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Introduction

@ In 1952, Herman Chernoff introduced a technique which gives sharp
upper bounds on the tails of the distribution of the sum of mutually
independent binary (Bernoulli) random variables.
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Introduction

@ In 1952, Herman Chernoff introduced a technique which gives sharp
upper bounds on the tails of the distribution of the sum of mutually
independent binary (Bernoulli) random variables.

@ Wassily Hoeffding extended Chernoff’s technique to deal with
bounded independent random variables.

@ Bounds obtained by using the above techniques are collectively called
Chernoff-Hoeffding bounds (CH bounds, in short).
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Introduction (contd.)

@ In many situations, tail probability bounds obtained using Markov's
inequality or Chebyshev'’s inequaility are too weak, while CH bounds
are just right.
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algorithms, in proofs by the probabilistic method, analysis in
computational complexity, etc.



Introduction (contd.)

@ In many situations, tail probability bounds obtained using Markov's
inequality or Chebyshev'’s inequaility are too weak, while CH bounds
are just right.

@ CH bounds are extremely useful in design and analysis of randomized
algorithms, in proofs by the probabilistic method, analysis in
computational complexity, etc.

@ In this talk, we delve into limitations for using CH bounds, and a new
simple but powerful technique which extends CH bounds.
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Chernoff-Hoeffding bounds

o Let X = {X1,Xs,...,X,} denote a set of mutually independent
Bernoulli random variables with S = "7, X; and pu = E[S].

» Assume that, for all i, Pr[X; = 1] = p for some p > 0.
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@ We are interested in upper bounds on Pr[S > (1 + d)u] and
Pr[S < (1-—9)u].
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Chernoff-Hoeffding bounds

o Let X = {X1,Xs,...,X,} denote a set of mutually independent
Bernoulli random variables with S = "7, X; and pu = E[S].

» Assume that, for all i, Pr[X; = 1] = p for some p > 0.

@ We are interested in upper bounds on Pr[S > (1 + d)u] and
Pr[S < (1-—9)u].

@ Chernoff bounds lead to

eé 1 e
Pr[S>(1+0)u] < <(1+5)(1+5)> , def F*(1,9)

Pris < (1—8)y] < e+@/2 9L . 5

When § < 1, we can derive F*(p,8) < e~ /3,
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A simple application (a generous teacher and diligent
students)

@ There are n students, who work very hard all the time just like us.
Their teacher, who is very generous, would like to reward them.
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@ There are n students, who work very hard all the time just like us.
Their teacher, who is very generous, would like to reward them.

@ In front of them, there is a sealed box which has 3 golden balls and 1
black ball inside.

@ Each time one can pick a ball from the box and then put it back into
the box (we assume that the students are honest).

@ The teacher said he will treat the students a bountiful feast if more
than n/2 students get golden balls.
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A simple application (a generous teacher and diligent
students)

@ There are n students, who work very hard all the time just like us.
Their teacher, who is very generous, would like to reward them.

@ In front of them, there is a sealed box which has 3 golden balls and 1
black ball inside.

@ Each time one can pick a ball from the box and then put it back into
the box (we assume that the students are honest).

@ The teacher said he will treat the students a bountiful feast if more
than n/2 students get golden balls.

-~

@ What is the probability that the students can’t have a bountiful feast?



A simple application (a generous teacher and diligent
students) (contd.)

@ Fori=1,...,n, X; =1: the ith student gets a golden ball; X; = 0:

the ith student gets a black ball.
e Pr[X; =1] =3/4 and Pr[X; = 0] = 1/4.

@ Let S=73)"", X;. The event that the students have bad luck is
S < n/2, and we have 1 = E[S] = 3n/4.
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A simple application (a generous teacher and diligent
students) (contd.)

@ Fori=1,...,n, X; =1: the ith student gets a golden ball; X; = 0:

the ith student gets a black ball.
e Pr[X; =1] =3/4 and Pr[X; = 0] = 1/4.

@ Let S=73)"", X;. The event that the students have bad luck is
S < n/2, and we have 1 = E[S] = 3n/4.

o Pr[S < n/2] = Pr[S < (1 —1/3)u] < e #1/3)7/2 = g=n/24
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A simple application (a generous teacher and diligent
students) (contd.)

For i=1,...,n, X; = 1: the ith student gets a golden ball; X; = 0:
the ith student gets a black ball.

PI‘[X,‘ = 1] = 3/4 and PI‘[X,‘ = 0] = 1/4-.

Let S =37 ; Xi. The event that the students have bad luck is
S < n/2, and we have 1 = E[S] = 3n/4.

Pr[S < n/2] = Pr[S < (1 — 1/3)u] < e #(1/37/2 = g=n/24,

and less than 0.005 if n = 130.

The probability is less than 0.66 if n = 10, less than 0.125 if n = 50,
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Hoeffding's extension

@ Consider the case that X;'s are mutually independent “bounded”
random variables (i.e., a; < X; < b;, for some positive real a; and b;).
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Hoeffding's extension

@ Consider the case that X;'s are mutually independent “bounded”
random variables (i.e., a; < X; < b;, for some positive real a; and b;).

@ Hoeffding's extension of Chernoff's technique:

Pr(|S — p| > du] < 267200/ Ela(bima)?,

@ In this talk, we omit Hoeffding-like bounds.
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The crucial step and limitation of CH bounds

@ A crucial step for deriving CH bounds is to calculate E[ets] for any
positve real t (the moment generating function).

E[e*] = E[e!>"1%] = E [H etX"] = H E[e™].

i=1
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The crucial step and limitation of CH bounds

@ A crucial step for deriving CH bounds is to calculate E[ets] for any
positve real t (the moment generating function).

i=1

E[eS] = E[et27:1 X1=E [ﬁ etX"] = ﬁ E[e™].

@ The last of the above equalities depends on the X;'s being mutually
independent.

@ This is the limitation for CH bounds.

@ In this paper, the author extends CH bounds by allowing a rather
natural, limited kind of dependency among the X;'s.
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© The main theorem and an illustrating example
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Some basic definitions

@ Let A be an event.
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Some basic definitions

@ Let A be an event.

@ A is said to be mutually independent of a set of events By, Bs,..., B,
if for any / C {1,2,....n}, Pr[A[ ;g Bj] = Pr[A].
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Dependency graphs

o X ={Xq,Xs,...,Xp}: aset of random variables.
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Dependency graphs

o X ={Xq,Xs,...,Xp}: aset of random variables.

@ A dependency graph G = (V, E) for X’ has a vertex set
[n] ={1,2,...,n} and for each i, X; is mutually independent of the

events {X; | (i,j) ¢ E}.
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Dependency graphs

o X ={Xq,Xs,...,Xp}: aset of random variables.

@ A dependency graph G = (V, E) for X’ has a vertex set
[n] ={1,2,...,n} and for each i, X; is mutually independent of the

events {X; | (i,j) ¢ E}.

@ We say that X exhibits d-bounded dependence if X has a
dependency graph with maximum degree d.
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Note
@ Let G be a dependency graph of X.

@ Assume that Xy, Xs, ..., X correspond to an independent set of G.
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Note
@ Let G be a dependency graph of X.
@ Assume that Xy, Xs, ..., X correspond to an independent set of G.
PriX;nXoN Xz N...N Xk
Pr[Xo N X3 N ... X

PF[X2ﬂX3ﬂX4ﬂ...ﬂXk]
Pr[X3ﬂX4ﬂ...ﬂXk]

PI’[Xl | XoNXzN...N Xk] = = PI’[Xl]

PI’[X2 | X3NXgN...N Xk] = = PI’[XQ]

PI’[Xl ﬂXzﬂ...ﬂXk]
= PI’[Xl] . PI‘[XQ NXsNXgN...N Xk]
= PI’[Xl] . PI‘[XQ] . PI‘[X3 NXgN...N Xk]

= Pr[Xl] . Pr[Xz] s PI‘[Xk].
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Examples for testing your understanding

@ Let S be a set of pairwise independent events.

> Must the dependency graph of S contain 0 edge?
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Examples for testing your understanding

@ Let S be a set of pairwise independent events.

> Must the dependency graph of S contain 0 edge?

@ Let S be a set of events.

> Is the dependency graph of S unique?
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Another example for figuring out dependency graphs

o Consider an experiment of flipping a fair coin twice. Let X be the set
of the following events.
> Xi: the first flip is head;
» X5: the second flip is tail;
» Xj3: the two flips are the same.
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Another example for figuring out dependency graphs

o Consider an experiment of flipping a fair coin twice. Let X be the set
of the following events.
> Xi: the first flip is head;
» X5: the second flip is tail;
» Xj3: the two flips are the same.

@ The events can be shown to be pairwise independent for each two of
them.

@ If a graph with three vertices has at most one edge, it must NOT be
a dependency graph of X.

@ ANY graph with three vertices and at least two edges is a dependency
graph of X.

17 /39



The main theorem

Theorem 1

For identically distributed Bernoulli random variables X; with d-bounded
dependence, for any 0 < 6 < 1, we have the upper tail probability bound

Pr[S > (1+0)u] < @ﬁ(u, 5)a

and the lower tail probability bound

Pris < (1 o) < H D e 5y

@ Note that F*(u,d) and F~(u,d) are exponentially small when
p/(d 4 1) = Q(log! ™ n) for any p > 0.
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The main theorem

Theorem 1

For identically distributed Bernoulli random variables X; with d-bounded
dependence, for any 0 < 6 < 1, we have the upper tail probability bound

Pris > (1 +0) < XE D pey gyats = HIHD oy
and the lower tail probability bound

Pr[S < (1— 6)u] < @F— _

1 Ad41) epaar)
(u,0)#1 = =———e

@ Note that F*(u,d) and F~(u,d) are exponentially small when
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An example: a randomized algorithm for Maximum
Independent Set in a regular graph

@ Given a k-regular n-vertex graph G. The following steps compute a
large independent set in G.
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An example: a randomized algorithm for Maximum
Independent Set in a regular graph

@ Given a k-regular n-vertex graph G. The following steps compute a
large independent set in G.

Step 1: Delete each vertex from G independently with probability 1 — 1/k.

Step 2: For each remaining edge, delete one of its endpoints.
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An example: a randomized algorithm for Maximum
Independent Set in a regular graph

@ Given a k-regular n-vertex graph G. The following steps compute a
large independent set in G.

Step 1: Delete each vertex from G independently with probability 1 — 1/k.

Step 2: For each remaining edge, delete one of its endpoints.

@ The vertices that remain after Step 2 form an independent set of G.
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An example: a randomized algorithm for Maximum
Independent Set in a regular graph (contd.)

@ Let A; be an indicator r.v. such that A; = 1 if vertex v; is not deleted
in Step 1.
> Let A=) . A bear.v.: the number of vertices remaining after Step 1.
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An example: a randomized algorithm for Maximum
Independent Set in a regular graph (contd.)

@ Let A; be an indicator r.v. such that A; = 1 if vertex v; is not deleted
in Step 1.
> Let A=) . A bear.v.: the number of vertices remaining after Step 1.

@ Let Bj be an indicator r.v. such that B; = 1 if edge ¢; is not deleted

in Step 1.
> Let B = ZJ. B; be a r.v.: the number of remaining edges after Step 1.
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An example: a randomized algorithm for Maximum
Independent Set in a regular graph (contd.)

@ Let A; be an indicator r.v. such that A; = 1 if vertex v; is not deleted
in Step 1.
> Let A=) . A bear.v.: the number of vertices remaining after Step 1.

@ Let Bj be an indicator r.v. such that B; = 1 if edge ¢; is not deleted

in Step 1.
> Let B = ZJ. B; be a r.v.: the number of remaining edges after Step 1.

o It is easy to see that E[A] = n/k and E[B] = (1/k)? - kn/2 = n/2k.
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An example: a randomized algorithm for Maximum
Independent Set in a regular graph (contd.)

@ The size of the independent set computed by the algorithm:
>A-B.

@ Hence the expected size of the solution produced by the algorithm is
> n/2k.

» A randomized O(1)-factor approximation algorithm for Maximum
Independent Set.
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An example: a randomized algorithm for Maximum
Independent Set in a regular graph (contd.)

@ Actually we can show that A — B is very close to n/2k with high
probability.
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@ It is clear that A;'s are mutually independent, so CH bounds can be
applied.
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An example: a randomized algorithm for Maximum
Independent Set in a regular graph (contd.)

@ Actually we can show that A — B is very close to n/2k with high
probability.

@ It is clear that A;'s are mutually independent, so CH bounds can be
applied.

@ However, B;'s are NOT mutually independent.

» B is mutually independent of B;’s if edge j's are not incident on any
endpoints of edge /.
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An example: a randomized algorithm for Maximum
Independent Set in a regular graph (contd.)

@ Actually we can show that A — B is very close to n/2k with high
probability.

@ It is clear that A;'s are mutually independent, so CH bounds can be
applied.

@ However, B;'s are NOT mutually independent.

» B is mutually independent of B;’s if edge j's are not incident on any
endpoints of edge /.

@ Let us consider the dependency graph of B;'s.
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An example: a randomized algorithm for Maximum
Independent Set in a regular graph (contd.)

@ The line graph (i.e., edge graph) L(G) of G is a dependency graph of
the B;j's.

» L(G): every vertex of L(G) represents an edge of G, and two vertices
of L(G) are adjacent iff their corresponding edge share a common
endpoint in G.

G L(G)
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An example: a randomized algorithm for Maximum
Independent Set in a regular graph (contd.)

@ G is k-regular — L(G) is 2(k — 1)-regular — B;'s exhibit
2(k — 1)-bounded dependence.
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An example: a randomized algorithm for Maximum
Independent Set in a regular graph (contd.)

@ G is k-regular — L(G) is 2(k — 1)-regular — B;'s exhibit
2(k — 1)-bounded dependence.

o E[B]/(2k — 1) = Q(n).

» Q(log"** kn/2) for any p > 0.

@ Thus the main theorem of this paper can be applied, and then we
know the algorithm indeed produces a large independent set with high
probability.
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Outline

@ Proof of the main theorem

Da e
25 /39



t-equitable coloring

Definition 2

A coloring of a graph is equitable if the sizes of any pair of color classes
are within one of each other.

@ t-equitable coloring: an equitable coloring using t colors.
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A deep result by Hajnal and Szemerédi

Hajnal-Szemerédi (1970)

A graph G with maximum degree A has a (A + 1)-equitable coloring
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Lemma 3

Suppose that X;'s are identical Bernoulli random variables with
dependency graph G, and suppose G has a t-equitable coloring. Then for
any 0 < § <1, we have

IA

PS> (L40)] < S FH(ua),

4
Pr[S < (1 )] < :tF‘(u,é)l/t.

Theorem 4

Suppose the X;'s are identical Bernoulli random variables exhibiting
d-bounded dependence. Then, for any 0 < § < 1, we have

Ld: 1)/ﬁ(/utaé)‘%“,

4 1
CERIPS

PriS> (1+0)u] <

Pr[S < (1-0)u] < (1. 6) 71,



Proof of Lemma 3

@ For convenience, assume that E[X;] = 1 for each 7, and let [t] denote
{1,2,...,t}.
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Proof of Lemma 3

@ For convenience, assume that E[X;] = 1 for each 7, and let [t] denote
{1,2,...,t}.

o Let (3, (,,. .., C; be the t color classes in a t-equitable-coloring
of G.

o Foreach i€ [t], let i = E[>;cc. Xj]  (ie, '[Gi]).
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Proof of Lemma 3 (contd.)

S>1+6)p =

S>1+d0)u'n
= S>

(L+a)' ) |G

i€[t]

= S>> (140G

i€[t]
= ZZXJ > Z(1+5)Mi.

i€[t]ljeC ie[t]

@ The first equivalence: p = E[} oy Xil = X EIXi] = ni'.
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Proof of Lemma 3 (contd.)

S>1+6)p =

S>(1+d)u'n
= S

(1+0)u > |G|
i€[t]
= S>> (140G

i€[t]

= ZZXJ'ZZ(I—HS)M;.

i€[t]ljeC ie[t]

>
>

@ The first equivalence: p = E[} oy Xil = X EIXi] = ni'.

@ The second equivalence: C;'s form a partition of [n].
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Proof of Lemma 3 (contd.)

S>1+8p = S>(1+0)u'n
= S>(1+)u ) |G

i€[t]

= S>> (140G

i€[t]

= > > %= (L+du
i€[t]ljeC ie[t]
@ The first equivalence: p = E[} oy Xil = X EIXi] = ni'.
@ The second equivalence: C;'s form a partition of [n].

@ The last equivalence: expressing S as the sum of the X;'s grouped
into color classes.
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Proof of Lemma 3 (contd.)

°© > X Xz X (M40 = Fieltl: X Xj=(1+0)u
ic[t]jeG ieft] JeG
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Proof of Lemma 3 (contd.)
° 2 2 Xz 2 (M40 = et > Xj=(1+0)u

ic[t]jeG ieft] JeG
@ Hence
PriS>(1+0)u] = Pr(>d > X>> (1+0)u
Li€[t]jeCi ie[t]

IN

J€G

Pr |3i€[t]: ZXJ->(1+5)M,-] .
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Proof of Lemma 3 (contd.)

°© > X Xz X (M40 = Fieltl: X Xj=(1+0)u
ic[t]jeG ieft] JeG

@ Hence

Pr(S > (1+6)y]

Prid > X > Z(1+5)u,-]

Li€[t] jEC ie[t]

IN

JjeG

@ The last probability above is actually at most

Z Pr [ZXJ > (1+ (5);1,-] (union bound)

i€[t] JjeGi

< Z F*(ui,8) (Chernoff bound).
i€[t]

Pr |3i€[t]: ZXJ->(1+5)/,L,-] .
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Proof of Lemma 3 (contd.)
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Proof of Lemma 3 (contd.)

e |G| = |n/t]| or [n/t] (". equitable coloring).
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Proof of Lemma 3 (contd.)
o |G| = [n/t| or [n/t] (". equitable coloring).
o pj= |G| = [n/t]p" = (n/t = 1)

o (n/t—1)p' = (ny//t—=1)=p/t=1( 0<p <1).
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Proof of Lemma 3 (contd.)
o |G| = [n/t| or [n/t] (". equitable coloring).
o pj= |G| = [n/t]p" = (n/t = 1)

o (n/t—1)p' = (ny//t—=1)=p/t=1( 0<p <1).

@ Hence pj > pu/t —1.
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Proof of Lemma 3 (contd.)
e |G| = |n/t]| or [n/t] (". equitable coloring).
o pi= |Gl = [n/t]u" = (n/t = 1)u".
o (n/t—1)p' = (ny//t=1)=p/t—=1( 0<p <1)
@ Hence pj > pu/t —1.
@ Thus

Pr[S > (1+6)u]

IN

D Fr(ui0)

ielt]

< ZF+(M/t_175)

i€[t]
= t-Ff(u/t —1,6).
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Proof of Lemma 3 (contd.)
e |G| = |n/t]| or [n/t] (". equitable coloring).
o pi= |Gl = [n/t]u" = (n/t = 1)u".
o (n/t—1)p' = (ny//t=1)=p/t—=1( 0<p <1)
@ Hence pj > pu/t —1.
@ Thus

Pr[S > (1+6)u]

IN

D Fr(ui0)

ielt]

< ZF+(ﬂ/t_175)

i€[t]
= t-FH(u/t —1,0).
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Proof of Lemma 3 (contd.)

&l n/t 146
Ft(u/t —1,8) = (W) . <%> < gF+(H75)1/t.

@ The last inequality: (1 + 5)1+5/e5 is a monotonically increasing
function of § and its maximum occurs when § = 1.
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Proof of Lemma 3 (contd.)

Fr(u/t —1,8) = (%)W' <m> < ?*(m)“t.

(140 el

@ The last inequality: (1 + 5)1+5/e5 is a monotonically increasing
function of § and its maximum occurs when § = 1.

@ Thus the upper tail probability is proved.

Pr[S > (1+ )] < %F+(u,5)1/t.
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Proof of Lemma 3 (contd.)

ed

Fr(u/t —1,8) = (%)W' <m> < §F+(u76)1/t.

(1446

@ The last inequality: (1 + 5)1+5/e5 is a monotonically increasing
function of § and its maximum occurs when § = 1.

@ Thus the upper tail probability is proved.

Pr[S > (1+ )] < %F+(u,5)1/t.

» The proof of the lower tail probability is identical.
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Outline

© Sharper bounds in special cases
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Equitable chromatic number x¢;(G)

@ x(G): the chromatic number of G.
® Xeq(G): the fewest colors required to equitably color the graph G.

® Eg., x(G)=2and xeq(G) = [(n—1)/2] + 1 when G is an n-vertex
star graph.
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Equitable chromatic number x¢;(G)

@ x(G): the chromatic number of G.
® Xeq(G): the fewest colors required to equitably color the graph G.

® Eg., x(G)=2and xeq(G) = [(n—1)/2] + 1 when G is an n-vertex
star graph.

@ A small equitable chromatic number for a dependency graph leads to
sharp tail probability bounds.
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Bollobas-Guy (1983)

A tree T with n vertices is equitably 3-colorable if n > 3A(T) — 8 or if
n=3A(T) - 10.

@ The theorem implies that if A(T) < n/3, then T can be equitably
3-colored. Thus we have

Theorem 5

Suppose that X;'s are identical Bernoulli random variables such that the
corresponding dependency graph is a tree with maximum degree at most
n/3. Then we have the following bounds

PS> (L4 0)] < = FH(u,0)

PriS < (1—0)] < 12, F(u, 0.
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Pemmaraju (2001); technical report

A connected outerplanar graph with n vertices and vertex degree at most
n/6 has a 6-equitable coloring.

Theorem 6

Suppose that X;'s are identical Bernoulli random variables whose
dependency graph is outerplanar with maximum degree at most n/6. Then
we have the following bounds

Pr[S > (1+0)y]

IA

2:4F+(u, 5)Ye,

24
PrS<(1-0u < —F (u 8)e.
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Some further remarks

@ Are the bounds on the vertex-degree required to obtain sharp
bounds?
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Some further remarks

@ Are the bounds on the vertex-degree required to obtain sharp
bounds?

@ a (c,a)-coloring: a vertex coloring such that
» < ¢ vertices are not colored.

» for any pair of color classes C and C’, |C| < afC’].

@ It is possible to extend Bollobas-Guy Theorem to have the following
results.
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Some further remarks

@ Are the bounds on the vertex-degree required to obtain sharp
bounds?

@ a (c,a)-coloring: a vertex coloring such that
» < c vertices are not colored.

» for any pair of color classes C and C’, |C| < afC’].

@ It is possible to extend Bollobas-Guy Theorem to have the following
results.

Theorem 7

Every tree has a (1,5)-coloring with two colors.
Every outerplanar graph has a (2,5)-coloring with four colors.

@ Hence sharp bounds can still be obtained.
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Thank you!



