Computing branching numbers

Speaker: Joseph, Chuang-Chieh Lin
Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

November 6, 2009

Branching vector

Definition 1

Given a problem \mathbb{P} with parameter k. If an algorithm solves \mathbb{P} and calls itself recursively for subproblems with parameters

$$
k-d_{1}, k-d_{2}, \ldots, k-d_{i}
$$

then $\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ is called the branching vector of recursion of the algorithm.

- Actually, the branching vector $\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ corresponds to the recurrence $T_{k}=T_{k-d_{1}}+T_{k-d_{2}}+\ldots+T_{k-d_{i}}$.
- $T_{k}=T_{k-d_{1}}+T_{k-d_{2}}+\ldots+T_{k-d_{i}}$.
- Let $T_{k}=\alpha^{k}$. We want to know how big α is.
- $\alpha^{k}=\alpha^{k-d_{1}}+\alpha^{k-d_{2}}+\ldots+\alpha^{k-d_{i}}$.
- $1=\alpha^{-d_{1}}+\alpha^{-d_{2}}+\ldots+\alpha^{-d_{i}}$.
- Let $d=\max \left\{d_{1}, d_{2}, \ldots, d_{i}\right\}$. We have

$$
\alpha^{d}=\alpha^{d-d_{1}}+\alpha^{d-d_{2}}+\ldots+\alpha^{d-d_{i}}
$$

Characteristic polynomials

Definition 2

Given a branching vector $\mathbf{v}=\left(d_{1}, d_{2} \ldots, d_{i}\right)$ of some recursion, the characteristic polynomial of \mathbf{v} is

$$
z^{d}-z^{d-d_{1}}-z^{d-d_{2}}-\ldots-z^{d-d_{i}}
$$

where d is defined to be $\max \left\{d_{1}, d_{2}, \ldots, d_{i}\right\}$. Furthermore, we call α the characteristic root of the characteristic polynomial if $\alpha^{d}=\alpha^{d-d_{1}}+\alpha^{d-d_{2}}+\ldots+\alpha^{d-d_{i}}$.

Reflect characteristic polynomials

Definition 3

Given a branching vector $\mathbf{v}=\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ of some recursion, the reflected characteristic polynomial of \mathbf{v} is $1-z^{d_{1}}-z^{d_{2}}-\ldots-z^{d_{i}}$.

Reflect characteristic polynomials

Definition 3

Given a branching vector $\mathbf{v}=\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ of some recursion, the reflected characteristic polynomial of \mathbf{v} is $1-z^{d_{1}}-z^{d_{2}}-\ldots-z^{d_{i}}$.

- For example, recall that $\alpha^{k}=\alpha^{k-d_{1}}+\alpha^{k-d_{2}}+\ldots+\alpha^{k-d_{i}}$.
- $1=\alpha^{-d_{1}}+\alpha^{-d_{2}}+\ldots+\alpha^{-d_{i}}$.
- Let $\beta=1 / \alpha$, we have $1=\beta^{d_{1}}+\beta^{d_{2}}+\ldots+\beta^{d_{i}}$.
- Advantages of using reflected characteristic polynomials:

Reflect characteristic polynomials

Definition 3

Given a branching vector $\mathbf{v}=\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ of some recursion, the reflected characteristic polynomial of \mathbf{v} is $1-z^{d_{1}}-z^{d_{2}}-\ldots-z^{d_{i}}$.

- For example, recall that $\alpha^{k}=\alpha^{k-d_{1}}+\alpha^{k-d_{2}}+\ldots+\alpha^{k-d_{i}}$.
- $1=\alpha^{-d_{1}}+\alpha^{-d_{2}}+\ldots+\alpha^{-d_{i}}$.
- Let $\beta=1 / \alpha$, we have $1=\beta^{d_{1}}+\beta^{d_{2}}+\ldots+\beta^{d_{i}}$.
- Advantages of using reflected characteristic polynomials:

[^0]
Reflect characteristic polynomials

Definition 3

Given a branching vector $\mathbf{v}=\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ of some recursion, the reflected characteristic polynomial of \mathbf{v} is $1-z^{d_{1}}-z^{d_{2}}-\ldots-z^{d_{i}}$.

- For example, recall that $\alpha^{k}=\alpha^{k-d_{1}}+\alpha^{k-d_{2}}+\ldots+\alpha^{k-d_{i}}$.
- $1=\alpha^{-d_{1}}+\alpha^{-d_{2}}+\ldots+\alpha^{-d_{i}}$.
- Let $\beta=1 / \alpha$, we have $1=\beta^{d_{1}}+\beta^{d_{2}}+\ldots+\beta^{d_{i}}$.
- Advantages of using reflected characteristic polynomials:
- It's easy to memorize.
d characteristic polynomial is always in $(0,1]$

Reflect characteristic polynomials

Definition 3

Given a branching vector $\mathbf{v}=\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ of some recursion, the reflected characteristic polynomial of \mathbf{v} is $1-z^{d_{1}}-z^{d_{2}}-\ldots-z^{d_{i}}$.

- For example, recall that $\alpha^{k}=\alpha^{k-d_{1}}+\alpha^{k-d_{2}}+\ldots+\alpha^{k-d_{i}}$.
- $1=\alpha^{-d_{1}}+\alpha^{-d_{2}}+\ldots+\alpha^{-d_{i}}$.
- Let $\beta=1 / \alpha$, we have $1=\beta^{d_{1}}+\beta^{d_{2}}+\ldots+\beta^{d_{i}}$.
- Advantages of using reflected characteristic polynomials:
- It's easy to memorize.
- The root of a reflected characteristic polynomial is always in $(0,1]$.

Note: Do not forget to take the inverse of the root.

Reflect characteristic polynomials

Definition 3

Given a branching vector $\mathbf{v}=\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ of some recursion, the reflected characteristic polynomial of \mathbf{v} is $1-z^{d_{1}}-z^{d_{2}}-\ldots-z^{d_{i}}$.

- For example, recall that $\alpha^{k}=\alpha^{k-d_{1}}+\alpha^{k-d_{2}}+\ldots+\alpha^{k-d_{i}}$.
- $1=\alpha^{-d_{1}}+\alpha^{-d_{2}}+\ldots+\alpha^{-d_{i}}$.
- Let $\beta=1 / \alpha$, we have $1=\beta^{d_{1}}+\beta^{d_{2}}+\ldots+\beta^{d_{i}}$.
- Advantages of using reflected characteristic polynomials:
- It's easy to memorize.
- The root of a reflected characteristic polynomial is always in $(0,1]$.
\triangleright Note: Do not forget to take the inverse of the root.

Calculation the branching number by a program

- Let $f(z)=1-z^{d_{1}}-z^{d_{2}}-\ldots-z^{d_{i}}$ where $\mathbf{v}=\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ is a branching vector.
- $f(z)$ is a monotonically decreasing function for all $z \geq 0$.
- Fact: For $0<a<b<1$, if $f(a)>0$ and $f(b)<0$, then there exists a number $a<c<b$ such that $f(c)=0$.

Calculation the branching number by a program

- Let $f(z)=1-z^{d_{1}}-z^{d_{2}}-\ldots-z^{d_{i}}$ where $\mathbf{v}=\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ is a branching vector.
- $f(z)$ is a monotonically decreasing function for all $z \geq 0$.
- Fact: For $0<a<b<1$, if $f(a)>0$ and $f(b)<0$, then there exists a number $a<c<b$ such that $f(c)=0$.

$$
\star f(0.1)>0, f(0.2)>0, f(0.3)>0, f(0.4)<0 .
$$

Calculation the branching number by a program

- Let $f(z)=1-z^{d_{1}}-z^{d_{2}}-\ldots-z^{d_{i}}$ where $\mathbf{v}=\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ is a branching vector.
- $f(z)$ is a monotonically decreasing function for all $z \geq 0$.
- Fact: For $0<a<b<1$, if $f(a)>0$ and $f(b)<0$, then there exists a number $a<c<b$ such that $f(c)=0$.

$$
\star f(0.1)>0, f(0.2)>0, f(0.3)>0, f(0.4)<0 .
$$

Calculation the branching number by a program

- Let $f(z)=1-z^{d_{1}}-z^{d_{2}}-\ldots-z^{d_{i}}$ where $\mathbf{v}=\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ is a branching vector.
- $f(z)$ is a monotonically decreasing function for all $z \geq 0$.
- Fact: For $0<a<b<1$, if $f(a)>0$ and $f(b)<0$, then there exists a number $a<c<b$ such that $f(c)=0$.

$$
\begin{aligned}
& \star f(0.1)>0, f(0.2)>0, f(0.3)>0, f(0.4)<0 \text {. } \\
& \star \quad f(0.31)>0, f(0.32)>0, f(0.33)>0, f(0.34)>0, f(0.35)>0, \\
& \\
& f(0.36)<0 \text {. }
\end{aligned}
$$

Calculation the branching number by a program

- Let $f(z)=1-z^{d_{1}}-z^{d_{2}}-\ldots-z^{d_{i}}$ where $\mathbf{v}=\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ is a branching vector.
- $f(z)$ is a monotonically decreasing function for all $z \geq 0$.
- Fact: For $0<a<b<1$, if $f(a)>0$ and $f(b)<0$, then there exists a number $a<c<b$ such that $f(c)=0$.

```
\(\star f(0.1)>0, f(0.2)>0, f(0.3)>0, f(0.4)<0\).
\(\star f(0.31)>0, f(0.32)>0, f(0.33)>0, f(0.34)>0, f(0.35)>0\),
    \(f(0.36)<0\).
```

- Then the root of the corresponding reflected characteristic polynomial is $0.35 \ldots$. Thus the branching number is less than $1 / 0.35=2.85714286$

Calculation the branching number by a program

- Let $f(z)=1-z^{d_{1}}-z^{d_{2}}-\ldots-z^{d_{i}}$ where $\mathbf{v}=\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ is a branching vector.
- $f(z)$ is a monotonically decreasing function for all $z \geq 0$.
- Fact: For $0<a<b<1$, if $f(a)>0$ and $f(b)<0$, then there exists a number $a<c<b$ such that $f(c)=0$.

```
\(\star f(0.1)>0, f(0.2)>0, f(0.3)>0, f(0.4)<0\).
\(\star f(0.31)>0, f(0.32)>0, f(0.33)>0, f(0.34)>0, f(0.35)>0\),
    \(f(0.36)<0\).
```

- Then the root of the corresponding reflected characteristic polynomial is $0.35 \ldots$ Thus the branching number is less than $1 / 0.35=2.85714286 \ldots$
- For example, assume that we have $T(k)=2 T(k-1)+T(k-3)+T(k-5)$.
- The branching vector: $(1,1,3,5)$.
- For example, assume that we have
$T(k)=2 T(k-1)+T(k-3)+T(k-5)$.
- The branching vector: $(1,1,3,5)$.
- The characteristic polynomial: $z^{5}-2 z^{4}-z^{2}-1$.
- The reflected characteristic polynomial: $1-2 z-z^{3}-z^{5}$.
- For example, assume that we have

$$
T(k)=2 T(k-1)+T(k-3)+T(k-5) .
$$

- The branching vector: $(1,1,3,5)$.
- The characteristic polynomial: $z^{5}-2 z^{4}-z^{2}-1$.
- The reflected characteristic polynomial: $1-2 z-z^{3}-z^{5}$.
- The characteristic root of the characteristic polynomial is 2.2392
- For example, assume that we have

$$
T(k)=2 T(k-1)+T(k-3)+T(k-5) .
$$

- The branching vector: $(1,1,3,5)$.
- The characteristic polynomial: $z^{5}-2 z^{4}-z^{2}-1$.
- The reflected characteristic polynomial: $1-2 z-z^{3}-z^{5}$.
- The characteristic root of the characteristic polynomial is $2.2392 \ldots$.

An special branching number

- What is the branching number of $(1,2)$?
- $f(z)=1-z-z^{2}$.
- Solve the equation $z^{2}+z-1=0$.
- $z^{*}=\frac{-1 \pm \sqrt{5}}{2} \approx 0.61803399$ (take the positive one).
- An interesting fact: $1 / z^{*}=1+z^{*}$.

$$
\frac{1}{z^{*}}=\frac{2}{\sqrt{5}-1}=\frac{2(\sqrt{5}+1)}{(\sqrt{5}+1)(\sqrt{5}-1)}=\frac{\sqrt{5}+1}{2}=1+z^{*} .
$$

Golden ration and spirals

Fig.: The approximate golden spiral.

Demostration

- http://www.cs.ccu.edu.tw/~lincc/Program/br.c
- http://www.cs.ccu.edu.tw/ ~lincc/Program/br.exe

Thank you!

[^0]: - It's easy to memorize.

