencing.
 - Phred: generate an alternative base call for every position in the trace.
- Align the two sequences from the same trace separately and look for a large alignment with a single bp off-set.

14 / 43

Materials & methods (mapping tool)

- The applied sequence alignment tool: MegaBlast (v.2.2.13).
 - Optimized for aligning sequences that *differ slightly*.
 - More efficient to handle *much longer* DNA sequences than the *blastn* of traditional BLAST algorithm.
- Parameters:
 - alignment length \geq 400bp
 - identity \geq 97%
 - no regions to be masked
 - gap penalty: 25
 - gap extension penalty: 10

 \star Only unique alignments matching the above criteria were retained.

Materials & methods (computation facilities)

- Two computational clusters were used:
 - \bullet 96 nodes w/ (predominantly) 4 \times 1.8GHZ Opteron cores, 4–16GB RAM/node, 0–3750GB disk/node.
- ★ The human analysis consumed 347 node days and 530GB of space (reduced to 22GB by further processing).
- * The mouse analysis consumed greater than 4.2TB.
 - Many mouse traces may not place uniquely.

Materials & methods (contd.)

Table 1. Summary of computation.

Organism name	#reference bp (millions)	#unique traces (millions)	Mean coverage	Space (Gb)	Time (millions of node seconds)
Anopheles gambiae	260	4.3	9.9	13	0.56
Callithrix jacchus	2,900	22	4.6	160	1.5
Canis familiaris	2,400	33	8.3	370	3.4
Drosophila melanogaster	160	0.67	2.5	2.5	0.06
Gallus gallus	1,000	12	7.2	30	1.3
Homo sapiens	2,900	85	18	530	30
Mus musculus	2,600	93	21	4,200	114
Pan troglodytes	2,900	32	6.6	150	7.0
Takifugu rubripes	350	2.5	4.2	6.4	1.2
Xenopus tropicalis	1400	14	6.0	360	4.8
Total		298.47		5821.90	163.82

Total data generated from analysis of 603,249,815 traces, 30% of the total number of traces at NCBI (outside the short-read archive). Approximately half were placed uniquely while applying our cutoffs, with total data consuming six terabytes of disk and more than five "node years" of CPU time. The computation on mouse traces produced the buik of the data.

doi:10.1371/journal.pgen.1000954.t001

17 / 43

Materials & methods (editing enrichment criteria)

• Editing enrichment criteria:

- Runs of \geq 3 consecutive mismatches of the same type.
- * Clusters of consecutive mismatches of the same type care common in APOBEC/ADAR targets.

- ullet pprox 20.7 million traces of human were potentially enriched for editing.
- Augment the data by downloading auxiliary information and quality scores for the ≈ 20.7 million traces.

Materials & methods (filtering runs by three constraints)

Consider the 20.7 million human traces potentially enriched for editing.

- $\star_1 \geq 5$ consecutive mismatches
 - ★ 657,826 traces left;
 - * 218,595 (33%): G-to-A.
- *2 Discard runs of length < 100 bp & traces where the mismatch site (ref. or trace) were 'N'.
 - : Sequencing errors tend to form **short** mismatch clusters.
- ★3 Restrict to traces with identical 3-bp motif centered at each mismatch site.
 - : Editing enzymes have a preferred sequence content.
 - * "AGA-to-AAA" (26,694; 49.8%) & "AGG-to-AAG" (21,274; 39.7%).

♠ 53,639 traces left.

* 46,483 (82%): G-to-A.

Materials & methods (filtering runs by three constraints)

Consider the 20.7 million human traces potentially enriched for editing.

- $\star_1 \geq 5$ consecutive mismatches
 - ★ 657,826 traces left;
 - * 218,595 (33%): G-to-A.
- *2 Discard runs of length < 100 bp & traces where the mismatch site (ref. or trace) were 'N'.
 - : Sequencing errors tend to form **short** mismatch clusters.
- ★3 Restrict to traces with identical 3-bp motif centered at each mismatch site.
 - : Editing enzymes have a preferred sequence content.
 - * "AGA-to-AAA" (26,694; 49.8%) & "AGG-to-AAG" (21,274; 39.7%).
- ♠ 53,639 traces left.
 - ★ 46,483 (82%): G-to-A.

Sequencing error, DNA & RNA editing Materials & methods

Materials & methods (contd.)

୬ < ୯ 20 / 43

Materials & methods (contd.)

Runs of five mismatches

• Yet, traces are derived from both DNA strands (G-to-A ↔ C-to-T symmetric?

An example of G-to-A sequencing artifact

Materials & methods (incorporating Phred quality scores)

- Phred *a* · 10:
 - $\mathbf{Pr}[a \text{ base call is incorrect}] = 10^{-a}$.

Sequencing error, DNA & RNA editing Materials & methods

Materials & methods (contd.)

24 / 43

Results

Joseph C.-C. Lin (GRC, Academia Sinica) Sequencing error, DNA & RNA editing

æ

Sequencing error, DNA & RNA editing

Results

Sequencing artifact

Editing enriched traces of high quality

Reference genome version	G-to-A	C-to-T	A-to-G	T-to-C	Other
anoGam1	2836	2830	2907	3098	440
calJac1	3012	3362	2735	3133	145
canFam2	3170	3777	3270	3027	212
dm3	1	1	0	1	0
galGal3	1290	878	1026	1760	48
hg18	17719(82)	16778(72)	13701(188)	15301(419)	700(8)
mm9	1801(219)	1644(272)	1346(276)	1411(346)	76(11)
panTro2	3485	3120	2918	4046	240
fr2	467	449	390	482	45
xenTro2	1483(202)	1574(262)	1461(1289)	1631(1066)	269(28)

Table 2. Editing enriched traces—higher quality.

Number of traces by mismatch type with two or more mismatches at or above a quality threshold of phred 40, spanning 100bp or more. All mismatches belong to runs of three consecutive mismatches of the same type of any quality. The number of traces from the next largest substitution type, or the largest substitution type if it is not one of A-to-G, T-to-C, G-to-A, or C-to-T, is shown in the "other" column for comparison. The numbers in parentheses indicate traces of RNA origin. See Materials and Methods for more details.

26 / 43

Sequencing artifact may disrupt the accuracy of genomic assemblies

- Each position in the reference genome: determined by majority voting of the supporting traces.
- In genomic projects with **low coverage**: the error could not be detected.
- There are genomes with lower coverage tended to be free of G-to-A mismatches (most striking in *drosophila*).

- A sequencing error in one genomic trace will not usually lead to the determination of a SNP at this position.
- However, many of the "AGA" mismatches have a quality score of phred \geq 20, which is considered an acceptable quality.
 - Some of them might be classified as SNPs.
- ★ Evidence:
 - In 26,694 traces with identical 3bp G-to-A motif in runs of \geq 5: \approx 260,000 G-to-A mismatches with the 3-bp motif AGA-AAA.
 - 28,722 appear in dbSNP (11,145 in HapMap; genotyped in 4 populations) ⇒ not real SNPs.
 - * 10,532 (94%) in HapMap are homozygous for the reference allele (G) with no representation of other SNP allele in any of the 90 individuals genotyped in the Yoruba population.

- A sequencing error in one genomic trace will not usually lead to the determination of a SNP at this position.
- However, many of the "AGA" mismatches have a quality score of phred \geq 20, which is considered an acceptable quality.
 - Some of them might be classified as SNPs.
- ★ Evidence:
 - In 26,694 traces with identical 3bp G-to-A motif in runs of \geq 5: \approx 260,000 G-to-A mismatches with the 3-bp motif AGA-AAA.
 - 28,722 appear in dbSNP (11,145 in HapMap; genotyped in 4 populations) ⇒ not real SNPs.
 - * 10,532 (94%) in HapMap are homozygous for the reference allele (G) with no representation of other SNP allele in any of the 90 individuals genotyped in the Yoruba population.

- A sequencing error in one genomic trace will not usually lead to the determination of a SNP at this position.
- However, many of the "AGA" mismatches have a quality score of phred \geq 20, which is considered an acceptable quality.
 - Some of them might be classified as SNPs.
- ★ Evidence:
 - In 26,694 traces with identical 3bp G-to-A motif in runs of \geq 5: \approx 260,000 G-to-A mismatches with the 3-bp motif AGA-AAA.
 - 28,722 appear in dbSNP (11,145 in HapMap; genotyped in 4 populations) ⇒ not real SNPs.
 - * 10,532 (94%) in HapMap are homozygous for the reference allele (G) with no representation of other SNP allele in any of the 90 individuals genotyped in the Yoruba population.

- A sequencing error in one genomic trace will not usually lead to the determination of a SNP at this position.
- However, many of the "AGA" mismatches have a quality score of phred \geq 20, which is considered an acceptable quality.
 - Some of them might be classified as SNPs.
- ★ Evidence:
 - In 26,694 traces with identical 3bp G-to-A motif in runs of \geq 5: \approx 260,000 G-to-A mismatches with the 3-bp motif AGA-AAA.
 - 28,722 appear in dbSNP (11,145 in HapMap; genotyped in 4 populations) ⇒ not real SNPs.
 - * 10,532 (94%) in HapMap are homozygous for the reference allele (G) with no representation of other SNP allele in any of the 90 individuals genotyped in the Yoruba population.

DNA editing

- In the mouse genome:
 - (A-to-G/T-to-C m.m., C-to-T/G-to-A m.m.) = (7,860, 9,799).
 - In IAP regions: (49, 114). [p-value: 0.00018]
 - * The origin of the mismatches: a result of editing by APOBEC after reverse transcription of the retrotranposons.
- In human genome:
 - (A-to-G/T-to-C m.m., C-to-T/G-to-A m.m.) = (79,401, 91,120).
 - In HERVK retrotransposon elements: (129, 247). [p-value: 1.7×10^{-6}]
 - Two examples of the editing events in HERVL-A1 and in AluY (the most active SINE family) are present.
 - ♦ HERVs: Human Endogenous RetroVirus-Like sequences;
 - $\diamond~$ SINE: Short INterspersed Elements.

Sequencing error, DNA & RNA editing

Results

DNA editing

DNA editing in human HERVL-A1

Query Sbjct	1	TGACAGTGGATTATCATAAGCTTAATCAAGTGGTGACTCCAATTTCAGCTGCTGTACCAG	60 60
Query Sbjct	61 61	ATGTGGTTTCATTGCTTGAGCAAATTAACACATCTGGTACCTGGTATGCAGCCACTGACT	120 120
Query Sbjct	121 121	TGGCCTTCGGAGCCTTTGGCAGGCTCCCATAAGTGAATCACAGTGGAGCCCTGTAGGATT	180 180
Query Sbjct	181 181	TTGGAGCAAGGCCCTACCATCTTCTGAAAATAACTACTCCTCTTTTGACAGACA	240 240
Query Sbjct	241 241	GGCCTGTTACTGGGCTTTGGTGGGAAACTGAATGTTTGACTATGGGTCATCAAGTCACCAT	300 300
Query Sbjct	301 301	GCGACCTGAACTGTCTATCATGCACTGGATGTTTTCTGACCCATCTGGTCATAAAGTGGG	360 360
Query Sbjct	361 361	TCATGCACCAGCATCCATCATCATATGGAAGTGGTATATATGTGATCGGGCTCGAGC	420 420
Query Sbjct	421 421	CGGTCCTGAAGGCACAAGTAAGTTACATGAGGAAGTGGCTCAAGTGCCCATGGTCTCTAC	480 480
Query Sbjct	481 481	TCCTGCCACCTGCCTTCTCTCCCCTAGCCTGCACCGATGGCCTCATGGGGAGTTCCCTGT	540 540
Query Sbjct	541 541	GATCAGTTGACAGAGGAAGGGAAGGCATGGCCCTGGTTCAGAGATGGTTCTACATGATAT	600 600
Query Sbjct	601 601	GCAGGCACCACCCGGAAGIGGACAGCTGCAGGACTACAGCCCTTTCTAGGACATCCCTGA	660 660
Query Sbjct	661 661	ACGACAGCGGTGGAGGGAACTTCCCAGTGGGCAGAACTTCGACCAGTGCACCTGGTTATG	720 720
Query Sbjct	721 721	CACTTIGCATGGAAGGAGAAATGGCCAGATGTCTGATTATACTGATTCATGGGCTGCA	780 780
Query Sbjct	781 781	GCCAATGGTTTGGCTGGATGGTCAGGGACTTGGAAGAAGCATGATTGGAAAAATGTGTGAC	840 840
Query Sbjct	841 841	AAAGAAATCTAGGGAAGAAGTATGTGGATGGACCTCTCTGAGAGGTCAAAAACTGTGAAG	900 900
Query Sbjct	901 901	ATATTTGTATCCCATGTGAGTGCTCACCAATGGGTGACCTCAGCAGAGGGGGATTTTAAC	960 960
Query Sbjct	961 961	AATCAAGTGGATAGGAT 977 977	

Sequencing error, DNA & RNA editing

Results

DNA editing

DNA editing in human AluY

Genome Trace	1	ATGTAATTTGGACACAAGCATATTCTCTGGTCTGTTGTTCATCTAAGAGTTTTCATTTCA	60 60
Genome	61	ggaaaattcaagagaataacaggatcatttaggaaagaatattgtgtagtgataaccata	120
Trace	61		120
Genome	121	ATGCTGTTAGATTATTATTATTATCGACAAGCTAARATAGATGTCACAAATCRAGATTTG	180
Trace	121		180
Genome	181	CTTAGACAATGTGCCACAGTATAAGAAAACAGGATTTGAGAATGAGAAATATAATTTTTG	240
Trace	181		240
Genome	241	ACTCAGAATAACTTGCTAGCTACTCAAGAAGTCAGTGTGAACTCAAGGTATTGTCGAGCA	300
Trace	241		300
Genome	301	GAGATAAAGGTGGGTTGGACCAGGCTTATGGTGCTGTGTCCTTTGCTCTGGGCTGGAGCA	360
Trace	301		360
Genome	361	GGTGGAGGAAGGTCTCCTTAAGCAGATGGGTTGCTTGGCCTCCAGAAATCCCTCAGGCGG	420
Trace	361		420
Genome	421	AGCTACCATGGCTGTCAGCCCTTTGTGGCTGTCCTTCTGAGCAGATGGGGCAGGATGGAG	480
Trace	421		480
Genome	481	TAAACCATCCAGCAGCCCAGACTTCCTCTCTCCTCAGCAACCGCGTCACCTGTGGAATCC	540
Trace	481		540
Genome	541	TCAGTCTAGGAGCCACCCCCCTTCCCCCCCCCCTCTGCAGCCCTTCTGCAG	600
Trace	541		600
Genome	601	ACTGGGCACATTGAGCATTTATGCCAGTCCGGTTTCTTTTTTCTTTTTTTG	660
Trace	601		660
Genome	661	ATGGAGTCTCACTCTGTCACCCAGGCTGGAGTGCAGTGACGCGATCTCGGCTCATTGCAA	720
Trace	661		720
Genome	721	CCTCTTCCCCCCGAGTTCAAGTGATTCTCCCGCCCCGGAGTAGCTGGGACTA	780
Trace	721		780
Genome	781	CAGGCACCTGCCACCACACCTGGCTATTTTTTTTTTTTT	840
Trace	781		839
Genome	841	TGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCTGCCCGCCC	900
Trace	840		899
Genome	901	GTGCTGGGATTATAGGTGTGAGCCACCGTGCGTGG 935	
Trace	900	934	

RNA editing

• A fraction of the human, mouse, and *Xenopus tropicalis* traces are derived from RNA.

organism	human	mouse	Xenopus tropicalis
passed traces	250K	513K	454K

* passed traces: number of traces passing the stringent alignment criteria.

Evidence for RNA editing in the cDNA traces

Joseph C.-C. Lin (GRC, Academia Sinica) Sequencing error, DNA & RNA editing

590

Further evidences

• ADAR signature in the cDNA edited traces.

• 72% of the mismatches in the higher quality set are located in Alu repeats;

 \Leftrightarrow Alu/human Genome $\approx 10\%$; p-value: 1.7×10^{-110} .

Sequencing error, DNA & RNA editing Results

RNA editing

RNA editing in Xenopus tropicalis

X.T Genome	ATCAGTCTGCTGCTTTTTAGGAGTTTAAAGGACAAGTAAAGCCTCAGTCAG	
1810455972	gg.	234
1810477902	gg.	334
1065483469		283
1065490247		328
1065466398		524
1065471353	g	535
1669879253	gg.	464
X.T Genome	TGGGCCTCCACCATTTTCCCTACAGCCTCCCAGGTATCCCCAGTGCCGTAGTCAGGAAAA	
1810455972	ggg	294
1810477902	gg	394
1065483469		343
1065490247	g	388
1065466398	gg	584
1065471353	gg	595
1669879253	g	524
X.T Genome	CACCAAGTCGGACTAAGGCAGAGGGTATACTTGGGAGGCCGGGGTAAGATGGCAGAGGCG	
1810455972	·····.g.····g.····g.····g.····	354
1810477902	ggg	454
1065483469	g	403
1065490247	ggggg	448
1065466398	ggggg	644
1065471353	g	655
1000000000		E 0.4

RNA editing in Xenopus tropicalis

- Total 18,161 mismatches in the editing enriched, higher quality set;
 - $\star~$ 10,001 of them in clusters of ≥ 10 sites.

Discussion & conclusion

Joseph C.-C. Lin (GRC, Academia Sinica) Sequencing error, DNA & RNA editing

Sequencing error, DNA & RNA editing Discussion & conclusion

Discussion & conclusion

- The NCBI Trace Archive can be used in the search for DNA & RNA editing.
- * The NCBI Short-Read Archive (SRA) might be considered in the future.
 - The analysis will be much more challenging.

- The availability of computational resources for carrying out the analysis was essential to this paper.
 - 6TB disk space and > 5 node years of CPU time.
- ★ Do with further computational effort to combine:
 - the data in the trace archive
 - the NGS data
 - in order to:
 - improve genomic databases
 - eliminate the sequencing errors.

Sequencing error, DNA & RNA editing Discussion & conclusion

- Using well-calibrated quality scores to investigate editing events.
- $\star\,$ Using quality scores, many additional genomes can be surveyed for editing.

Sequencing error, DNA & RNA editing Discussion & conclusion

- Xenopus tropicalis:
 - The non-human organism with the largest number of known editing sites so far.

- The actual number of editing sites could be significantly underestimated.
- ★ Refine the criteria and perform comprehensive detection of RNA editing.
 - The comparison of editing levels (ratios) in different tissues, disease conditions, etc.

- In this work, evidence for the events of DNA editing was found.
- ★ To survey how leakage of DNA editing events, outside retroelements or immunoglobulins, could cause many simultaneous mutations in the genome (\rightarrow eventually lead to cancer).

Sequencing error, DNA & RNA editing

Thank you.

Joseph C.-C. Lin (GRC, Academia Sinica) Sequencing error, DNA & RNA editing