Equitable coloring extends Chernoff-Hoeffding bounds

Sriram V. Pemmaraju
APPROX-RANDOM 2001, LNCS 2129, pp. 285-296.

Speaker: Joseph, Chuang-Chieh Lin Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Department of Computer Science and Information Engineering
National Chung Cheng University, Taiwan

September 29, 2009

Outline

(1) Introduction
(2) A brief introduction to Chernoff-Hoeffding bounds
(3) The main theorem and an illustrating example
4) Proof of the main theorem
(5) Sharper bounds in special cases

Outline

(1) Introduction

(2) A brief introduction to Chernoff-Hoeffding bounds
(3) The main theorem and an illustrating example
4. Proof of the main theorem
(5) Sharper bounds in special cases

Introduction

- In 1952, Herman Chernoff introduced a technique which gives sharp upper bounds on the tails of the distribution of the sum of mutually independent binary (Bernoulli) random variables.
- Wassily Hoeffding extended Chernoff's technique to deal with bounded independent random variables.
- Bounds obtained by using the above techniques are collectively called Chernoff-Hoeffding bounds (CH bounds, in short).

Introduction

- In 1952, Herman Chernoff introduced a technique which gives sharp upper bounds on the tails of the distribution of the sum of mutually independent binary (Bernoulli) random variables.
- Wassily Hoeffding extended Chernoff's technique to deal with bounded independent random variables.
- Bounds obtained by using the above techniques are collectively called Chernoff-Hoeffding bounds (CH bounds, in short).

Introduction

- In 1952, Herman Chernoff introduced a technique which gives sharp upper bounds on the tails of the distribution of the sum of mutually independent binary (Bernoulli) random variables.
- Wassily Hoeffding extended Chernoff's technique to deal with bounded independent random variables.
- Bounds obtained by using the above techniques are collectively called Chernoff-Hoeffding bounds (CH bounds, in short).

Introduction (contd.)

- In many situations, tail probability bounds obtained using Markov's inequality or Chebyshev's inequaility are too weak, while CH bounds are just right.
- CH bounds are extremely useful in design and analysis of randomized algorithms, in proofs by the probabilistic method, analysis in computational complexity, etc.

Introduction (contd.)

- In many situations, tail probability bounds obtained using Markov's inequality or Chebyshev's inequaility are too weak, while CH bounds are just right.
- CH bounds are extremely useful in design and analysis of randomized algorithms, in proofs by the probabilistic method, analysis in computational complexity, etc.
- In this talk, we delve into limitations for using CH bounds, and a new simple but powerful technique which extends CH bounds.

Introduction (contd.)

- In many situations, tail probability bounds obtained using Markov's inequality or Chebyshev's inequaility are too weak, while CH bounds are just right.
- CH bounds are extremely useful in design and analysis of randomized algorithms, in proofs by the probabilistic method, analysis in computational complexity, etc.
- In this talk, we delve into limitations for using CH bounds, and a new simple but powerful technique which extends CH bounds.

Outline

(1) Introduction

(2) A brief introduction to Chernoff-Hoeffding bounds
(3) The main theorem and an illustrating example
4. Proof of the main theorem
(5) Sharper bounds in special cases

Chernoff-Hoeffding bounds

- Let $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ denote a set of mutually independent Bernoulli random variables with $S=\sum_{i=1}^{n} X_{i}$ and $\mu=\mathbf{E}[S]$.
- Assume that, for all $i, \operatorname{Pr}\left[X_{i}=1\right]=p$ for some $p>0$.
- We are interested in upper bounds on $\operatorname{Pr}[S \geq(1+\delta) \mu]$ and $\operatorname{Pr}[S \leq(1-\delta) \mu]$.
- Chernoff bounds lead to

When $\delta \leq 1$, we can derive $F^{+}(\mu, \delta) \leq \mathrm{e}^{-\mu \delta^{2} / 3}$.

Chernoff-Hoeffding bounds

- Let $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ denote a set of mutually independent Bernoulli random variables with $S=\sum_{i=1}^{n} X_{i}$ and $\mu=\mathbf{E}[S]$.
- Assume that, for all $i, \operatorname{Pr}\left[X_{i}=1\right]=p$ for some $p>0$.
- We are interested in upper bounds on $\operatorname{Pr}[S \geq(1+\delta) \mu]$ and $\operatorname{Pr}[S \leq(1-\delta) \mu]$.
- Chernoff bounds lead to

$\operatorname{Pr}[S \leq(1-\delta) \mu]$

When $\delta \leq 1$, we can derive $F^{+}(\mu, \delta) \leq e^{-\mu \delta^{2} / 3}$.

Chernoff-Hoeffding bounds

- Let $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ denote a set of mutually independent Bernoulli random variables with $S=\sum_{i=1}^{n} X_{i}$ and $\mu=\mathbf{E}[S]$.
- Assume that, for all $i, \operatorname{Pr}\left[X_{i}=1\right]=p$ for some $p>0$.
- We are interested in upper bounds on $\operatorname{Pr}[S \geq(1+\delta) \mu]$ and $\operatorname{Pr}[S \leq(1-\delta) \mu]$.
- Chernoff bounds lead to

$$
\begin{aligned}
& \operatorname{Pr}[S \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu} \\
& \operatorname{Pr}[S \leq(1-\delta) \mu] \leq e^{-\mu \delta^{2} / 2}
\end{aligned}
$$

When $\delta \leq 1$, we can derive $F^{+}(\mu, \delta) \leq e^{-\mu \delta^{2} / 3}$.

Chernoff-Hoeffding bounds

- Let $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ denote a set of mutually independent Bernoulli random variables with $S=\sum_{i=1}^{n} X_{i}$ and $\mu=\mathbf{E}[S]$.
- Assume that, for all $i, \operatorname{Pr}\left[X_{i}=1\right]=p$ for some $p>0$.
- We are interested in upper bounds on $\operatorname{Pr}[S \geq(1+\delta) \mu]$ and $\operatorname{Pr}[S \leq(1-\delta) \mu]$.
- Chernoff bounds lead to

$$
\begin{aligned}
& \operatorname{Pr}[S \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}, \xrightarrow{\text { def }} F^{+}(\mu, \delta) \\
& \operatorname{Pr}[S \leq(1-\delta) \mu] \leq e^{-\mu \delta^{2} / 2} . \xrightarrow{\operatorname{def}} F^{-}(\mu, \delta)
\end{aligned}
$$

When $\delta \leq 1$, we can derive $F^{+}(\mu, \delta) \leq e^{-\mu \delta^{2} / 3}$.

A simple application (a generous teacher and diligent students)

- There are n students, who work very hard all the time just like us. Their teacher, who is very generous, would like to reward them.
- In front of them, there is a sealed box which has 3 golden balls and 1 black ball inside.
- Each time one can pick a ball from the box and then put it back into the box (we assume that the students are honest).
- The teacher said he will treat the students a bountiful feast if more than $n / 2$ students get golden balls.
- What is the probability that the students can't have a bountiful feast?

A simple application (a generous teacher and diligent students)

- There are n students, who work very hard all the time just like us. Their teacher, who is very generous, would like to reward them.
- In front of them, there is a sealed box which has 3 golden balls and 1 black ball inside.
- Each time one can pick a ball from the box and then put it back into the box (we assume that the students are honest).
- The teacher said he will treat the students a bountiful feast if more than $n / 2$ students get golden balls.
- What is the probability that the students can't have a bountiful feast?

A simple application (a generous teacher and diligent students)

- There are n students, who work very hard all the time just like us. Their teacher, who is very generous, would like to reward them.
- In front of them, there is a sealed box which has 3 golden balls and 1 black ball inside.
- Each time one can pick a ball from the box and then put it back into the box (we assume that the students are honest).
- The teacher said he will treat the students a bountiful feast if more than $n / 2$ students get golden balls.
- What is the probability that the students can't have a bountiful feast?

A simple application (a generous teacher and diligent students) (contd.)

- For $i=1, \ldots, n, X_{i}=1$: the i th student gets a golden ball; $X_{i}=0$: the i th student gets a black ball.
- $\operatorname{Pr}\left[X_{i}=1\right]=3 / 4$ and $\operatorname{Pr}\left[X_{i}=0\right]=1 / 4$.
- Let $S=\sum_{i=1}^{n} X_{i}$. The event that the students have bad luck is $S \leq n / 2$, and we have $\mu=\mathbf{E}[S]=3 n / 4$.
- $\operatorname{Pr}[S \leq n / 2]=\operatorname{Pr}[S \leq(1-1 / 3) \mu] \leq e^{-\mu(1 / 3)^{2} / 2}=e^{-n / 24}$.

A simple application (a generous teacher and diligent students) (contd.)

- For $i=1, \ldots, n, X_{i}=1$: the i th student gets a golden ball; $X_{i}=0$: the i th student gets a black ball.
- $\operatorname{Pr}\left[X_{i}=1\right]=3 / 4$ and $\operatorname{Pr}\left[X_{i}=0\right]=1 / 4$.
- Let $S=\sum_{i=1}^{n} X_{i}$. The event that the students have bad luck is $S \leq n / 2$, and we have $\mu=\mathbf{E}[S]=3 n / 4$.
- $\operatorname{Pr}[S \leq n / 2]=\operatorname{Pr}[S \leq(1-1 / 3) \mu] \leq e^{-\mu(1 / 3)^{2} / 2}=e^{-n / 24}$.
- The probability is less than 0.66 if $n=10$, less than 0.125 if $n=50$, and less than 0.005 if $n=130$.

A simple application (a generous teacher and diligent students) (contd.)

- For $i=1, \ldots, n, X_{i}=1$: the i th student gets a golden ball; $X_{i}=0$: the i th student gets a black ball.
- $\operatorname{Pr}\left[X_{i}=1\right]=3 / 4$ and $\operatorname{Pr}\left[X_{i}=0\right]=1 / 4$.
- Let $S=\sum_{i=1}^{n} X_{i}$. The event that the students have bad luck is $S \leq n / 2$, and we have $\mu=\mathbf{E}[S]=3 n / 4$.
- $\operatorname{Pr}[S \leq n / 2]=\operatorname{Pr}[S \leq(1-1 / 3) \mu] \leq e^{-\mu(1 / 3)^{2} / 2}=e^{-n / 24}$.
- The probability is less than 0.66 if $n=10$, less than 0.125 if $n=50$, and less than 0.005 if $n=130$.

Hoeffding's extension

- Consider the case that X_{i} 's are mutually independent "bounded" random variables (i.e., $a_{i} \leq X_{i} \leq b_{i}$, for some positive real a_{i} and b_{i}).
- Hoeffding's extension of Chernoff's technique:

$$
\operatorname{Pr}[|S-\mu| \geq \delta \mu] \leq 2 e^{-2 \mu^{2} \delta^{2} / \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}} .
$$

- In this talk, we omit Hoeffding-like bounds.

Hoeffding's extension

- Consider the case that X_{i} 's are mutually independent "bounded" random variables (i.e., $a_{i} \leq X_{i} \leq b_{i}$, for some positive real a_{i} and b_{i}).
- Hoeffding's extension of Chernoff's technique:

$$
\operatorname{Pr}[|S-\mu| \geq \delta \mu] \leq 2 e^{-2 \mu^{2} \delta^{2} / \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}
$$

- In this talk, we omit Hoeffding-like bounds.

Hoeffding's extension

- Consider the case that X_{i} 's are mutually independent "bounded" random variables (i.e., $a_{i} \leq X_{i} \leq b_{i}$, for some positive real a_{i} and b_{i}).
- Hoeffding's extension of Chernoff's technique:

$$
\operatorname{Pr}[|S-\mu| \geq \delta \mu] \leq 2 e^{-2 \mu^{2} \delta^{2} / \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}
$$

- In this talk, we omit Hoeffding-like bounds.

The crucial step and limitation of CH bounds

- A crucial step for deriving CH bounds is to calculate $\mathbf{E}\left[e^{t S}\right]$ for any positve real t (the moment generating function).

$$
\mathbf{E}\left[e^{t S}\right]=\mathbf{E}\left[e^{t \sum_{i=1}^{n} X_{i}}\right]=\mathbf{E}\left[\prod_{i=1}^{n} e^{t X_{i}}\right]=\prod_{i=1}^{n} \mathbf{E}\left[e^{t X_{i}}\right]
$$

- The last of the above equalities depends on the X_{i} 's being mutually independent.

The crucial step and limitation of CH bounds

- A crucial step for deriving CH bounds is to calculate $\mathbf{E}\left[e^{t S}\right]$ for any positve real t (the moment generating function).

$$
\mathbf{E}\left[e^{t S}\right]=\mathbf{E}\left[e^{t \sum_{i=1}^{n} X_{i}}\right]=\mathbf{E}\left[\prod_{i=1}^{n} e^{t X_{i}}\right]=\prod_{i=1}^{n} \mathbf{E}\left[e^{t X_{i}}\right]
$$

- The last of the above equalities depends on the X_{i} 's being mutually independent.
- This is the limitation for CH bounds. In this paper, the author extends CH bounds by allowing a rather natural, limited kind of dependency among the X;'s.

The crucial step and limitation of CH bounds

- A crucial step for deriving CH bounds is to calculate $\mathbf{E}\left[e^{t S}\right]$ for any positve real t (the moment generating function).

$$
\mathbf{E}\left[e^{t S}\right]=\mathbf{E}\left[e^{t \sum_{i=1}^{n} X_{i}}\right]=\mathbf{E}\left[\prod_{i=1}^{n} e^{t X_{i}}\right]=\prod_{i=1}^{n} \mathbf{E}\left[e^{t X_{i}}\right]
$$

- The last of the above equalities depends on the X_{i} 's being mutually independent.
- This is the limitation for CH bounds.
- In this paper, the author extends CH bounds by allowing a rather natural, limited kind of dependency among the X_{i} 's.

The crucial step and limitation of CH bounds

- A crucial step for deriving CH bounds is to calculate $\mathbf{E}\left[e^{t S}\right]$ for any positve real t (the moment generating function).

$$
\mathbf{E}\left[e^{t S}\right]=\mathbf{E}\left[e^{t \sum_{i=1}^{n} X_{i}}\right]=\mathbf{E}\left[\prod_{i=1}^{n} e^{t X_{i}}\right]=\prod_{i=1}^{n} \mathbf{E}\left[e^{t X_{i}}\right]
$$

- The last of the above equalities depends on the X_{i} 's being mutually independent.
- This is the limitation for CH bounds.
- In this paper, the author extends CH bounds by allowing a rather natural, limited kind of dependency among the X_{i} 's.

Outline

（1）Introduction

（2）A brief introduction to Chernoff－Hoeffding bounds

（3）The main theorem and an illustrating example
（5）Sharper bounds in special cases

Some basic definitions

- Let A be an event.
- A is said to be mutually independent of a set of events $B_{1}, B_{2}, \ldots, B_{n}$ if for any $I \subseteq\{1,2, \ldots, n\}, \operatorname{Pr}\left[A \mid \bigcap_{j \in I} B_{j}\right]=\operatorname{Pr}[A]$.

Some basic definitions

- Let A be an event.
- A is said to be mutually independent of a set of events $B_{1}, B_{2}, \ldots, B_{n}$ if for any $I \subseteq\{1,2, \ldots, n\}, \operatorname{Pr}\left[A \mid \bigcap_{j \in I} B_{j}\right]=\operatorname{Pr}[A]$.

Dependency graphs

- $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$: a set of random variables.
- A dependency graph $G=(V, E)$ for \mathcal{X} has a vertex set $[n]=\{1,2, \ldots, n\}$ and for each i, X_{i} is mutually independent of the events $\left\{X_{j} \mid(i, j) \notin E\right\}$
- We say that \mathcal{X} exhibits d-bounded dependence if \mathcal{X} has a dependency graph with maximum degree d.

Dependency graphs

- $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$: a set of random variables.
- A dependency graph $G=(V, E)$ for \mathcal{X} has a vertex set $[n]=\{1,2, \ldots, n\}$ and for each i, X_{i} is mutually independent of the events $\left\{X_{j} \mid(i, j) \notin E\right\}$.
- We say that \mathcal{X} exhibits d-bounded dependence if \mathcal{X} has a dependency graph with maximum degree d.

Dependency graphs

- $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$: a set of random variables.
- A dependency graph $G=(V, E)$ for \mathcal{X} has a vertex set $[n]=\{1,2, \ldots, n\}$ and for each i, X_{i} is mutually independent of the events $\left\{X_{j} \mid(i, j) \notin E\right\}$.
- We say that \mathcal{X} exhibits d-bounded dependence if \mathcal{X} has a dependency graph with maximum degree d.

Note

- Let G be a dependency graph of \mathcal{X}.
- Assume that $X_{1}, X_{2}, \ldots, X_{k}$ correspond to an independent set of G.

Note

- Let G be a dependency graph of \mathcal{X}.
- Assume that $X_{1}, X_{2}, \ldots, X_{k}$ correspond to an independent set of G.

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{1} \mid X_{2} \cap X_{3} \cap \ldots \cap X_{k}\right]=\frac{\operatorname{Pr}\left[X_{1} \cap X_{2} \cap X_{3} \cap \ldots \cap X_{k}\right]}{\operatorname{Pr}\left[X_{2} \cap X_{3} \cap \ldots \cap X_{k}\right]}=\operatorname{Pr}\left[X_{1}\right] . \\
& \operatorname{Pr}\left[X_{2} \mid X_{3} \cap X_{4} \cap \ldots \cap X_{k}\right]=\frac{\operatorname{Pr}\left[X_{2} \cap X_{3} \cap X_{4} \cap \ldots \cap X_{k}\right]}{\operatorname{Pr}\left[X_{3} \cap X_{4} \cap \ldots \cap X_{k}\right]}=\operatorname{Pr}\left[X_{2}\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{1} \cap X_{2} \cap \ldots \cap X_{k}\right] \\
= & \operatorname{Pr}\left[X_{1}\right] \cdot \operatorname{Pr}\left[X_{2} \cap X_{3} \cap X_{4} \cap \ldots \cap X_{k}\right] \\
= & \operatorname{Pr}\left[X_{1}\right] \cdot \operatorname{Pr}\left[X_{2}\right] \cdot \operatorname{Pr}\left[X_{3} \cap X_{4} \cap \ldots \cap X_{k}\right] \\
\vdots & \\
= & \operatorname{Pr}\left[X_{1}\right] \cdot \operatorname{Pr}\left[X_{2}\right] \cdots \operatorname{Pr}\left[X_{k}\right] .
\end{aligned}
$$

Examples for testing your understanding

- Let S be a set of pairwise independent events.
\triangleright Must the dependency graph of S contain 0 edge?
- Let S be a set of events.
\triangleright Is the dependency graph of S unique?

Examples for testing your understanding

- Let S be a set of pairwise independent events.
\triangleright Must the dependency graph of S contain 0 edge?
- Let S be a set of events.
\triangleright Is the dependency graph of S unique?

Another example for figuring out dependency graphs

- Consider an experiment of flipping a fair coin twice. Let \mathcal{X} be the set of the following events.
- X_{1} : the first flip is head;
- X_{2} : the second flip is tail;
- X_{3} : the two flips are the same.
- The events can be shown to be pairwise independent for each two of them.

Another example for figuring out dependency graphs

- Consider an experiment of flipping a fair coin twice. Let \mathcal{X} be the set of the following events.
- X_{1} : the first flip is head;
- X_{2} : the second flip is tail;
- X_{3} : the two flips are the same.
- The events can be shown to be pairwise independent for each two of them.
- If a graph with three vertices has at most one edge, it must NOT be a dependency graph of \mathcal{X}.

Another example for figuring out dependency graphs

- Consider an experiment of flipping a fair coin twice. Let \mathcal{X} be the set of the following events.
- X_{1} : the first flip is head;
- X_{2} : the second flip is tail;
- X_{3} : the two flips are the same.
- The events can be shown to be pairwise independent for each two of them.
- If a graph with three vertices has at most one edge, it must NOT be a dependency graph of \mathcal{X}.
- ANY graph with three vertices and at least two edges is a dependency graph of \mathcal{X}.

Another example for figuring out dependency graphs

- Consider an experiment of flipping a fair coin twice. Let \mathcal{X} be the set of the following events.
- X_{1} : the first flip is head;
- X_{2} : the second flip is tail;
- X_{3} : the two flips are the same.
- The events can be shown to be pairwise independent for each two of them.
- If a graph with three vertices has at most one edge, it must NOT be a dependency graph of \mathcal{X}.
- ANY graph with three vertices and at least two edges is a dependency graph of \mathcal{X}.

The main theorem

Theorem 1

For identically distributed Bernoulli random variables X_{i} with d-bounded dependence, for any $0<\delta \leq 1$, we have the upper tail probability bound

$$
\operatorname{Pr}[S \geq(1+\delta) \mu] \leq \frac{4(d+1)}{e} F^{+}(\mu, \delta)^{\frac{1}{d+1}}
$$

and the lower tail probability bound

$$
\operatorname{Pr}[S \leq(1-\delta) \mu] \leq \frac{4(d+1)}{e} F^{-}(\mu, \delta)^{\frac{1}{d+1}}
$$

- Note that $F^{+}(\mu, \delta)$ and $F^{-}(\mu, \delta)$ are exponentially small when

$$
\mu /(d+1)=\Omega\left(\log ^{1+\rho} n\right) \text { for any } \rho>0
$$

The main theorem

Theorem 1

For identically distributed Bernoulli random variables X_{i} with d-bounded dependence, for any $0<\delta \leq 1$, we have the upper tail probability bound

$$
\operatorname{Pr}[S \geq(1+\delta) \mu] \leq \frac{4(d+1)}{e} F^{+}(\mu, \delta)^{\frac{1}{d+1}}=\frac{4(d+1)}{e} e^{-\mu \delta^{2} / 3(d+1)}
$$

and the lower tail probability bound

$$
\operatorname{Pr}[S \leq(1-\delta) \mu] \leq \frac{4(d+1)}{e} F^{-}(\mu, \delta)^{\frac{1}{d+1}}=\frac{4(d+1)}{e} e^{-\mu \delta^{2} / 2(d+1)}
$$

- Note that $F^{+}(\mu, \delta)$ and $F^{-}(\mu, \delta)$ are exponentially small when

$$
\mu /(d+1)=\Omega\left(\log ^{1+\rho} n\right) \text { for any } \rho>0
$$

An example: a randomized algorithm for Maximum Independent Set in a regular graph

- Given a k-regular n-vertex graph G. The following steps compute a large independent set in G.

Step 1: Delete each vertex from G independently with probability $1-1 / k$.
Step 2: For each remaining edge, delete one of its endpoints.

An example: a randomized algorithm for Maximum Independent Set in a regular graph

- Given a k-regular n-vertex graph G. The following steps compute a large independent set in G.

Step 1: Delete each vertex from G independently with probability $1-1 / k$.
Step 2: For each remaining edge, delete one of its endpoints.

- The vertices that remain after Step 2 form an independent set of G

An example: a randomized algorithm for Maximum Independent Set in a regular graph

- Given a k-regular n-vertex graph G. The following steps compute a large independent set in G.

Step 1: Delete each vertex from G independently with probability $1-1 / k$.
Step 2: For each remaining edge, delete one of its endpoints.

- The vertices that remain after Step 2 form an independent set of G.

An example: a randomized algorithm for Maximum Independent Set in a regular graph (contd.)

- Let A_{i} be an indicator r.v. such that $A_{i}=1$ if vertex v_{i} is not deleted in Step 1.
- Let $A=\sum_{i} A_{i}$ be a r.v.: the number of vertices remaining after Step 1 .
- Let B_{j} be an indicator r.v. such that $B_{j}=1$ if edge e_{j} is not deleted in Step 1.
- Let $B=\sum_{j} B_{j}$ be a r.v.: the number of remaining edges after Step 1 .

An example: a randomized algorithm for Maximum Independent Set in a regular graph (contd.)

- Let A_{i} be an indicator r.v. such that $A_{i}=1$ if vertex v_{i} is not deleted in Step 1.
- Let $A=\sum_{i} A_{i}$ be a r.v.: the number of vertices remaining after Step 1 .
- Let B_{j} be an indicator r.v. such that $B_{j}=1$ if edge e_{j} is not deleted in Step 1.
- Let $B=\sum_{j} B_{j}$ be a r.v.: the number of remaining edges after Step 1.
- It is easy to see that $\mathrm{E}[A]=n / k$ and $\mathrm{E}[B]=(1 / k)^{2} \cdot k n / 2=n / 2 k$.

An example: a randomized algorithm for Maximum Independent Set in a regular graph (contd.)

- Let A_{i} be an indicator r.v. such that $A_{i}=1$ if vertex v_{i} is not deleted in Step 1.
- Let $A=\sum_{i} A_{i}$ be a r.v.: the number of vertices remaining after Step 1 .
- Let B_{j} be an indicator r.v. such that $B_{j}=1$ if edge e_{j} is not deleted in Step 1.
- Let $B=\sum_{j} B_{j}$ be a r.v.: the number of remaining edges after Step 1 .
- It is easy to see that $\mathbf{E}[A]=n / k$ and $\mathbf{E}[B]=(1 / k)^{2} \cdot k n / 2=n / 2 k$.

An example: a randomized algorithm for Maximum Independent Set in a regular graph (contd.)

- The size of the independent set computed by the algorithm: $\geq A-B$.
- Hence the expected size of the solution produced by the algorithm is $\geq n / 2 k$.
- A randomized $O(1)$-factor approximation algorithm for Maximum Independent Set.

An example: a randomized algorithm for Maximum Independent Set in a regular graph (contd.)

- Actually we can show that $A-B$ is very close to $n / 2 k$ with high probability.
- It is clear that A_{i} 's are mutually independent, so CH bounds can be applied.
- 'However, Bi's are NOT mutually independent. endpoints of edge i.

An example: a randomized algorithm for Maximum Independent Set in a regular graph (contd.)

- Actually we can show that $A-B$ is very close to $n / 2 k$ with high probability.
- It is clear that A_{i} 's are mutually independent, so CH bounds can be applied.
- However, B_{i} 's are NOT mutually independent.
- B_{i} is mutually independent of B_{j} 's if edge j 's are not incident on any endpoints of edge i.

An example: a randomized algorithm for Maximum Independent Set in a regular graph (contd.)

- Actually we can show that $A-B$ is very close to $n / 2 k$ with high probability.
- It is clear that A_{i} 's are mutually independent, so CH bounds can be applied.
- However, B_{i} 's are NOT mutually independent.
- B_{i} is mutually independent of B_{j} 's if edge j 's are not incident on any endpoints of edge i.
- Let us consider the dependency graph of B_{i} 's.

An example: a randomized algorithm for Maximum Independent Set in a regular graph (contd.)

- Actually we can show that $A-B$ is very close to $n / 2 k$ with high probability.
- It is clear that A_{i} 's are mutually independent, so CH bounds can be applied.
- However, B_{i} 's are NOT mutually independent.
- B_{i} is mutually independent of B_{j} 's if edge j 's are not incident on any endpoints of edge i.
- Let us consider the dependency graph of B_{i} 's.

An example: a randomized algorithm for Maximum Independent Set in a regular graph (contd.)

- The line graph (i.e., edge graph) $L(G)$ of G is a dependency graph of the B_{i} 's.
- $L(G)$: every vertex of $L(G)$ represents an edge of G, and two vertices of $L(G)$ are adjacent iff their corresponding edge share a common endpoint in G.

G

$L(G)$

An example: a randomized algorithm for Maximum Independent Set in a regular graph (contd.)

- G is k-regular $\longrightarrow L(G)$ is $2(k-1)$-regular $\longrightarrow B_{i}$'s exhibit $2(k-1)$-bounded dependence.
- $E[B] /(2 k-1)=\Omega(n)$.
- $\Omega\left(\log ^{1+\rho} k n / 2\right)$ for any $\rho>0$.
- Thus the main theorem of this paper can be applied, and then we know the algorithm indeed produces a large independent set with high probability.

An example: a randomized algorithm for Maximum Independent Set in a regular graph (contd.)

- G is k-regular $\longrightarrow L(G)$ is $2(k-1)$-regular $\longrightarrow B_{i}$'s exhibit $2(k-1)$-bounded dependence.
- $\mathbf{E}[B] /(2 k-1)=\Omega(n)$.
- $\Omega\left(\log ^{1+\rho} k n / 2\right)$ for any $\rho>0$.
- Thus the main theorem of this paper can be applied, and then we know the algorithm indeed produces a large independent set with high probability.

Outline

(1) Introduction

(2) A brief introduction to Chernoff-Hoeffding bounds
(3) The main theorem and an illustrating example
(4) Proof of the main theorem
(5) Sharper bounds in special cases

t-equitable coloring

Definition 2

A coloring of a graph is equitable if the sizes of any pair of color classes are within one of each other.

- t-equitable coloring: an equitable coloring using t colors.

A deep result by Hajnal and Szemerédi

Hajnal-Szemerédi (1970)

A graph G with maximum degree Δ has a $(\Delta+1)$-equitable coloring.

Lemma 3

Suppose that X_{i} 's are identical Bernoulli random variables with dependency graph G, and suppose G has a t-equitable coloring. Then for any $0<\delta \leq 1$, we have

$$
\begin{aligned}
& \operatorname{Pr}[S \geq(1+\delta) \mu] \leq \frac{4 t}{e} F^{+}(\mu, \delta)^{1 / t}, \\
& \operatorname{Pr}[S \leq(1-\delta) \mu] \leq \frac{4 t}{e} F^{-}(\mu, \delta)^{1 / t} .
\end{aligned}
$$

Theorem 4

Suppose the X_{i} 's are identical Bernoulli random variables exhibiting d-bounded dependence. Then, for any $0<\delta \leq 1$, we have

$$
\begin{aligned}
& \operatorname{Pr}[S \geq(1+\delta) \mu] \leq \frac{4(d+1)}{e} F^{+}(\mu, \delta)^{\frac{1}{d+1}} \\
& \operatorname{Pr}[S \leq(1-\delta) \mu] \leq \frac{4(d+1)}{e} F^{-}(\mu, \delta)^{\frac{1}{d+1}}
\end{aligned}
$$

Proof of Lemma 3

- For convenience, assume that $\mathbf{E}\left[X_{i}\right]=\mu^{\prime}$ for each i, and let $[t]$ denote $\{1,2, \ldots, t\}$.
- Let $C_{1}, C_{2}, \ldots, C_{t}$ be the t color classes in a t-equitable-coloring

Proof of Lemma 3

- For convenience, assume that $\mathbf{E}\left[X_{i}\right]=\mu^{\prime}$ for each i, and let $[t]$ denote $\{1,2, \ldots, t\}$.
- Let $C_{1}, C_{2}, \ldots, C_{t}$ be the t color classes in a t-equitable-coloring of G.
- For each $i \in[t]$, let $\mu_{i}=\mathrm{E}\left[\sum_{j \in C_{i}} X_{j}\right] \quad$ (i.e., $\mu^{\prime}\left|C_{i}\right|$).

Proof of Lemma 3

- For convenience, assume that $\mathbf{E}\left[X_{i}\right]=\mu^{\prime}$ for each i, and let $[t]$ denote $\{1,2, \ldots, t\}$.
- Let $C_{1}, C_{2}, \ldots, C_{t}$ be the t color classes in a t-equitable-coloring of G.
- For each $i \in[t]$, let $\mu_{i}=\mathbf{E}\left[\sum_{j \in C_{i}} X_{j}\right] \quad$ (i.e., $\mu^{\prime}\left|C_{i}\right|$).

Proof of Lemma 3 (contd.)

$$
\begin{aligned}
S \geq(1+\delta) \mu & \equiv S \geq(1+\delta) \mu^{\prime} n \\
& \equiv S \geq(1+\delta) \mu^{\prime} \sum_{i \in[t]}\left|C_{i}\right| \\
& \equiv S \geq \sum_{i \in[t]}(1+\delta) \mu^{\prime}\left|C_{i}\right| \\
& \equiv \sum_{i \in[t]} \sum_{j \in C_{j}} X_{j} \geq \sum_{i \in[t]}(1+\delta) \mu_{i} .
\end{aligned}
$$

- The first equivalence: $\mu=\mathbf{E}\left[\sum_{i \in[n]} X_{i}\right]=\sum_{i \in[n]} \mathbf{E}\left[X_{i}\right]=n \mu^{\prime}$.
- The second equivalence: C_{i} 's form a partition of $[n]$.

Proof of Lemma 3 (contd.)

$$
\begin{aligned}
S \geq(1+\delta) \mu & \equiv S \geq(1+\delta) \mu^{\prime} n \\
& \equiv S \geq(1+\delta) \mu^{\prime} \sum_{i \in[t]}\left|C_{i}\right| \\
& \equiv S \geq \sum_{i \in[t]}(1+\delta) \mu^{\prime}\left|C_{i}\right| \\
& \equiv \sum_{i \in[t]} \sum_{j \in C_{j}} X_{j} \geq \sum_{i \in[t]}(1+\delta) \mu_{i}
\end{aligned}
$$

- The first equivalence: $\mu=\mathbf{E}\left[\sum_{i \in[n]} X_{i}\right]=\sum_{i \in[n]} \mathbf{E}\left[X_{i}\right]=n \mu^{\prime}$.
- The second equivalence: C_{i} 's form a partition of $[n]$.
- The last equivalence: expressing S as the sum of the X_{i} 's grouped into color classes.

Proof of Lemma 3 (contd.)

$$
\begin{aligned}
S \geq(1+\delta) \mu & \equiv S \geq(1+\delta) \mu^{\prime} n \\
& \equiv S \geq(1+\delta) \mu^{\prime} \sum_{i \in[t]}\left|C_{i}\right| \\
& \equiv S \geq \sum_{i \in[t]}(1+\delta) \mu^{\prime}\left|C_{i}\right| \\
& \equiv \sum_{i \in[t]} \sum_{j \in C_{j}} X_{j} \geq \sum_{i \in[t]}(1+\delta) \mu_{i}
\end{aligned}
$$

- The first equivalence: $\mu=\mathbf{E}\left[\sum_{i \in[n]} X_{i}\right]=\sum_{i \in[n]} \mathbf{E}\left[X_{i}\right]=n \mu^{\prime}$.
- The second equivalence: C_{i} 's form a partition of $[n]$.
- The last equivalence: expressing S as the sum of the X_{i} 's grouped into color classes.

Proof of Lemma 3 (contd.)

- $\sum_{i \in[t]} \sum_{j \in C_{i}} X_{j} \geq \sum_{i \in[t]}(1+\delta) \mu_{i} \Rightarrow \exists i \in[t]: \sum_{j \in C_{i}} X_{j} \geq(1+\delta) \mu_{i}$.
- Hence

- The last probability above is actually at most

Proof of Lemma 3 (contd.)

- $\sum_{i \in[t]} \sum_{j \in C_{i}} X_{j} \geq \sum_{i \in[t]}(1+\delta) \mu_{i} \Rightarrow \exists i \in[t]: \sum_{j \in C_{i}} X_{j} \geq(1+\delta) \mu_{i}$.
- Hence

$$
\begin{aligned}
\operatorname{Pr}[S \geq(1+\delta) \mu] & =\operatorname{Pr}\left[\sum_{i \in[t] j \in C_{i}} x_{j} \geq \sum_{i \in[t]}(1+\delta) \mu_{i}\right] \\
& \leq \operatorname{Pr}\left[\exists i \in[t]: \sum_{j \in C_{i}} x_{j} \geq(1+\delta) \mu_{i}\right] .
\end{aligned}
$$

- The last probability above is actually at most

Proof of Lemma 3 (contd.)

- $\sum_{i \in[t]} \sum_{j \in C_{i}} X_{j} \geq \sum_{i \in[t]}(1+\delta) \mu_{i} \Rightarrow \exists i \in[t]: \sum_{j \in C_{i}} X_{j} \geq(1+\delta) \mu_{i}$.
- Hence

$$
\begin{aligned}
\operatorname{Pr}[S \geq(1+\delta) \mu] & =\operatorname{Pr}\left[\sum_{i \in[t] j \in C_{i}} x_{j} \geq \sum_{i \in[t]}(1+\delta) \mu_{i}\right] \\
& \leq \operatorname{Pr}\left[\exists i \in[t]: \sum_{j \in C_{i}} x_{j} \geq(1+\delta) \mu_{i}\right] .
\end{aligned}
$$

- The last probability above is actually at most

$$
\begin{aligned}
& \sum_{i \in[t]} \operatorname{Pr}\left[\sum_{j \in C_{i}} x_{j} \geq(1+\delta) \mu_{i}\right] \text { (union bound) } \\
\leq & \sum_{i \in[t]} F^{+}\left(\mu_{i}, \delta\right) \text { (Chernoff bound). }
\end{aligned}
$$

Proof of Lemma 3 (contd.)

- $\sum_{i \in[t]} \sum_{j \in C_{i}} X_{j} \geq \sum_{i \in[t]}(1+\delta) \mu_{i} \Rightarrow \exists i \in[t]: \sum_{j \in C_{i}} X_{j} \geq(1+\delta) \mu_{i}$.
- Hence

$$
\begin{aligned}
\operatorname{Pr}[S \geq(1+\delta) \mu] & =\operatorname{Pr}\left[\sum_{i \in[t] j \in C_{i}} x_{j} \geq \sum_{i \in[t]}(1+\delta) \mu_{i}\right] \\
& \leq \operatorname{Pr}\left[\exists i \in[t]: \sum_{j \in C_{i}} x_{j} \geq(1+\delta) \mu_{i}\right] .
\end{aligned}
$$

- The last probability above is actually at most

$$
\begin{aligned}
& \sum_{i \in[t]} \operatorname{Pr}\left[\sum_{j \in C_{i}} x_{j} \geq(1+\delta) \mu_{i}\right] \text { (union bound) } \\
\leq & \sum_{i \in[t]} F^{+}\left(\mu_{i}, \delta\right) \text { (Chernoff bound). }
\end{aligned}
$$

Proof of Lemma 3 (contd.)

- $\left|C_{i}\right|=\lfloor n / t\rfloor$ or $\lceil n / t\rceil$ (\because equitable coloring).
- $\mu_{i}=\mu^{\prime}\left|C_{i}\right| \geq\lfloor n / t\rfloor \mu^{\prime} \geq(n / t-1) \mu^{\prime}$.

Proof of Lemma 3 (contd.)

- $\left|C_{i}\right|=\lfloor n / t\rfloor$ or $\lceil n / t\rceil$ (\because equitable coloring).
- $\mu_{i}=\mu^{\prime}\left|C_{i}\right| \geq\lfloor n / t\rfloor \mu^{\prime} \geq(n / t-1) \mu^{\prime}$.
- $(n / t-1) \mu^{\prime} \geq\left(n \mu^{\prime} / t-1\right)=\mu / t-1\left(\because 0 \leq \mu^{\prime} \leq 1\right)$.

Proof of Lemma 3 (contd.)

- $\left|C_{i}\right|=\lfloor n / t\rfloor$ or $\lceil n / t\rceil$ (\because equitable coloring).
- $\mu_{i}=\mu^{\prime}\left|C_{i}\right| \geq\lfloor n / t\rfloor \mu^{\prime} \geq(n / t-1) \mu^{\prime}$.
- $(n / t-1) \mu^{\prime} \geq\left(n \mu^{\prime} / t-1\right)=\mu / t-1\left(\because 0 \leq \mu^{\prime} \leq 1\right)$.
- Hence $\mu_{i} \geq \mu / t-1$

Proof of Lemma 3 (contd.)

- $\left|C_{i}\right|=\lfloor n / t\rfloor$ or $\lceil n / t\rceil$ (\because equitable coloring).
- $\mu_{i}=\mu^{\prime}\left|C_{i}\right| \geq\lfloor n / t\rfloor \mu^{\prime} \geq(n / t-1) \mu^{\prime}$.
- $(n / t-1) \mu^{\prime} \geq\left(n \mu^{\prime} / t-1\right)=\mu / t-1\left(\because 0 \leq \mu^{\prime} \leq 1\right)$.
- Hence $\mu_{i} \geq \mu / t-1$.

Proof of Lemma 3 (contd.)

- $\left|C_{i}\right|=\lfloor n / t\rfloor$ or $\lceil n / t\rceil$ (\because equitable coloring).
- $\mu_{i}=\mu^{\prime}\left|C_{i}\right| \geq\lfloor n / t\rfloor \mu^{\prime} \geq(n / t-1) \mu^{\prime}$.
- $(n / t-1) \mu^{\prime} \geq\left(n \mu^{\prime} / t-1\right)=\mu / t-1\left(\because 0 \leq \mu^{\prime} \leq 1\right)$.
- Hence $\mu_{i} \geq \mu / t-1$.
- Thus

$$
\begin{aligned}
\operatorname{Pr}[S \geq(1+\delta) \mu] & \leq \sum_{i \in[t]} F^{+}\left(\mu_{i}, \delta\right) \\
& \leq \sum_{i \in[t]} F^{+}(\mu / t-1, \delta) \\
& =t \cdot F^{+}(\mu / t-1, \delta)
\end{aligned}
$$

Proof of Lemma 3 (contd.)

- $\left|C_{i}\right|=\lfloor n / t\rfloor$ or $\lceil n / t\rceil$ (\because equitable coloring).
- $\mu_{i}=\mu^{\prime}\left|C_{i}\right| \geq\lfloor n / t\rfloor \mu^{\prime} \geq(n / t-1) \mu^{\prime}$.
- $(n / t-1) \mu^{\prime} \geq\left(n \mu^{\prime} / t-1\right)=\mu / t-1\left(\because 0 \leq \mu^{\prime} \leq 1\right)$.
- Hence $\mu_{i} \geq \mu / t-1$.
- Thus

$$
\begin{aligned}
\operatorname{Pr}[S \geq(1+\delta) \mu] & \leq \sum_{i \in[t]} F^{+}\left(\mu_{i}, \delta\right) \\
& \leq \sum_{i \in[t]} F^{+}(\mu / t-1, \delta) \\
& =t \cdot F^{+}(\mu / t-1, \delta)
\end{aligned}
$$

Proof of Lemma 3 (contd.)

$$
F^{+}(\mu / t-1, \delta)=\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu / t} \cdot\left(\frac{(1+\delta)^{1+\delta}}{e^{\delta}}\right) \leq \frac{4}{e} F^{+}(\mu, \delta)^{1 / t}
$$

- The last inequality: $(1+\delta)^{1+\delta} / e^{\delta}$ is a monotonically increasing function of δ and its maximum occurs when $\delta=1$.
- Thus the upper tail probability is proved.

Proof of Lemma 3 (contd.)

$$
F^{+}(\mu / t-1, \delta)=\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu / t} \cdot\left(\frac{(1+\delta)^{1+\delta}}{e^{\delta}}\right) \leq \frac{4}{e} F^{+}(\mu, \delta)^{1 / t}
$$

- The last inequality: $(1+\delta)^{1+\delta} / e^{\delta}$ is a monotonically increasing function of δ and its maximum occurs when $\delta=1$.
- Thus the upper tail probability is proved.

$$
\operatorname{Pr}[S \geq(1+\delta) \mu] \leq \frac{4 t}{e} F^{+}(\mu, \delta)^{1 / t}
$$

- The proof of the lower tail probability is identical.

Proof of Lemma 3 (contd.)

$$
F^{+}(\mu / t-1, \delta)=\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu / t} \cdot\left(\frac{(1+\delta)^{1+\delta}}{e^{\delta}}\right) \leq \frac{4}{e} F^{+}(\mu, \delta)^{1 / t}
$$

- The last inequality: $(1+\delta)^{1+\delta} / e^{\delta}$ is a monotonically increasing function of δ and its maximum occurs when $\delta=1$.
- Thus the upper tail probability is proved.

$$
\operatorname{Pr}[S \geq(1+\delta) \mu] \leq \frac{4 t}{e} F^{+}(\mu, \delta)^{1 / t}
$$

- The proof of the lower tail probability is identical.

Outline

(1) Introduction

(2) A brief introduction to Chernoff-Hoeffding bounds
(3) The main theorem and an illustrating example
4. Proof of the main theorem
(5) Sharper bounds in special cases

Equitable chromatic number $\chi_{e q}(G)$

- $\chi(G)$: the chromatic number of G.
- $\chi_{e q}(G)$: the fewest colors required to equitably color the graph G.
- E.g., $\chi(G)=2$ and $\chi_{e q}(G)=\lceil(n-1) / 2\rceil+1$ when G is an n-vertex star graph.

- A small equitable chromatic number for a dependency graph leads to sharp tail probability bounds.

Equitable chromatic number $\chi_{e q}(G)$

- $\chi(G)$: the chromatic number of G.
- $\chi_{e q}(G)$: the fewest colors required to equitably color the graph G.
- E.g., $\chi(G)=2$ and $\chi_{e q}(G)=\lceil(n-1) / 2\rceil+1$ when G is an n-vertex star graph.

- A small equitable chromatic number for a dependency graph leads to sharp tail probability bounds.

Bollobás-Guy (1983)

A tree T with n vertices is equitably 3-colorable if $n \geq 3 \Delta(T)-8$ or if $n=3 \Delta(T)-10$.

- The theorem implies that if $\Delta(T) \leq n / 3$, then T can be equitably 3 -colored. Thus we have

Theorem 5

Suppose that X_{i} 's are identical Bernoulli random variables such that the corresponding dependency graph is a tree with maximum degree at most $n / 3$. Then we have the following bounds

$$
\begin{aligned}
& \operatorname{Pr}[S \geq(1+\delta) \mu] \leq \frac{12}{e} F^{+}(\mu, \delta)^{1 / 3} \\
& \operatorname{Pr}[S \leq(1-\delta) \mu] \leq \frac{12}{e} F^{-}(\mu, \delta)^{1 / 3} .
\end{aligned}
$$

Pemmaraju (2001); technical report

A connected outerplanar graph with n vertices and vertex degree at most $n / 6$ has a 6 -equitable coloring.

Theorem 6

Suppose that X_{i} 's are identical Bernoulli random variables whose dependency graph is outerplanar with maximum degree at most $n / 6$. Then we have the following bounds

$$
\begin{aligned}
& \operatorname{Pr}[S \geq(1+\delta) \mu] \leq \frac{24}{e} F^{+}(\mu, \delta)^{1 / 6}, \\
& \operatorname{Pr}[S \leq(1-\delta) \mu] \leq \frac{24}{e} F^{-}(\mu, \delta)^{1 / 6} .
\end{aligned}
$$

Some further remarks

- Are the bounds on the vertex-degree required to obtain sharp bounds?
- a (c, α)-coloring: a vertex coloring such that
- $\leq c$ vertices are not colored.
- for any pair of color classes C and $C^{\prime},|C| \leq \alpha\left|C^{\prime}\right|$.
- It is possible to extend Bollobás-Guy Theorem to have the following results.

Every tree has a (1,5)-coloring with two colors. Every outerplanar graph has a $(2,5)$-coloring with four colors.

- Hence sharp bounds can still be obtained

Some further remarks

- Are the bounds on the vertex-degree required to obtain sharp bounds?
- a (c, α)-coloring: a vertex coloring such that
- $\leq c$ vertices are not colored.
- for any pair of color classes C and $C^{\prime},|C| \leq \alpha\left|C^{\prime}\right|$.
- It is possible to extend Bollobás-Guy Theorem to have the following results.

Theorem 7
Every tree has a $(1,5)$-coloring with two colors.
Every outerplanar graph has a $(2,5)$-coloring with four colors.

- Hence sharp bounds can still be obtained.

Some further remarks

- Are the bounds on the vertex-degree required to obtain sharp bounds?
- a (c, α)-coloring: a vertex coloring such that
- $\leq c$ vertices are not colored.
- for any pair of color classes C and $C^{\prime},|C| \leq \alpha\left|C^{\prime}\right|$.
- It is possible to extend Bollobás-Guy Theorem to have the following results.

Theorem 7

Every tree has a $(1,5)$-coloring with two colors. Every outerplanar graph has a $(2,5)$-coloring with four colors.

- Hence sharp bounds can still be obtained.

Thank you!

