New fixed-parameter algorithms for the minimum quartet inconsistency problem

Maw-Shang Chang¹ Chuang-Chieh Lin (Joseph)¹ Peter Rossmanith²

Department of Computer Science and Information Engineering, National Chung Cheng University, Ming-Hsiung, Chiayi, Taiwan mschang@cs.ccu.edu.tw; lincc@cs.ccu.edu.tw

Department of Computer Science, RWTH Aachen University, Germany rossmani@informatik.rwth-aachen.de

May 16, 2008

イロト イポト イヨト イヨト

Basic definitions Our results Related works

Evolutionary trees

- S: a set of taxa; |S| = n.
- An evolutionary tree T on S:
 - An unrooted, leaf-labeled tree
 - The leaves are bijectively labeled by the taxa in *S*
 - Each internal node has degree *three*

・ロト ・回ト ・ヨト・

-

Basic definitions Our results Related works

Quartet topologies

Maw-Shang Chang, Chuang-Chieh Lin, and Peter Rossmanith New fixed-parameter algorithms for the MQI problem

(ロ) (部) (E) (E)

DQC

Basic definitions Our results Related works

Quartet topologies (contd.)

Maw-Shang Chang, Chuang-Chieh Lin, and Peter Rossmanith New fixed-parameter algorithms for the MQI problem

イロト イヨト イヨト

æ

DQC

Basic definitions Our results Related works

Biological issue

Maw-Shang Chang, Chuang-Chieh Lin, and Peter Rossmanith

New fixed-parameter algorithms for the MQI problem

Basic definitions Our results Related works

Tree-consistency

- Q_T : the set of quartet topologies induced by T.
 |Q_T| = (ⁿ₄).
- Q is tree-consistent (with T):
 - $\exists T \text{ s.t. } Q \subseteq Q_T.$
 - \triangleright tree-like if $Q = Q_T$.
- Q is called complete:
 - Exactly one topology for every quartet;
 - Otherwise, incomplete.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Basic definitions Our results Related works

Tree-consistency

- Q_T : the set of quartet topologies induced by T.
 |Q_T| = ⁿ₄).
- Q is tree-consistent (with T):
 - $\exists T \text{ s.t. } Q \subseteq Q_T.$
 - \triangleright tree-like if $Q = Q_T$.
- Q is called complete:
 - Exactly one topology for every quartet;
 - Otherwise, incomplete.

・ロト ・回ト ・ヨト ・ヨト

Tree-consistency

- Q_T : the set of quartet topologies induced by T.
 |Q_T| = ⁿ₄).
- Q is tree-consistent (with T):
 - $\exists T \text{ s.t. } Q \subseteq Q_T.$
 - \triangleright tree-like if $Q = Q_T$.
- Q is called complete:
 - Exactly one topology for every quartet;
 - Otherwise, incomplete.

Basic definitions Our results Related works

Tree-consistency

- Q_T : the set of quartet topologies induced by T.
 |Q_T| = ⁿ₄).
- Q is tree-consistent (with T):
 - $\exists T \text{ s.t. } Q \subseteq Q_T.$
 - \triangleright tree-like if $Q = Q_T$.
- Q is called complete:
 - Exactly one topology for every quartet;
 - Otherwise, incomplete.

イロト イポト イヨト イヨト

Basic definitions Our results Related works

Quartet errors

- Given complete Q and Q^* (tree-like).
- **#** quartet errors of *Q*:
 - $\Delta^*(Q) := \min\{\Delta(Q, Q^*) : Q^* \text{ is tree-like}\}.$

イロト イヨト イヨト イヨト

Basic definitions Our results Related works

Quartet errors

- Given complete Q and Q^* (tree-like).
- # quartet errors of Q w.r.t. Q*:
 Δ(Q, Q*).
- **# quartet errors of** *Q*:
 - $\Delta^*(Q) := \min{\{\Delta(Q, Q^*) : Q^* \text{ is tree-like}\}}.$

イロト イヨト イヨト イヨト

Basic definitions Our results Related works

Quartet errors

- Given complete Q and Q^* (tree-like).
- # quartet errors of Q w.r.t. Q*:
 Δ(Q, Q*).
- **# quartet errors of** *Q*:
 - $\Delta^*(Q) := \min\{\Delta(Q, Q^*) : Q^* \text{ is tree-like}\}.$

イロト イヨト イヨト

Sac

Basic definitions Our results Related works

The problem focused in this paper:

Given: a complete set of quartet topologies Q and an integer k.

• The parameterized minimum quartet inconsistency problem:

Determine whether there exists an evolutionary tree T such that $\Delta(Q, Q_T) \leq k$.

* **NP**-complete [Berry *et al.* 1999]. * $O(4^k n + n^4)$ [Gramm and Niedermeier 2003].

Basic definitions Our results Related works

The problem focused in this paper:

Given: a complete set of quartet topologies Q and an integer k.

• The parameterized minimum quartet inconsistency problem:

Determine whether there exists an evolutionary tree T such that $\Delta(Q, Q_T) \leq k$.

- * **NP**-complete [Berry *et al.* 1999].
- * $O(4^k n + n^4)$ [Gramm and Niedermeier 2003].

Basic definitions Our results Related works

Our results

- \triangleright An $O^*(3.0446^k)$ fixed-parameter algorithm.
- \triangleright An $O^*(2.0162^k)$ fixed-parameter algorithm.
- \triangleright An $O^*((1+\epsilon)^k)$ fixed-parameter algorithm.

・ロト ・回 ト ・ヨト ・ヨト

3

Sac

Basic definitions Our results Related works

Related works (Constructing T and QCP)

- Construct T from a given tree-like Q:
 * O(n⁴) [Berry and Gascuel 2000].
- The Quartet Compatibility Problem (QCP):

Determine whether there exists an evolutionary tree T satisfying all quartet topologies in Q.

- * NP-complete [Steel 1992].
- * Polynomial time solvable if Q is complete [Erdős *et al.* 1999].

イロト イポト イヨト イヨト

• Consider the cases of **complete** *Q*.

Basic definitions Our results Related works

Related works (Constructing T and QCP)

- Construct T from a given tree-like Q: $\star O(n^4)$ [Berry and Gascuel 2000].
- The Quartet Compatibility Problem (QCP):

Determine whether there exists an evolutionary tree T satisfying all quartet topologies in Q.

- * NP-complete [Steel 1992].
- \star Polynomial time solvable if Q is complete [Erdős et al. 1999].

イロト イポト イヨト イヨト

• Consider the cases of **complete** *Q*.

Basic definitions Our results Related works

Related works (Constructing T and QCP)

- Construct T from a given tree-like Q: $\star O(n^4)$ [Berry and Gascuel 2000].
- The Quartet Compatibility Problem (QCP):

Determine whether there exists an evolutionary tree T satisfying all quartet topologies in Q.

- * NP-complete [Steel 1992].
- \star Polynomial time solvable if Q is complete [Erdős *et al.* 1999].

イロト イポト イヨト イヨト

• Consider the cases of **complete** *Q*.

Basic definitions Our results Related works

Related works (MQI & MQC)

Minimum Quartet Inconsistency Problem (MQI)

Construct an evolutionary tree T s.t. $\Delta(Q, Q_T)$ is minimized.

- * **NP**-hard [Berry *et al.* 1999].
- * Approx. ratio: $O(n^2)$ [Jiang *et al.* 2000].
- ★ O(3ⁿn⁴) dynamic programming [Ben-Dor *et al.* 1998].
- ★ $O(n^4)$ if $\Delta^*(Q) < (n-3)/2$ [Berry *et al.* 1999].
- * $O(n^5 + 2^{4c}n^{12c+2})$ if $\Delta^*(Q) < cn$ for some constant c [Wu *et al.* 2006].

Maximum Quartet Consistency Problem (MQC)

Dual problem of MQI.

* NP-hard [Berry et al. 1999].

* PTAS [Jiang *et al.* 2001].

Quintets Tree-consistency and GN's algorithm

イロト イヨト イヨト

Э

DQC

Quintets

- A quintet is a set of five taxa in S.
- Quintet topologies:

Maw-Shang Chang, Chuang-Chieh Lin, and Peter Rossmanith New fixed-parameter algorithms for the MQI problem

Quintets Tree-consistency and GN's algorithm

イロト イヨト イヨト

Э

DQC

Quintets

- A quintet is a set of five taxa in S.
- Quintet topologies:

Quintets Tree-consistency and GN's algorithm

Quintet topologies

Maw-Shang Chang, Chuang-Chieh Lin, and Peter Rossmanith New fixed-parameter algorithms for the MQI problem

Quintets Tree-consistency and GN's algorithm

イロト イヨト イヨト イヨト

3

DQC

Resolved quintets

• What is a resolved quintet?

[ab|cd], [ab|ce], [ab|de], [ac|de], $[bc|de] \in Q.$

Quintets Tree-consistency and GN's algorithm

イロト イヨト イヨト

3

DQC

Resolved quintets

- What is a resolved quintet?

Quintets Tree-consistency and GN's algorithm

Resolved quintets

- What is a resolved quintet?
- $\triangleright \ [ab|cd], [ab|ce], [ab|de], [ac|de], \\ [bc|de] \in Q.$

イロト イヨト イヨト イヨト

3

DQC

Quintets Tree-consistency and GN's algorithm

イロト イヨト イヨト

Tree consistency and conflicts

• Local conflict: a set of three quartet topologies which is not tree-consistent.

Lemma 2.1 (Gramm and Niedermeier 2003)

3 quartet topologies with > 5 taxa \Rightarrow no local conflict.

Quintets Tree-consistency and GN's algorithm

Sac

Tree consistency and conflicts

• Local conflict: a set of three quartet topologies which is not tree-consistent.

Lemma 2.1 (Gramm and Niedermeier 2003)

3 quartet topologies with > 5 taxa \Rightarrow no local conflict.

Quintets Tree-consistency and GN's algorithm

Tree consistency and conflicts (contd.)

Theorem 2.2 (Gramm and Niedermeier 2003)

Q is tree-like \Leftrightarrow no local conflict for every set of 3 quartet topologies involving a fixed taxon f.

Theorem 2.3 (Bandelt and Dress 1986)

Q is tree-like \Leftrightarrow every quintet containing f is resolved.

Quintets Tree-consistency and GN's algorithm

イロト イポト イヨト イヨト

Tree consistency and conflicts (contd.)

Theorem 2.2 (Gramm and Niedermeier 2003)

Q is tree-like \Leftrightarrow no local conflict for every set of 3 quartet topologies involving a fixed taxon f.

Theorem 2.3 (Bandelt and Dress 1986)

Q is tree-like \Leftrightarrow every quintet containing *f* is resolved.

Quintets Tree-consistency and GN's algorithm

- Bounded-depth search tree strategy.
- Eliminate a local conflict \Rightarrow 4 kinds of ways.
- Each branching node has 4 branches.
- Branching vector: (1,1,1,1)
 - \triangleright Branching number: 4, hence the $O^*(4^k)$ complexity.

Quintets Tree-consistency and GN's algorithm

- Bounded-depth search tree strategy.
- Eliminate a local conflict \Rightarrow 4 kinds of ways.
- Each branching node has 4 branches.
- Branching vector: (1,1,1,1)
 - \triangleright Branching number: 4, hence the $O^*(4^k)$ complexity.

A D A A B A A B A A B A

- Bounded-depth search tree strategy.
- Eliminate a local conflict \Rightarrow 4 kinds of ways.
- Each branching node has 4 branches.
- Branching vector: (1,1,1,1)
 - \triangleright Branching number: 4, hence the $O^*(4^k)$ complexity.

A D A A B A A B A A B A

Idea of Gramm and Niedermeier's algorithm

- Bounded-depth search tree strategy.
- Eliminate a local conflict \Rightarrow 4 kinds of ways.
- Each branching node has 4 branches.
- Branching vector: (1,1,1,1)

 \triangleright Branching number: 4, hence the $O^*(4^k)$ complexity.

Sac

- Bounded-depth search tree strategy.
- Eliminate a local conflict \Rightarrow 4 kinds of ways.
- Each branching node has 4 branches.
- Branching vector: (1,1,1,1)
 - \triangleright Branching number: 4, hence the $O^*(4^k)$ complexity.

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

・ロト ・同ト ・ヨト ・ヨト

Idea of our first algorithm

• Also bounded-depth search tree strategy

- Eliminate unresolved quintets.
- 15 branches for each node of the search tree

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

・ロト ・同ト ・ヨト ・ヨト

Idea of our first algorithm

- Also bounded-depth search tree strategy
- Eliminate unresolved quintets.
- 15 branches for each node of the search tree

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

・ロト ・同ト ・ヨト ・ヨト

Idea of our first algorithm

- Also bounded-depth search tree strategy
- Eliminate unresolved quintets.
- 15 branches for each node of the search tree

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

イロト イヨト イヨト

The first algorithm (contd.)

For the quintet {a, b, c, d, e}:
 [ab|cd], [ac|be], [ae|bd], [ad|ce], [bc|de] ∈ Q.

 Consider the (first) quintet topology:
 [ab|cd], [ab|ce], [ab|de], [ac|de], [bc|de].

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

イロト イヨト イヨト

The first algorithm (contd.)

- For the quintet {a, b, c, d, e}:
 [ab|cd], [ac|be], [ae|bd], [ad|ce], [bc|de] ∈ Q.
- Consider the (first) quintet topology:
 - ▷ [ab|cd], [ab|ce], [ab|de], [ac|de], [bc|de].

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

The first algorithm (contd.)

- For the quintet {a, b, c, d, e}:
 [ab|cd], [ac|be], [ae|bd], [ad|ce], [bc|de] ∈ Q.
- Consider the (first) quintet topology:
 - $\triangleright \quad [ab|cd], \ [ab|ce], \ [ab|de], \ [ac|de], \\ [bc|de].$

・ロト ・同ト ・ヨト ・ヨト

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

The first algorithm (contd.)

For the quintet {a, b, c, d, e}:
 [ab|cd], [ac|be], [ae|bd], [ad|ce], [bc|de] ∈ Q.

• Consider the (first) quintet topology:

[ab|cd], [ab|ce], [ab|de], [ac|de],[bc|de].

イロト イポト イヨト イヨト

branching vector	branching number
(3 , 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3)	2.30042

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

The first algorithm (contd.)

For the quintet {a, b, c, d, e}:
 [ab|cd], [ac|be], [ae|bd], [ad|ce], [bc|de] ∈ Q.

• Consider the (first) quintet topology:

▷ [ab|cd], [ab|ce], [ab|de], [ac|de], [bc|de].

<ロ> (四) (四) (三) (三)

branching vector	branching number
(3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3)	2.30042
(2, 4, 4, 4, 5, 2, 2, 3, 3, 4, 3, 4, 3, 3, 4)	2.46596
	0.67100
(3, 5, 5, 3, 5, 2, 2, 3, 5, 5, 2, 3, 2, 3, 2)	2.67102
(1, 3, 3, 5, 5, 1, 3, 3, 3, 4, 2, 4, 4, 4, 5)	

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

The first algorithm (contd.)

For the quintet {a, b, c, d, e}:
 [ab|cd], [ac|be], [ae|bd], [ad|ce], [bc|de] ∈ Q.

• Consider the (first) quintet topology:

[ab|cd], [ab|ce], [ab|de], [ac|de], [bc|de].

イロト イポト イヨト イヨト

branching vector	branching number
(3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3)	2.30042
(2, 4, 4, 4, 5, 2, 2, 3, 3, 4, 3, 4, 3, 3, 4)	2.46596
(3, 5, 5, 3, 5, 2, 2, 3, 5, 5, 2, 3, 2, 3, 2)	2.67102
(1,3,3,5,5,1,3,3,3,4,2,4,4,4,5)	3.04454

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

イロト イポト イヨト イヨト

The first algorithm (contd.)

Theorem 3.1

There exists an $O(3.0446^k n + n^4)$ fixed-parameter algorithm for the parameterized MQI problem.

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

Siblings

• Siblings: $\{c, e\}$ and $\{d, g\}$.

イロト イポト イヨト イヨト

æ

DQC

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

Siblings

• Siblings: $\{c, e\}$ and $\{d, g\}$.

イロト イポト イヨト イヨト

æ

DQC

Maw-Shang Chang, Chuang-Chieh Lin, and Peter Rossmanith New fixed-parameter algorithms for the MQI problem

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

イロト イヨト イヨト

- 4 ⊒ >

5900

Sextet topologies & a fixed pair of siblings

Maw-Shang Chang, Chuang-Chieh Lin, and Peter Rossmanith New fixed-parameter algorithms for the MQI problem

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

イロト イポト イヨト イヨト

Sextet topologies & a fixed pair of siblings (contd.)

- {*a*, *b*, *w*, *x*}, {*a*, *b*, *w*, *y*}, {*a*, *b*, *w*, *z*}, {*a*, *b*, *x*, *y*}, {*a*, *b*, *x*, *z*}, {*a*, *b*, *y*, *z*} have determined topologies.
 - $\triangleright \quad [ab|wx], \ [ab|wy], \ [ab|wz], \ [ab|xy], \ [ab|xz], \ [ab|yz].$

• 9 quartet topologies undetermined.

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

イロト イポト イヨト イヨト

Sextet topologies & a fixed pair of siblings (contd.)

- {*a*, *b*, *w*, *x*}, {*a*, *b*, *w*, *y*}, {*a*, *b*, *w*, *z*}, {*a*, *b*, *x*, *y*}, {*a*, *b*, *x*, *z*}, {*a*, *b*, *y*, *z*} have determined topologies.
 - $\triangleright \quad [ab|wx], \ [ab|wy], \ [ab|wz], \ [ab|xy], \ [ab|xz], \ [ab|yz].$
- 9 quartet topologies undetermined.

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

イロト イポト イヨト イヨト

The second algorithm

branching vector	branching number
(6, 6, 8, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 6)	1.58005
(5, 6, 6, 5, 6, 6, 6, 5, 6, 6, 7, 6, 7, 6, 7)	1.58142
(1, 5, 5, 7, 8, 2, 6, 6, 8, 9, 3, 7, 7, 8, 8)	2.00904
(1, 5, 5, 9, 9, 2, 6, 6, 6, 8, 3, 7, 7, 7, 9)	2.01615

Theorem 3.2

There exists an $O(2.0162^k n^3 + n^5)$ fixed-parameter algorithm for the parameterized MQI problem.

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

The second algorithm

branching vector	branching number
(6, 6, 8, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 6)	1.58005
(5, 6, 6, 5, 6, 6, 6, 5, 6, 6, 7, 6, 7, 6, 7)	1.58142
(1, 5, 5, 7, 8, 2, 6, 6, 8, 9, 3, 7, 7, 8, 8)	2.00904
(1, 5, 5, 9, 9, 2, 6, 6, 6, 8, 3, 7, 7, 7, 9)	2.01615

Theorem 3.2

There exists an $O(2.0162^k n^3 + n^5)$ fixed-parameter algorithm for the parameterized MQI problem.

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

イロト イポト イヨト イヨト

DQC

Idea of the third algorithm

• Generalized from the second algorithm.

• Siblings \Rightarrow adjacent taxa.

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

イロト イヨト イヨト

DQC

Idea of the third algorithm

- Generalized from the second algorithm.
- Siblings \Rightarrow adjacent taxa.

 Introduction
 An $O^*(3.0446^k)$ fixed-parameter algorithm

 Preliminaries
 An $O^*(2.0162^k)$ fixed-parameter algorithm

 Our fixed-parameter algorithms
 An $O^*((1 + e)^k)$ fixed-parameter algorithm

Adjacent taxa

- Adjacent m ≥ 2 taxa a₁,..., a_m:
- $(\{a_1,\ldots,a_m\}, S \setminus \{a_1,\ldots,a_m\})$

イロト イポト イヨト イヨト

DQC

Given a number $2 \le \omega \le n/2$, there must be *m* adjacent taxa, where $\omega \le m \le 2\omega - 2$.

Adjacent taxa

- Adjacent m ≥ 2 taxa
 a₁,..., a_m:
- $(\{a_1,\ldots,a_m\}, S \setminus \{a_1,\ldots,a_m\}).$

イロト イヨト イヨト

DQC

Given a number $2 \le \omega \le n/2$, there must be *m* adjacent taxa, where $\omega \le m \le 2\omega - 2$.

Maw-Shang Chang, Chuang-Chieh Lin, and Peter Rossmanith New fixed-parameter algorithms for the MQI problem

Adjacent taxa

Adjacent m ≥ 2 taxa
 a₁,..., a_m:

•
$$(\{a_1,\ldots,a_m\}, S \setminus \{a_1,\ldots,a_m\}).$$

イロト イヨト イヨト イヨト

3

DQC

Given a number $2 \le \omega \le n/2$, there must be *m* adjacent taxa, where $\omega \le m \le 2\omega - 2$.

Maw-Shang Chang, Chuang-Chieh Lin, and Peter Rossmanith New fixed-parameter algorithms for the MQI problem

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

The third algorithm

- Change the topology of $\{a_1, w, x, y\}$.
- ▷ Change the topologies of {a₂, w, x, y}, {a₃, w, x, y}, {a₄, w, x, y} as well.

イロト イヨト イヨト

3

DQC

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

The third algorithm

- Change the topology of {*a*₁, *w*, *x*, *y*}.
- Change the topologies of {a₂, w, x, y}, {a₃, w, x, y}, {a₄, w, x, y} as well.

イロト イヨト イヨト

3

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

イロト イヨト イヨト

Concluding theorem

•
$$O^*((1+2m^{-1/2})^k).$$

- Assume that $1 + 2m^{-1/2} \le 1 + \epsilon$ for some constant $\epsilon > 0$.
- Time complexity: $O((1+\epsilon)^k n^{8/\epsilon^2-1} + n^{8/\epsilon^2+1} + n^5)$.

Theorem 3.3

There exists an $O^*((1 + \epsilon)^k)$ time fixed-parameter algorithm for the parameterized MQI problem, where $\epsilon > 0$ is an arbitrarily small constant.

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

イロト イヨト イヨト

Concluding theorem

•
$$O^*((1+2m^{-1/2})^k).$$

- Assume that $1 + 2m^{-1/2} \le 1 + \epsilon$ for some constant $\epsilon > 0$.
- Time complexity: $O((1+\epsilon)^k n^{8/\epsilon^2-1} + n^{8/\epsilon^2+1} + n^5)$.

Theorem 3.3

There exists an $O^*((1 + \epsilon)^k)$ time fixed-parameter algorithm for the parameterized MQI problem, where $\epsilon > 0$ is an arbitrarily small constant.

An $O^*(3.0446^k)$ fixed-parameter algorithm An $O^*(2.0162^k)$ fixed-parameter algorithm An $O^*((1 + \epsilon)^k)$ fixed-parameter algorithm

3

Sac

Concluding theorem

•
$$O^*((1+2m^{-1/2})^k).$$

- Assume that $1 + 2m^{-1/2} \le 1 + \epsilon$ for some constant $\epsilon > 0$.
- Time complexity: $O((1+\epsilon)^k n^{8/\epsilon^2-1} + n^{8/\epsilon^2+1} + n^5)$.

Theorem 3.3

There exists an $O^*((1 + \epsilon)^k)$ time fixed-parameter algorithm for the parameterized MQI problem, where $\epsilon > 0$ is an arbitrarily small constant.

Introduction	An $O^*(3.0446^k)$ fixed-parameter algorithm
Preliminaries	An $O^*(2.0162^k)$ fixed-parameter algorithm
Our fixed-parameter algorithms	An $O^*((1+\epsilon)^k)$ fixed-parameter algorithm

Thank you!

Maw-Shang Chang, Chuang-Chieh Lin, and Peter Rossmanith New fixed-parameter algorithms for the MQI problem

(日) (四) (三) (三)

DQC