Computing branching numbers

Speaker: Joseph, Chuang-Chieh Lin Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

November 6, 2009

1/12

Branching vector

Definition 1

Given a problem \mathbb{P} with parameter k. If an algorithm solves \mathbb{P} and calls itself recursively for subproblems with parameters

$$k-d_1, k-d_2, \ldots, k-d_i,$$

then (d_1, d_2, \ldots, d_i) is called the *branching vector* of recursion of the algorithm.

Actually, the branching vector (d₁, d₂,..., d_i) corresponds to the recurrence T_k = T_{k-d1} + T_{k-d2} + ... + T_{k-di}.

•
$$T_k = T_{k-d_1} + T_{k-d_2} + \ldots + T_{k-d_k}$$

• Let $T_k = \alpha^k$. We want to know how big α is.

•
$$\alpha^k = \alpha^{k-d_1} + \alpha^{k-d_2} + \ldots + \alpha^{k-d_i}$$

•
$$1 = \alpha^{-d_1} + \alpha^{-d_2} + \ldots + \alpha^{-d_i}$$
.

• Let
$$d = \max\{d_1, d_2, \dots, d_i\}$$
. We have

$$\alpha^d = \alpha^{d-d_1} + \alpha^{d-d_2} + \ldots + \alpha^{d-d_i}.$$

Characteristic polynomials

Definition 2

Given a branching vector $\mathbf{v} = (d_1, d_2 \dots, d_i)$ of some recursion, the *characteristic polynomial* of \mathbf{v} is

$$z^{d}-z^{d-d_{1}}-z^{d-d_{2}}-\ldots-z^{d-d_{i}},$$

where *d* is defined to be $\max\{d_1, d_2, \ldots, d_i\}$. Furthermore, we call α the *characteristic root* of the characteristic polynomial if $\alpha^d = \alpha^{d-d_1} + \alpha^{d-d_2} + \ldots + \alpha^{d-d_i}$.

Definition 3

Given a branching vector $\mathbf{v} = (d_1, d_2, \dots, d_i)$ of some recursion, the reflected characteristic polynomial of \mathbf{v} is $1 - z^{d_1} - z^{d_2} - \dots - z^{d_i}$.

• For example, recall that $\alpha^k = \alpha^{k-d_1} + \alpha^{k-d_2} + \ldots + \alpha^{k-d_i}$.

•
$$1 = \alpha^{-d_1} + \alpha^{-d_2} + \ldots + \alpha^{-d_i}$$

- Let $\beta = 1/\alpha$, we have $1 = \beta^{d_1} + \beta^{d_2} + \ldots + \beta^{d_i}$.
- Advantages of using reflected characteristic polynomials:
 - It's easy to memorize.
 - The root of a reflected characteristic polynomial is always in (0,1].

Note: Do not forget to take the inverse of the root.

Definition 3

Given a branching vector $\mathbf{v} = (d_1, d_2, \dots, d_i)$ of some recursion, the reflected characteristic polynomial of \mathbf{v} is $1 - z^{d_1} - z^{d_2} - \dots - z^{d_i}$.

• For example, recall that $\alpha^k = \alpha^{k-d_1} + \alpha^{k-d_2} + \ldots + \alpha^{k-d_i}$.

•
$$1 = \alpha^{-d_1} + \alpha^{-d_2} + \ldots + \alpha^{-d_i}$$

- Let $\beta = 1/\alpha$, we have $1 = \beta^{d_1} + \beta^{d_2} + \ldots + \beta^{d_i}$.
- Advantages of using reflected characteristic polynomials:
 - It's easy to memorize.
 - The root of a reflected characteristic polynomial is always in (0,1].

Note: Do not forget to take the inverse of the root.

Definition 3

Given a branching vector $\mathbf{v} = (d_1, d_2, \dots, d_i)$ of some recursion, the reflected characteristic polynomial of \mathbf{v} is $1 - z^{d_1} - z^{d_2} - \dots - z^{d_i}$.

• For example, recall that $\alpha^k = \alpha^{k-d_1} + \alpha^{k-d_2} + \ldots + \alpha^{k-d_i}$.

•
$$1 = \alpha^{-d_1} + \alpha^{-d_2} + \ldots + \alpha^{-d_i}$$

• Let $\beta = 1/\alpha$, we have $1 = \beta^{d_1} + \beta^{d_2} + \ldots + \beta^{d_i}$.

• Advantages of using reflected characteristic polynomials:

- It's easy to memorize.
- The root of a reflected characteristic polynomial is always in (0,1].

▷ Note: Do not forget to take the inverse of the root.

Definition 3

Given a branching vector $\mathbf{v} = (d_1, d_2, \dots, d_i)$ of some recursion, the reflected characteristic polynomial of \mathbf{v} is $1 - z^{d_1} - z^{d_2} - \dots - z^{d_i}$.

• For example, recall that $\alpha^k = \alpha^{k-d_1} + \alpha^{k-d_2} + \ldots + \alpha^{k-d_i}$.

•
$$1 = \alpha^{-d_1} + \alpha^{-d_2} + \ldots + \alpha^{-d_i}$$

- Let $\beta = 1/\alpha$, we have $1 = \beta^{d_1} + \beta^{d_2} + \ldots + \beta^{d_i}$.
- Advantages of using reflected characteristic polynomials:
 - It's easy to memorize.
 - ▶ The root of a reflected characteristic polynomial is always in (0,1].

▷ Note: Do not forget to take the inverse of the root.

Definition 3

Given a branching vector $\mathbf{v} = (d_1, d_2, \dots, d_i)$ of some recursion, the reflected characteristic polynomial of \mathbf{v} is $1 - z^{d_1} - z^{d_2} - \dots - z^{d_i}$.

• For example, recall that $\alpha^k = \alpha^{k-d_1} + \alpha^{k-d_2} + \ldots + \alpha^{k-d_i}$.

•
$$1 = \alpha^{-d_1} + \alpha^{-d_2} + \ldots + \alpha^{-d_i}$$

- Let $\beta = 1/\alpha$, we have $1 = \beta^{d_1} + \beta^{d_2} + \ldots + \beta^{d_i}$.
- Advantages of using reflected characteristic polynomials:
 - It's easy to memorize.
 - ▶ The root of a reflected characteristic polynomial is always in (0,1].

Note: Do not forget to take the inverse of the root.

Definition 3

Given a branching vector $\mathbf{v} = (d_1, d_2, \dots, d_i)$ of some recursion, the reflected characteristic polynomial of \mathbf{v} is $1 - z^{d_1} - z^{d_2} - \dots - z^{d_i}$.

• For example, recall that $\alpha^k = \alpha^{k-d_1} + \alpha^{k-d_2} + \ldots + \alpha^{k-d_i}$.

•
$$1 = \alpha^{-d_1} + \alpha^{-d_2} + \ldots + \alpha^{-d_i}$$

- Let $\beta = 1/\alpha$, we have $1 = \beta^{d_1} + \beta^{d_2} + \ldots + \beta^{d_i}$.
- Advantages of using reflected characteristic polynomials:
 - It's easy to memorize.
 - ▶ The root of a reflected characteristic polynomial is always in (0,1].
- ▷ Note: Do not forget to take the inverse of the root.

- Let $f(z) = 1 z^{d_1} z^{d_2} \ldots z^{d_i}$ where $\mathbf{v} = (d_1, d_2, \ldots, d_i)$ is a branching vector.
- f(z) is a monotonically decreasing function for all $z \ge 0$.
- Fact: For 0 < a < b < 1, if f(a) > 0 and f(b) < 0, then there exists a number a < c < b such that f(c) = 0.
 - * f(0.1) > 0, f(0.2) > 0, f(0.3) > 0, f(0.4) < 0.* f(0.31) > 0, f(0.32) > 0, f(0.33) > 0, f(0.34) > 0, f(0.35) > 0, f(0.36) < 0.
 - $\star \cdots$
 - $\star \cdots$
 - Then the root of the corresponding reflected characteristic polynomial is 0.35.... Thus the branching number is less than 1/0.35 = 2.85714286....

- Let $f(z) = 1 z^{d_1} z^{d_2} ... z^{d_i}$ where $\mathbf{v} = (d_1, d_2, ..., d_i)$ is a branching vector.
- f(z) is a monotonically decreasing function for all $z \ge 0$.
- Fact: For 0 < a < b < 1, if f(a) > 0 and f(b) < 0, then there exists a number a < c < b such that f(c) = 0.
 - * f(0.1) > 0, f(0.2) > 0, f(0.3) > 0, f(0.4) < 0.* f(0.31) > 0, f(0.32) > 0, f(0.33) > 0, f(0.34) > 0, f(0.35) > 0, f(0.36) < 0.
 - * …
 - * •••
 - Then the root of the corresponding reflected characteristic polynomial is 0.35.... Thus the branching number is less than 1/0.35 = 2.85714286....

- Let $f(z) = 1 z^{d_1} z^{d_2} ... z^{d_i}$ where $\mathbf{v} = (d_1, d_2, ..., d_i)$ is a branching vector.
- f(z) is a monotonically decreasing function for all $z \ge 0$.
- Fact: For 0 < a < b < 1, if f(a) > 0 and f(b) < 0, then there exists a number a < c < b such that f(c) = 0.
 - * f(0.1) > 0, f(0.2) > 0, f(0.3) > 0, f(0.4) < 0.* f(0.31) > 0, f(0.32) > 0, f(0.33) > 0, f(0.34) > 0, f(0.35) > 0, f(0.36) < 0.
 - * …
 - * •••
 - Then the root of the corresponding reflected characteristic polynomial is 0.35.... Thus the branching number is less than 1/0.35 = 2.85714286....

- Let $f(z) = 1 z^{d_1} z^{d_2} ... z^{d_i}$ where $\mathbf{v} = (d_1, d_2, ..., d_i)$ is a branching vector.
- f(z) is a monotonically decreasing function for all $z \ge 0$.
- Fact: For 0 < a < b < 1, if f(a) > 0 and f(b) < 0, then there exists a number a < c < b such that f(c) = 0.
 - * f(0.1) > 0, f(0.2) > 0, f(0.3) > 0, f(0.4) < 0.
 - * f(0.31) > 0, f(0.32) > 0, f(0.33) > 0, f(0.34) > 0, f(0.35) > 0, f(0.36) < 0.
 - * •••
 - * • •
 - Then the root of the corresponding reflected characteristic polynomial is 0.35.... Thus the branching number is less than 1/0.35 = 2.85714286....

- Let $f(z) = 1 z^{d_1} z^{d_2} ... z^{d_i}$ where $\mathbf{v} = (d_1, d_2, ..., d_i)$ is a branching vector.
- f(z) is a monotonically decreasing function for all $z \ge 0$.
- Fact: For 0 < a < b < 1, if f(a) > 0 and f(b) < 0, then there exists a number a < c < b such that f(c) = 0.
 - * f(0.1) > 0, f(0.2) > 0, f(0.3) > 0, f(0.4) < 0.
 - * f(0.31) > 0, f(0.32) > 0, f(0.33) > 0, f(0.34) > 0, f(0.35) > 0, f(0.36) < 0.
 - * •••
 - * •••
 - Then the root of the corresponding reflected characteristic polynomial is 0.35.... Thus the branching number is less than 1/0.35 = 2.85714286....

- Let $f(z) = 1 z^{d_1} z^{d_2} \ldots z^{d_i}$ where $\mathbf{v} = (d_1, d_2, \ldots, d_i)$ is a branching vector.
- f(z) is a monotonically decreasing function for all $z \ge 0$.
- Fact: For 0 < a < b < 1, if f(a) > 0 and f(b) < 0, then there exists a number a < c < b such that f(c) = 0.
 - * f(0.1) > 0, f(0.2) > 0, f(0.3) > 0, f(0.4) < 0.* f(0.31) > 0, f(0.32) > 0, f(0.33) > 0, f(0.34) > 0, f(0.35) > 0,f(0.36) < 0.
 - * •••
 - * •••
 - Then the root of the corresponding reflected characteristic polynomial is 0.35.... Thus the branching number is less than 1/0.35 = 2.85714286....

- For example, assume that we have T(k) = 2T(k-1) + T(k-3) + T(k-5).
- The branching vector: (1, 1, 3, 5).
- The characteristic polynomial: $z^5 2z^4 z^2 1$.
- The reflected characteristic polynomial: $1 2z z^3 z^5$.
- The characteristic root of the characteristic polynomial is 2.2392....

- For example, assume that we have T(k) = 2T(k-1) + T(k-3) + T(k-5).
- The branching vector: (1, 1, 3, 5).
- The characteristic polynomial: $z^5 2z^4 z^2 1$.
- The reflected characteristic polynomial: $1 2z z^3 z^5$.
- The characteristic root of the characteristic polynomial is 2.2392....

- For example, assume that we have T(k) = 2T(k-1) + T(k-3) + T(k-5).
- The branching vector: (1, 1, 3, 5).
- The characteristic polynomial: $z^5 2z^4 z^2 1$.
- The reflected characteristic polynomial: $1 2z z^3 z^5$.

• The characteristic root of the characteristic polynomial is 2.2392....

- For example, assume that we have T(k) = 2T(k-1) + T(k-3) + T(k-5).
- The branching vector: (1, 1, 3, 5).
- The characteristic polynomial: $z^5 2z^4 z^2 1$.
- The reflected characteristic polynomial: $1 2z z^3 z^5$.
- The characteristic root of the characteristic polynomial is 2.2392....

An special branching number

• What is the branching number of (1,2)?

•
$$f(z) = 1 - z - z^2$$
.

- Solve the equation z² + z − 1 = 0.
 z* = -1±√5/2 ≈ 0.61803399 (take the positive one).
- An interesting fact: $1/z^* = 1 + z^*$.

$$= \frac{1}{z^*} = \frac{2}{\sqrt{5}-1} = \frac{2(\sqrt{5}+1)}{(\sqrt{5}+1)(\sqrt{5}-1)} = \frac{\sqrt{5}+1}{2} = 1 + z^*.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

9/12

Golden ration and spirals

Fig.: The approximate golden spiral.

Demostration

- http://www.cs.ccu.edu.tw/~lincc/Program/br.c
- http://www.cs.ccu.edu.tw/~lincc/Program/br.exe

Thank you!