Equitable coloring extends Chernoff-Hoeffding bounds

Sriram V. Pemmaraju APPROX-RANDOM 2001, LNCS 2129, pp. 285–296.

Speaker: Joseph, Chuang-Chieh Lin Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

September 29, 2009

Outline

Introduction

- 2 A brief introduction to Chernoff-Hoeffding bounds
- 3 The main theorem and an illustrating example
- Proof of the main theorem
- 5 Sharper bounds in special cases

Outline

1 Introduction

- 2 A brief introduction to Chernoff-Hoeffding bounds
- 3 The main theorem and an illustrating example
- Proof of the main theorem
- 5 Sharper bounds in special cases

Introduction

- In 1952, Herman Chernoff introduced a technique which gives sharp upper bounds on the *tails* of the distribution of the sum of mutually independent binary (Bernoulli) random variables.
- Wassily Hoeffding extended Chernoff's technique to deal with bounded independent random variables.
- Bounds obtained by using the above techniques are collectively called Chernoff-Hoeffding bounds (CH bounds, in short).

4 / 39

Introduction

- In 1952, Herman Chernoff introduced a technique which gives sharp upper bounds on the *tails* of the distribution of the sum of mutually independent binary (Bernoulli) random variables.
- Wassily Hoeffding extended Chernoff's technique to deal with bounded independent random variables.
- Bounds obtained by using the above techniques are collectively called Chernoff-Hoeffding bounds (CH bounds, in short).

Introduction

- In 1952, Herman Chernoff introduced a technique which gives sharp upper bounds on the *tails* of the distribution of the sum of mutually independent binary (Bernoulli) random variables.
- Wassily Hoeffding extended Chernoff's technique to deal with bounded independent random variables.
- Bounds obtained by using the above techniques are collectively called Chernoff-Hoeffding bounds (CH bounds, in short).

(日) (同) (三) (三)

Introduction (contd.)

- In many situations, tail probability bounds obtained using *Markov's inequality* or *Chebyshev's inequality* are too weak, while CH bounds are just right.
- CH bounds are extremely useful in design and analysis of randomized algorithms, in proofs by the probabilistic method, analysis in computational complexity, etc.
- In this talk, we delve into limitations for using CH bounds, and a new simple but powerful technique which extends CH bounds.

Introduction (contd.)

- In many situations, tail probability bounds obtained using *Markov's inequality* or *Chebyshev's inequality* are too weak, while CH bounds are just right.
- CH bounds are extremely useful in design and analysis of randomized algorithms, in proofs by the probabilistic method, analysis in computational complexity, etc.
- In this talk, we delve into limitations for using CH bounds, and a new simple but powerful technique which extends CH bounds.

Introduction (contd.)

- In many situations, tail probability bounds obtained using *Markov's inequality* or *Chebyshev's inequality* are too weak, while CH bounds are just right.
- CH bounds are extremely useful in design and analysis of randomized algorithms, in proofs by the probabilistic method, analysis in computational complexity, etc.
- In this talk, we delve into limitations for using CH bounds, and a new simple but powerful technique which extends CH bounds.

Outline

Introduction

2 A brief introduction to Chernoff-Hoeffding bounds

3 The main theorem and an illustrating example

Proof of the main theorem

5 Sharper bounds in special cases

- Let X = {X₁, X₂,..., X_n} denote a set of mutually independent Bernoulli random variables with S = ∑_{i=1}ⁿ X_i and µ = E[S].
 Assume that, for all i, Pr[X_i = 1] = p for some p > 0.
- We are interested in upper bounds on $\Pr[S \ge (1 + \delta)\mu]$ and $\Pr[S \le (1 \delta)\mu]$.
- Chernoff bounds lead to

$$egin{array}{lll} {f Pr}[S\geq (1+\delta)\mu]&\leq& \left(rac{e^{\delta}}{(1+\delta)^{(1+\delta)}}
ight)^{\mu}, \ {f Pr}[S\leq (1-\delta)\mu]&\leq& e^{-\mu\delta^2/2}. \end{array}$$

• Let $\mathcal{X} = \{X_1, X_2, \dots, X_n\}$ denote a set of *mutually independent* Bernoulli random variables with $S = \sum_{i=1}^n X_i$ and $\mu = \mathbf{E}[S]$.

• Assume that, for all *i*, $\Pr[X_i = 1] = p$ for some p > 0.

- We are interested in upper bounds on $\Pr[S \ge (1 + \delta)\mu]$ and $\Pr[S \le (1 \delta)\mu]$.
- Chernoff bounds lead to

$$\begin{aligned} &\mathsf{Pr}[S \ge (1+\delta)\mu] &\leq \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}, \quad \frac{\det}{def} F^{+}(\mu, \delta) \\ &\mathsf{Pr}[S \le (1-\delta)\mu] &\leq e^{-\mu\delta^{2}/2}. \quad \frac{\det}{def} F^{-}(\mu, \delta) \end{aligned}$$

- Let $\mathcal{X} = \{X_1, X_2, \dots, X_n\}$ denote a set of mutually independent Bernoulli random variables with $S = \sum_{i=1}^n X_i$ and $\mu = \mathbf{E}[S]$.
 - Assume that, for all *i*, $\Pr[X_i = 1] = p$ for some p > 0.
- We are interested in upper bounds on $\Pr[S \ge (1 + \delta)\mu]$ and $\Pr[S \le (1 \delta)\mu]$.
- Chernoff bounds lead to

$$\begin{split} &\mathsf{Pr}[S \geq (1+\delta)\mu] &\leq \quad \left(\frac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}, \quad \overset{\mathrm{def}}{\longrightarrow} \ \mathcal{F}^{+}(\mu, \delta) \\ &\mathsf{Pr}[S \leq (1-\delta)\mu] &\leq \quad \mathrm{e}^{-\mu\delta^{2}/2}. \quad \overset{\mathrm{def}}{\longrightarrow} \ \mathcal{F}^{-}(\mu, \delta) \end{split}$$

- Let $\mathcal{X} = \{X_1, X_2, \dots, X_n\}$ denote a set of mutually independent Bernoulli random variables with $S = \sum_{i=1}^n X_i$ and $\mu = \mathbf{E}[S]$.
 - Assume that, for all *i*, $\Pr[X_i = 1] = p$ for some p > 0.
- We are interested in upper bounds on $\Pr[S \ge (1 + \delta)\mu]$ and $\Pr[S \le (1 \delta)\mu]$.
- Chernoff bounds lead to

$$\begin{array}{ll} \displaystyle \Pr[S \geq (1+\delta)\mu] & \leq & \left(\frac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}, \quad \stackrel{\mathrm{def}}{\longrightarrow} F^{+}(\mu,\delta) \\ \\ \displaystyle \Pr[S \leq (1-\delta)\mu] & \leq & \mathrm{e}^{-\mu\delta^{2}/2}. \quad \stackrel{\mathrm{def}}{\longrightarrow} F^{-}(\mu,\delta) \end{array}$$

A simple application (a generous teacher and diligent students)

- There are *n* students, who work very hard all the time just like us. Their teacher, who is very generous, would like to reward them.
- In front of them, there is a sealed box which has 3 golden balls and 1 black ball inside.
- Each time one can pick a ball from the box and then put it back into the box (we assume that the students are honest).
- The teacher said he will treat the students a bountiful feast if more than n/2 students get golden balls.
- What is the probability that the students can't have a bountiful feast?

A simple application (a generous teacher and diligent students)

- There are *n* students, who work very hard all the time just like us. Their teacher, who is very generous, would like to reward them.
- In front of them, there is a sealed box which has 3 golden balls and 1 black ball inside.
- Each time one can pick a ball from the box and then put it back into the box (we assume that the students are honest).
- The teacher said he will treat the students a bountiful feast if more than n/2 students get golden balls.

• What is the probability that the students can't have a bountiful feast?

A simple application (a generous teacher and diligent students)

- There are *n* students, who work very hard all the time just like us. Their teacher, who is very generous, would like to reward them.
- In front of them, there is a sealed box which has 3 golden balls and 1 black ball inside.
- Each time one can pick a ball from the box and then put it back into the box (we assume that the students are honest).
- The teacher said he will treat the students a bountiful feast if more than n/2 students get golden balls.
- What is the probability that the students can't have a bountiful feast?

A simple application (a generous teacher and diligent students) (contd.)

- For i = 1,..., n, X_i = 1: the *i*th student gets a golden ball; X_i = 0: the *i*th student gets a black ball.
- $\Pr[X_i = 1] = 3/4$ and $\Pr[X_i = 0] = 1/4$.
- Let $S = \sum_{i=1}^{n} X_i$. The event that the students have bad luck is $S \le n/2$, and we have $\mu = \mathbf{E}[S] = 3n/4$.
- $\Pr[S \le n/2] = \Pr[S \le (1 1/3)\mu] \le e^{-\mu(1/3)^2/2} = e^{-n/24}$
- The probability is less than 0.66 if n = 10, less than 0.125 if n = 50, and less than 0.005 if n = 130.

A simple application (a generous teacher and diligent students) (contd.)

- For i = 1,..., n, X_i = 1: the *i*th student gets a golden ball; X_i = 0: the *i*th student gets a black ball.
- $\Pr[X_i = 1] = 3/4$ and $\Pr[X_i = 0] = 1/4$.
- Let $S = \sum_{i=1}^{n} X_i$. The event that the students have bad luck is $S \le n/2$, and we have $\mu = \mathbf{E}[S] = 3n/4$.
- $\Pr[S \le n/2] = \Pr[S \le (1 1/3)\mu] \le e^{-\mu(1/3)^2/2} = e^{-n/24}$.
- The probability is less than 0.66 if n = 10, less than 0.125 if n = 50, and less than 0.005 if n = 130.

A simple application (a generous teacher and diligent students) (contd.)

For i = 1,..., n, X_i = 1: the *i*th student gets a golden ball; X_i = 0: the *i*th student gets a black ball.

•
$$\Pr[X_i = 1] = 3/4$$
 and $\Pr[X_i = 0] = 1/4$.

- Let $S = \sum_{i=1}^{n} X_i$. The event that the students have bad luck is $S \le n/2$, and we have $\mu = \mathbf{E}[S] = 3n/4$.
- $\Pr[S \le n/2] = \Pr[S \le (1 1/3)\mu] \le e^{-\mu(1/3)^2/2} = e^{-n/24}$.
- The probability is less than 0.66 if n = 10, less than 0.125 if n = 50, and less than 0.005 if n = 130.

Hoeffding's extension

 Consider the case that X_i's are mutually independent "bounded" random variables (i.e., a_i ≤ X_i ≤ b_i, for some positive real a_i and b_i).

• Hoeffding's extension of Chernoff's technique:

$$\Pr[|S - \mu| \ge \delta\mu] \le 2e^{-2\mu^2\delta^2 / \sum_{i=1}^n (b_i - a_i)^2}$$

• In this talk, we omit Hoeffding-like bounds.

Hoeffding's extension

- Consider the case that X_i's are mutually independent "bounded" random variables (i.e., a_i ≤ X_i ≤ b_i, for some positive real a_i and b_i).
- Hoeffding's extension of Chernoff's technique:

$$\Pr[|S - \mu| \ge \delta \mu] \le 2e^{-2\mu^2 \delta^2 / \sum_{i=1}^n (b_i - a_i)^2}$$

• In this talk, we omit Hoeffding-like bounds.

Hoeffding's extension

- Consider the case that X_i's are mutually independent "bounded" random variables (i.e., a_i ≤ X_i ≤ b_i, for some positive real a_i and b_i).
- Hoeffding's extension of Chernoff's technique:

$$\Pr[|S - \mu| \ge \delta \mu] \le 2e^{-2\mu^2 \delta^2 / \sum_{i=1}^n (b_i - a_i)^2}$$

• In this talk, we omit Hoeffding-like bounds.

$$\mathbf{E}[e^{tS}] = \mathbf{E}[e^{t\sum_{i=1}^{n} X_i}] = \mathbf{E}\left[\prod_{i=1}^{n} e^{tX_i}\right] = \prod_{i=1}^{n} \mathbf{E}[e^{tX_i}].$$

- The last of the above equalities depends on the X_i's being mutually independent.
- This is the limitation for CH bounds.
- In this paper, the author extends CH bounds by allowing a rather natural, limited kind of dependency among the X_i's.

$$\mathbf{E}[e^{tS}] = \mathbf{E}[e^{t\sum_{i=1}^{n} X_i}] = \mathbf{E}\left[\prod_{i=1}^{n} e^{tX_i}\right] = \prod_{i=1}^{n} \mathbf{E}[e^{tX_i}].$$

- The last of the above equalities depends on the X_i's being mutually independent.
- This is the limitation for CH bounds.
- In this paper, the author extends CH bounds by allowing a rather natural, limited kind of dependency among the X_i's.

$$\mathbf{E}[e^{tS}] = \mathbf{E}[e^{t\sum_{i=1}^{n} X_i}] = \mathbf{E}\left[\prod_{i=1}^{n} e^{tX_i}\right] = \prod_{i=1}^{n} \mathbf{E}[e^{tX_i}].$$

- The last of the above equalities depends on the X_i's being mutually independent.
- This is the limitation for CH bounds.
- In this paper, the author extends CH bounds by allowing a rather natural, limited kind of dependency among the X_i's.

$$\mathbf{E}[e^{tS}] = \mathbf{E}[e^{t\sum_{i=1}^{n} X_i}] = \mathbf{E}\left[\prod_{i=1}^{n} e^{tX_i}\right] = \prod_{i=1}^{n} \mathbf{E}[e^{tX_i}].$$

- The last of the above equalities depends on the X_i's being mutually independent.
- This is the limitation for CH bounds.
- In this paper, the author extends CH bounds by allowing a rather natural, limited kind of dependency among the X_i's.

Outline

Introduction

2 A brief introduction to Chernoff-Hoeffding bounds

3 The main theorem and an illustrating example

- Proof of the main theorem
- 5 Sharper bounds in special cases

Some basic definitions

• Let A be an event.

A is said to be mutually independent of a set of events B₁, B₂,..., B_n if for any I ⊆ {1,2,...,n}, Pr[A | ∩_{i∈I} B_j] = Pr[A].

Some basic definitions

- Let A be an event.
- A is said to be mutually independent of a set of events B₁, B₂,..., B_n if for any I ⊆ {1, 2, ..., n}, Pr[A | ∩_{i∈I} B_j] = Pr[A].

Dependency graphs

• $\mathcal{X} = \{X_1, X_2, \dots, X_n\}$: a set of random variables.

- A dependency graph G = (V, E) for X has a vertex set
 [n] = {1, 2, ..., n} and for each i, X_i is mutually independent of the events {X_j | (i, j) ∉ E}.
- We say that \mathcal{X} exhibits *d*-bounded dependence if \mathcal{X} has a dependency graph with maximum degree *d*.

Dependency graphs

- $\mathcal{X} = \{X_1, X_2, \dots, X_n\}$: a set of random variables.
- A dependency graph G = (V, E) for X has a vertex set
 [n] = {1, 2, ..., n} and for each i, X_i is mutually independent of the events {X_j | (i, j) ∉ E}.
- We say that \mathcal{X} exhibits *d*-bounded dependence if \mathcal{X} has a dependency graph with maximum degree *d*.

Dependency graphs

- $\mathcal{X} = \{X_1, X_2, \dots, X_n\}$: a set of random variables.
- A dependency graph G = (V, E) for X has a vertex set
 [n] = {1, 2, ..., n} and for each i, X_i is mutually independent of the events {X_j | (i, j) ∉ E}.
- We say that \mathcal{X} exhibits *d*-bounded dependence if \mathcal{X} has a dependency graph with maximum degree *d*.

Note

- Let G be a dependency graph of \mathcal{X} .
- Assume that X_1, X_2, \ldots, X_k correspond to an independent set of G.

$$\mathbf{Pr}[X_1 \mid X_2 \cap X_3 \cap \ldots \cap X_k] = \frac{\mathbf{Pr}[X_1 \cap X_2 \cap X_3 \cap \ldots \cap X_k]}{\mathbf{Pr}[X_2 \cap X_3 \cap \ldots \cap X_k]} = \mathbf{Pr}[X_1].$$

$$\mathbf{Pr}[X_2 \mid X_3 \cap X_4 \cap \ldots \cap X_k] = \frac{\mathbf{Pr}[X_2 \cap X_3 \cap X_4 \cap \ldots \cap X_k]}{\mathbf{Pr}[X_3 \cap X_4 \cap \ldots \cap X_k]} = \mathbf{Pr}[X_2].$$

$$\Pr[X_1 \cap X_2 \cap \ldots \cap X_k]$$

- $= \mathsf{Pr}[X_1] \cdot \mathsf{Pr}[X_2 \cap X_3 \cap X_4 \cap \ldots \cap X_k]$
- $= \mathbf{Pr}[X_1] \cdot \mathbf{Pr}[X_2] \cdot \mathbf{Pr}[X_3 \cap X_4 \cap \ldots \cap X_k]$
- $= \mathbf{Pr}[X_1] \cdot \mathbf{Pr}[X_2] \cdots \mathbf{Pr}[X_k].$

Note

• Let G be a dependency graph of \mathcal{X} .

÷

• Assume that X_1, X_2, \ldots, X_k correspond to an independent set of G.

$$\mathbf{Pr}[X_1 \mid X_2 \cap X_3 \cap \ldots \cap X_k] = \frac{\mathbf{Pr}[X_1 \cap X_2 \cap X_3 \cap \ldots \cap X_k]}{\mathbf{Pr}[X_2 \cap X_3 \cap \ldots \cap X_k]} = \mathbf{Pr}[X_1].$$

$$\mathbf{Pr}[X_2 \mid X_3 \cap X_4 \cap \ldots \cap X_k] = \frac{\mathbf{Pr}[X_2 \cap X_3 \cap X_4 \cap \ldots \cap X_k]}{\mathbf{Pr}[X_3 \cap X_4 \cap \ldots \cap X_k]} = \mathbf{Pr}[X_2].$$

$$: \mathbf{Pr}[X_1 \cap X_2 \cap \ldots \cap X_k] \\ = \mathbf{Pr}[X_1] \cdot \mathbf{Pr}[X_2 \cap X_3 \cap X_4 \cap \ldots \cap X_k]$$

= **Pr**[X₁] · **Pr**[X₂] · **Pr**[X₃ \cap X₄ \cap ... \cap X_k]

= **Pr**[X₁] · **Pr**[X₂] · · · **Pr**[X_k].

$$\Pr[X_3 \cap X_4 \cap \ldots \cap X_k]$$

Examples for testing your understanding

- Let *S* be a set of pairwise independent events.
 - \triangleright Must the dependency graph of S contain 0 edge?
- Let *S* be a set of events.
 - \triangleright Is the dependency graph of S unique?
Examples for testing your understanding

- Let S be a set of pairwise independent events.
 - \triangleright Must the dependency graph of S contain 0 edge?

16/39

- Let S be a set of events.
 - \triangleright Is the dependency graph of S unique?

- $\bullet\,$ Consider an experiment of flipping a fair coin twice. Let ${\cal X}$ be the set of the following events.
 - ► X₁: the first flip is head;
 - X₂: the second flip is tail;
 - X_3 : the two flips are the same.
- The events can be shown to be pairwise independent for each two of them.
- If a graph with three vertices has *at most one edge*, it must NOT be a dependency graph of \mathcal{X} .
- ANY graph with three vertices and at least two edges is a dependency graph of \mathcal{X} .

- \bullet Consider an experiment of flipping a fair coin twice. Let ${\cal X}$ be the set of the following events.
 - X₁: the first flip is head;
 - X₂: the second flip is tail;
 - X_3 : the two flips are the same.
- The events can be shown to be pairwise independent for each two of them.
- If a graph with three vertices has *at most one edge*, it must NOT be a dependency graph of \mathcal{X} .
- ANY graph with three vertices and at least two edges is a dependency graph of \mathcal{X} .

- \bullet Consider an experiment of flipping a fair coin twice. Let ${\cal X}$ be the set of the following events.
 - X₁: the first flip is head;
 - X₂: the second flip is tail;
 - X_3 : the two flips are the same.
- The events can be shown to be pairwise independent for each two of them.
- If a graph with three vertices has *at most one edge*, it must NOT be a dependency graph of \mathcal{X} .
- ANY graph with three vertices and at least two edges is a dependency graph of \mathcal{X} .

- \bullet Consider an experiment of flipping a fair coin twice. Let ${\cal X}$ be the set of the following events.
 - X₁: the first flip is head;
 - ► X₂: the second flip is tail;
 - X_3 : the two flips are the same.
- The events can be shown to be pairwise independent for each two of them.
- If a graph with three vertices has *at most one edge*, it must NOT be a dependency graph of \mathcal{X} .
- ANY graph with three vertices and at least two edges is a dependency graph of $\ensuremath{\mathcal{X}}$.

The main theorem

Theorem 1

For identically distributed Bernoulli random variables X_i with d-bounded dependence, for any $0 < \delta \leq 1$, we have the upper tail probability bound

$$\Pr[S \ge (1+\delta)\mu] \le \frac{4(d+1)}{e} F^+(\mu,\delta)^{\frac{1}{d+1}} = \frac{4(d+1)}{e} e^{-\mu\delta^2/3(d+1)}$$

and the lower tail probability bound

$$\Pr[S \le (1-\delta)\mu] \le \frac{4(d+1)}{e} F^{-}(\mu,\delta)^{\frac{1}{d+1}} = \frac{4(d+1)}{e} e^{-\mu\delta^{2}/2(d+1)}$$

• Note that $F^+(\mu, \delta)$ and $F^-(\mu, \delta)$ are exponentially small when $\mu/(d+1) = \Omega(\log^{1+\rho} n)$ for any $\rho > 0$.

The main theorem

Theorem 1

For identically distributed Bernoulli random variables X_i with d-bounded dependence, for any $0 < \delta \leq 1$, we have the upper tail probability bound

$$\mathsf{Pr}[S \geq (1+\delta)\mu] \leq rac{4(d+1)}{e} \mathsf{F}^+(\mu,\delta)^{rac{1}{d+1}} = rac{4(d+1)}{e} e^{-\mu \delta^2/3(d+1)}$$

and the lower tail probability bound

$$\Pr[S \le (1-\delta)\mu] \le \frac{4(d+1)}{e} F^{-}(\mu,\delta)^{\frac{1}{d+1}} = \frac{4(d+1)}{e} e^{-\mu\delta^{2}/2(d+1)}$$

• Note that $F^+(\mu, \delta)$ and $F^-(\mu, \delta)$ are exponentially small when $\mu/(d+1) = \Omega(\log^{1+\rho} n)$ for any $\rho > 0$.

- Given a *k*-regular *n*-vertex graph *G*. The following steps compute a large independent set in *G*.
- **Step 1:** Delete each vertex from G independently with probability 1 1/k.
- **Step 2:** For each remaining edge, delete one of its endpoints.
 - The vertices that remain after Step 2 form an independent set of G.

- Given a *k*-regular *n*-vertex graph *G*. The following steps compute a large independent set in *G*.
- **Step 1:** Delete each vertex from G independently with probability 1 1/k.
- Step 2: For each remaining edge, delete one of its endpoints.
 - The vertices that remain after Step 2 form an independent set of G.

- Given a *k*-regular *n*-vertex graph *G*. The following steps compute a large independent set in *G*.
- **Step 1:** Delete each vertex from G independently with probability 1 1/k.
- Step 2: For each remaining edge, delete one of its endpoints.
 - The vertices that remain after Step 2 form an independent set of G.

- Let A_i be an indicator r.v. such that $A_i = 1$ if vertex v_i is not deleted in Step 1.
 - Let $A = \sum_{i} A_{i}$ be a r.v.: the number of vertices remaining after Step 1.
- Let B_j be an indicator r.v. such that B_j = 1 if edge e_j is not deleted in Step 1.
 - Let $B = \sum_{i} B_{i}$ be a r.v.: the number of remaining edges after Step 1.

• It is easy to see that $\mathbf{E}[A] = n/k$ and $\mathbf{E}[B] = (1/k)^2 \cdot kn/2 = n/2k$.

- Let A_i be an indicator r.v. such that $A_i = 1$ if vertex v_i is not deleted in Step 1.
 - Let $A = \sum_{i} A_{i}$ be a r.v.: the number of vertices remaining after Step 1.
- Let B_j be an indicator r.v. such that $B_j = 1$ if edge e_j is *not* deleted in Step 1.
 - Let $B = \sum_{i} B_{i}$ be a r.v.: the number of remaining edges after Step 1.

• It is easy to see that $\mathbf{E}[A] = n/k$ and $\mathbf{E}[B] = (1/k)^2 \cdot kn/2 = n/2k$.

- Let A_i be an indicator r.v. such that $A_i = 1$ if vertex v_i is not deleted in Step 1.
 - Let $A = \sum_{i} A_{i}$ be a r.v.: the number of vertices remaining after Step 1.
- Let B_j be an indicator r.v. such that $B_j = 1$ if edge e_j is not deleted in Step 1.
 - Let $B = \sum_{i} B_{i}$ be a r.v.: the number of remaining edges after Step 1.

<□> < @> < @> < @> < @> < @> < @</p>

20/39

• It is easy to see that $\mathbf{E}[A] = n/k$ and $\mathbf{E}[B] = (1/k)^2 \cdot kn/2 = n/2k$.

- The size of the independent set computed by the algorithm: $\geq A B$.
- Hence the expected size of the solution produced by the algorithm is $\geq n/2k$.
 - ► A randomized *O*(1)-factor approximation algorithm for Maximum Independent Set.

- Actually we can show that A B is very close to n/2k with high probability.
- It is clear that A_i's are mutually independent, so CH bounds can be applied.
- However, B_i's are NOT mutually independent.
 - ▶ B_i is mutually independent of B_j's if edge j's are not incident on any endpoints of edge i.
- Let us consider the dependency graph of B_i's.

- Actually we can show that A B is very close to n/2k with high probability.
- It is clear that A_i's are mutually independent, so CH bounds can be applied.
- However, *B_i*'s are NOT mutually independent.
 - ▶ B_i is mutually independent of B_j's if edge j's are not incident on any endpoints of edge i.
- Let us consider the dependency graph of B_i's.

- Actually we can show that A B is very close to n/2k with high probability.
- It is clear that A_i's are mutually independent, so CH bounds can be applied.
- However, B_i's are NOT mutually independent.
 - ▶ B_i is mutually independent of B_j's if edge j's are not incident on any endpoints of edge i.
- Let us consider the dependency graph of B_i's.

- Actually we can show that A B is very close to n/2k with high probability.
- It is clear that A_i's are mutually independent, so CH bounds can be applied.
- However, B_i's are NOT mutually independent.
 - ▶ B_i is mutually independent of B_j's if edge j's are not incident on any endpoints of edge i.
- Let us consider the dependency graph of B_i's.

- The line graph (i.e., edge graph) L(G) of G is a dependency graph of the B_i 's.
 - ► L(G): every vertex of L(G) represents an edge of G, and two vertices of L(G) are adjacent iff their corresponding edge share a common endpoint in G.

• G is k-regular $\longrightarrow L(G)$ is 2(k-1)-regular $\longrightarrow B_i$'s exhibit 2(k-1)-bounded dependence.

•
$$\mathbf{E}[B]/(2k-1) = \Omega(n).$$

•
$$\Omega(\log^{1+\rho} kn/2)$$
 for any $\rho > 0$.

• Thus the main theorem of this paper can be applied, and then we know the algorithm indeed produces a large independent set with high probability.

• G is k-regular $\longrightarrow L(G)$ is 2(k-1)-regular $\longrightarrow B_i$'s exhibit 2(k-1)-bounded dependence.

•
$$\mathbf{E}[B]/(2k-1) = \Omega(n).$$

•
$$\Omega(\log^{1+\rho} kn/2)$$
 for any $\rho > 0$.

• Thus the main theorem of this paper can be applied, and then we know the algorithm indeed produces a large independent set with high probability.

Outline

Introduction

- 2 A brief introduction to Chernoff-Hoeffding bounds
- 3 The main theorem and an illustrating example
- Proof of the main theorem
- 5 Sharper bounds in special cases

t-equitable coloring

Definition 2

A coloring of a graph is equitable if the sizes of any pair of color classes are within one of each other.

• *t*-equitable coloring: an equitable coloring using *t* colors.

A deep result by Hajnal and Szemerédi

Hajnal-Szemerédi (1970)

A graph G with maximum degree Δ has a $(\Delta + 1)$ -equitable coloring.

27 / 39

Lemma 3

Suppose that X_i 's are identical Bernoulli random variables with dependency graph G, and suppose G has a t-equitable coloring. Then for any $0 < \delta \leq 1$, we have

$$\begin{aligned} &\mathsf{Pr}[S \geq (1+\delta)\mu] &\leq \quad \frac{4t}{e} F^+(\mu,\delta)^{1/t}, \\ &\mathsf{Pr}[S \leq (1-\delta)\mu] &\leq \quad \frac{4t}{e} F^-(\mu,\delta)^{1/t}. \end{aligned}$$

Theorem 4

Suppose the X_i 's are identical Bernoulli random variables exhibiting d-bounded dependence. Then, for any $0 < \delta \leq 1$, we have

$$\begin{array}{lll} \Pr[S \geq (1+\delta)\mu] & \leq & \frac{4(d+1)}{e}F^+(\mu,\delta)^{\frac{1}{d+1}}, \\ \Pr[S \leq (1-\delta)\mu] & \leq & \frac{4(d+1)}{e}F^-(\mu,\delta)^{\frac{1}{d+1}}. \end{array}$$

Proof of Lemma 3

- For convenience, assume that $\mathbf{E}[X_i] = \mu'$ for each *i*, and let [t] denote $\{1, 2, \dots, t\}$.
- Let C_1, C_2, \ldots, C_t be the *t* color classes in a *t*-equitable-coloring of *G*.
- For each $i \in [t]$, let $\mu_i = \mathbf{E}[\sum_{j \in C_i} X_j]$ (i.e., $\mu'|C_i|$).

Proof of Lemma 3

- For convenience, assume that $\mathbf{E}[X_i] = \mu'$ for each *i*, and let [t] denote $\{1, 2, \dots, t\}$.
- Let C_1, C_2, \ldots, C_t be the *t* color classes in a *t*-equitable-coloring of *G*.
- For each $i \in [t]$, let $\mu_i = \mathbf{E}[\sum_{j \in C_i} X_j]$ (i.e., $\mu'|C_i|$).

Proof of Lemma 3

• For convenience, assume that $\mathbf{E}[X_i] = \mu'$ for each *i*, and let [t] denote $\{1, 2, \dots, t\}$.

29/39

- Let C_1, C_2, \ldots, C_t be the *t* color classes in a *t*-equitable-coloring of *G*.
- For each $i \in [t]$, let $\mu_i = \mathbf{E}[\sum_{j \in C_i} X_j]$ (i.e., $\mu'|C_i|$).

$$egin{aligned} S \geq (1+\delta)\mu' &\equiv S \geq (1+\delta)\mu'n \ &\equiv S \geq (1+\delta)\mu' \sum_{i\in[t]} |C_i| \ &\equiv S \geq \sum_{i\in[t]} (1+\delta)\mu' |C_i| \ &\equiv \sum_{i\in[t]} \sum_{j\in C_j} X_j \geq \sum_{i\in[t]} (1+\delta)\mu_i. \end{aligned}$$

• The first equivalence: $\mu = \mathbf{E}[\sum_{i \in [n]} X_i] = \sum_{i \in [n]} \mathbf{E}[X_i] = n\mu'$.

- The second equivalence: C_i's form a partition of [n].
- The last equivalence: expressing *S* as the sum of the *X_i*'s grouped into color classes.

$$egin{aligned} &S \geq (1+\delta)\mu' n\ &\equiv &S \geq (1+\delta)\mu' n\ &\equiv &S \geq (1+\delta)\mu' \sum_{i\in[t]} |\mathcal{C}_i|\ &\equiv &S \geq \sum_{i\in[t]} (1+\delta)\mu' |\mathcal{C}_i|\ &\equiv &\sum_{i\in[t]} \sum_{j\in\mathcal{C}_j} X_j \geq \sum_{i\in[t]} (1+\delta)\mu_i. \end{aligned}$$

- The first equivalence: $\mu = \mathbf{E}[\sum_{i \in [n]} X_i] = \sum_{i \in [n]} \mathbf{E}[X_i] = n\mu'.$
- The second equivalence: C_i 's form a partition of [n].
- The last equivalence: expressing *S* as the sum of the *X_i*'s grouped into color classes.

$$egin{aligned} S \geq (1+\delta)\mu' &\equiv S \geq (1+\delta)\mu'n \ &\equiv S \geq (1+\delta)\mu' \sum_{i\in[t]} |C_i| \ &\equiv S \geq \sum_{i\in[t]} (1+\delta)\mu' |C_i| \ &\equiv \sum_{i\in[t]} \sum_{j\in C_j} X_j \geq \sum_{i\in[t]} (1+\delta)\mu_i. \end{aligned}$$

- The first equivalence: $\mu = \mathbf{E}[\sum_{i \in [n]} X_i] = \sum_{i \in [n]} \mathbf{E}[X_i] = n\mu'.$
- The second equivalence: C_i 's form a partition of [n].
- The last equivalence: expressing S as the sum of the X_i's grouped into color classes.

•
$$\sum_{i\in[t]}\sum_{j\in C_i}X_j\geq \sum_{i\in[t]}(1+\delta)\mu_i\Rightarrow \exists i\in[t]: \sum_{j\in C_i}X_j\geq (1+\delta)\mu_i.$$

• Hence

$$\begin{aligned} \mathbf{Pr}\left[S \geq (1+\delta)\mu\right] &= \mathbf{Pr}\left[\sum_{i \in [t]} \sum_{j \in C_i} X_j \geq \sum_{i \in [t]} (1+\delta)\mu_i\right] \\ &\leq \mathbf{Pr}\left[\exists i \in [t] : \sum_{j \in C_i} X_j \geq (1+\delta)\mu_i\right]. \end{aligned}$$

The last probability above is actually at most

$$\sum_{i \in [t]} \Pr\left[\sum_{j \in C_i} X_j \ge (1+\delta)\mu_i\right] \text{ (union bound)}$$

$$\leq \sum_{i \in [t]} F^+(\mu_i, \delta) \text{ (Chernoff bound).}$$

31/39

•
$$\sum_{i\in[t]}\sum_{j\in C_i}X_j\geq \sum_{i\in[t]}(1+\delta)\mu_i\Rightarrow \exists i\in[t]: \sum_{j\in C_i}X_j\geq (1+\delta)\mu_i.$$

Hence

$$\begin{aligned} \Pr\left[S \ge (1+\delta)\mu\right] &= \Pr\left[\sum_{i \in [t]} \sum_{j \in C_i} X_j \ge \sum_{i \in [t]} (1+\delta)\mu_i\right] \\ &\leq \Pr\left[\exists i \in [t] : \sum_{j \in C_i} X_j \ge (1+\delta)\mu_i\right]. \end{aligned}$$

• The last probability above is actually at most

$$\sum_{i \in [t]} \Pr\left[\sum_{j \in C_i} X_j \ge (1+\delta)\mu_i\right] \text{ (union bound)}$$
$$\leq \sum_{i \in [t]} F^+(\mu_i, \delta) \text{ (Chernoff bound).}$$

31/39

•
$$\sum_{i\in[t]}\sum_{j\in C_i}X_j \geq \sum_{i\in[t]}(1+\delta)\mu_i \Rightarrow \exists i\in[t]: \sum_{j\in C_i}X_j \geq (1+\delta)\mu_i.$$

Hence

$$\begin{aligned} \mathbf{Pr}\left[S \ge (1+\delta)\mu\right] &= \mathbf{Pr}\left[\sum_{i \in [t]} \sum_{j \in C_i} X_j \ge \sum_{i \in [t]} (1+\delta)\mu_i\right] \\ &\leq \mathbf{Pr}\left[\exists i \in [t] : \sum_{j \in C_i} X_j \ge (1+\delta)\mu_i\right].\end{aligned}$$

• The last probability above is actually at most

$$\sum_{i \in [t]} \Pr\left[\sum_{j \in C_i} X_j \ge (1+\delta)\mu_i\right] \text{ (union bound)}$$
$$\leq \sum_{i \in [t]} F^+(\mu_i, \delta) \text{ (Chernoff bound).}$$

•
$$\sum_{i\in[t]}\sum_{j\in C_i}X_j\geq \sum_{i\in[t]}(1+\delta)\mu_i\Rightarrow \exists i\in[t]: \sum_{j\in C_i}X_j\geq (1+\delta)\mu_i.$$

Hence

$$\begin{aligned} \mathbf{Pr}\left[S \ge (1+\delta)\mu\right] &= \mathbf{Pr}\left[\sum_{i \in [t]} \sum_{j \in C_i} X_j \ge \sum_{i \in [t]} (1+\delta)\mu_i\right] \\ &\leq \mathbf{Pr}\left[\exists i \in [t] : \sum_{j \in C_i} X_j \ge (1+\delta)\mu_i\right].\end{aligned}$$

• The last probability above is actually at most

$$\sum_{i \in [t]} \Pr\left[\sum_{j \in C_i} X_j \ge (1+\delta)\mu_i\right] \text{ (union bound)}$$
$$\leq \sum_{i \in [t]} F^+(\mu_i, \delta) \text{ (Chernoff bound).}$$

- $|C_i| = \lfloor n/t \rfloor$ or $\lceil n/t \rceil$ (:: equitable coloring).
- $\mu_i = \mu' |C_i| \ge \lfloor n/t \rfloor \mu' \ge (n/t-1)\mu'.$
- $(n/t-1)\mu' \ge (n\mu'/t-1) = \mu/t 1 \ (\because 0 \le \mu' \le 1).$
- Hence $\mu_i \geq \mu/t 1$.
- Thus

$$\begin{aligned} \mathbf{Pr}[S \geq (1+\delta)\mu] &\leq \sum_{i \in [t]} F^+(\mu_i, \delta) \\ &\leq \sum_{i \in [t]} F^+(\mu/t - 1, \delta) \\ &= t \cdot F^+(\mu/t - 1, \delta). \end{aligned}$$
- $|C_i| = \lfloor n/t \rfloor$ or $\lceil n/t \rceil$ (:: equitable coloring).
- $\mu_i = \mu' |C_i| \geq \lfloor n/t \rfloor \mu' \geq (n/t-1)\mu'.$
- $(n/t-1)\mu' \ge (n\mu'/t-1) = \mu/t 1 \ (\because 0 \le \mu' \le 1).$
- Hence $\mu_i \geq \mu/t 1$.
- Thus

$$\begin{aligned} \mathsf{Pr}[S \geq (1+\delta)\mu] &\leq \sum_{i \in [t]} F^+(\mu_i, \delta) \\ &\leq \sum_{i \in [t]} F^+(\mu/t - 1, \delta) \\ &= t \cdot F^+(\mu/t - 1, \delta). \end{aligned}$$

•
$$|C_i| = \lfloor n/t \rfloor$$
 or $\lceil n/t \rceil$ (: equitable coloring).

•
$$\mu_i = \mu' |C_i| \geq \lfloor n/t \rfloor \mu' \geq (n/t-1)\mu'.$$

• $(n/t-1)\mu' \ge (n\mu'/t-1) = \mu/t - 1 \ (:: 0 \le \mu' \le 1).$

• Hence
$$\mu_i \geq \mu/t - 1$$
.

Thus

$$\begin{aligned} \mathbf{Pr}[S \geq (1+\delta)\mu] &\leq \sum_{i \in [t]} F^+(\mu_i, \delta) \\ &\leq \sum_{i \in [t]} F^+(\mu/t - 1, \delta) \\ &= t \cdot F^+(\mu/t - 1, \delta). \end{aligned}$$

•
$$|C_i| = \lfloor n/t \rfloor$$
 or $\lceil n/t \rceil$ (:: equitable coloring).

•
$$\mu_i = \mu' |C_i| \geq \lfloor n/t \rfloor \mu' \geq (n/t-1)\mu'.$$

•
$$(n/t-1)\mu' \ge (n\mu'/t-1) = \mu/t - 1 \ (\because 0 \le \mu' \le 1).$$

• Hence
$$\mu_i \geq \mu/t - 1$$
.

• Thus

$$\begin{aligned} \mathbf{Pr}[S \geq (1+\delta)\mu] &\leq \sum_{i \in [t]} F^+(\mu_i, \delta) \\ &\leq \sum_{i \in [t]} F^+(\mu/t - 1, \delta) \\ &= t \cdot F^+(\mu/t - 1, \delta). \end{aligned}$$

•
$$|C_i| = \lfloor n/t \rfloor$$
 or $\lceil n/t \rceil$ (: equitable coloring).

•
$$\mu_i = \mu' |C_i| \geq \lfloor n/t \rfloor \mu' \geq (n/t-1)\mu'.$$

•
$$(n/t-1)\mu' \ge (n\mu'/t-1) = \mu/t - 1 (:: 0 \le \mu' \le 1).$$

• Hence
$$\mu_i \ge \mu/t - 1$$
.

Thus

$$\begin{aligned} \mathsf{Pr}[S \geq (1+\delta)\mu] &\leq \sum_{i \in [t]} \mathsf{F}^+(\mu_i, \delta) \\ &\leq \sum_{i \in [t]} \mathsf{F}^+(\mu/t - 1, \delta) \\ &= t \cdot \mathsf{F}^+(\mu/t - 1, \delta). \end{aligned}$$

•
$$|C_i| = \lfloor n/t \rfloor$$
 or $\lceil n/t \rceil$ (: equitable coloring).

•
$$\mu_i = \mu' |C_i| \geq \lfloor n/t \rfloor \mu' \geq (n/t-1)\mu'.$$

•
$$(n/t-1)\mu' \ge (n\mu'/t-1) = \mu/t - 1 (:: 0 \le \mu' \le 1).$$

• Hence
$$\mu_i \geq \mu/t - 1$$
.

Thus

$$\begin{aligned} \mathsf{Pr}[S \geq (1+\delta)\mu] &\leq \sum_{i \in [t]} F^+(\mu_i, \delta) \\ &\leq \sum_{i \in [t]} F^+(\mu/t - 1, \delta) \\ &= t \cdot F^+(\mu/t - 1, \delta). \end{aligned}$$

$$F^+(\mu/t-1,\delta) = \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu/t} \cdot \left(\frac{(1+\delta)^{1+\delta}}{e^{\delta}}\right) \leq \frac{4}{e}F^+(\mu,\delta)^{1/t}.$$

- The last inequality: $(1 + \delta)^{1+\delta}/e^{\delta}$ is a monotonically increasing function of δ and its maximum occurs when $\delta = 1$.
- Thus the upper tail probability is proved.

$$\Pr[S \ge (1+\delta)\mu] \le \frac{4t}{e}F^+(\mu,\delta)^{1/t}.$$

The proof of the lower tail probability is identical.

◆□ → < 置 → < 置 → < 置 → < 置 → ○ へ (P 33 / 39)</p>

$$F^+(\mu/t-1,\delta) = \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu/t} \cdot \left(\frac{(1+\delta)^{1+\delta}}{e^{\delta}}\right) \leq \frac{4}{e}F^+(\mu,\delta)^{1/t}.$$

- The last inequality: $(1 + \delta)^{1+\delta}/e^{\delta}$ is a monotonically increasing function of δ and its maximum occurs when $\delta = 1$.
- Thus the upper tail probability is proved.

$$\Pr[S \ge (1+\delta)\mu] \le rac{4t}{e}F^+(\mu,\delta)^{1/t}.$$

▶ The proof of the lower tail probability is identical.

$$F^+(\mu/t-1,\delta) = \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu/t} \cdot \left(\frac{(1+\delta)^{1+\delta}}{e^{\delta}}\right) \leq \frac{4}{e}F^+(\mu,\delta)^{1/t}.$$

- The last inequality: $(1 + \delta)^{1+\delta}/e^{\delta}$ is a monotonically increasing function of δ and its maximum occurs when $\delta = 1$.
- Thus the upper tail probability is proved.

$$\operatorname{Pr}[S \geq (1+\delta)\mu] \leq rac{4t}{e}F^+(\mu,\delta)^{1/t}.$$

The proof of the lower tail probability is identical.

Outline

Introduction

- 2 A brief introduction to Chernoff-Hoeffding bounds
- 3 The main theorem and an illustrating example
- Proof of the main theorem
- 5 Sharper bounds in special cases

Equitable chromatic number $\chi_{eq}(G)$

- $\chi(G)$: the chromatic number of G.
- $\chi_{eq}(G)$: the fewest colors required to equitably color the graph G.
- E.g., $\chi(G) = 2$ and $\chi_{eq}(G) = \lceil (n-1)/2 \rceil + 1$ when G is an *n*-vertex star graph.

• A small equitable chromatic number for a dependency graph leads to sharp tail probability bounds.

Equitable chromatic number $\chi_{eq}(G)$

- $\chi(G)$: the chromatic number of G.
- $\chi_{eq}(G)$: the fewest colors required to equitably color the graph G.
- E.g., $\chi(G) = 2$ and $\chi_{eq}(G) = \lceil (n-1)/2 \rceil + 1$ when G is an *n*-vertex star graph.

• A small equitable chromatic number for a dependency graph leads to sharp tail probability bounds.

Bollobás-Guy (1983)

A tree T with n vertices is equitably 3-colorable if $n \ge 3\Delta(T) - 8$ or if $n = 3\Delta(T) - 10$.

• The theorem implies that if $\Delta(T) \le n/3$, then T can be equitably 3-colored. Thus we have

Theorem 5

Suppose that X_i 's are identical Bernoulli random variables such that the corresponding dependency graph is a tree with maximum degree at most n/3. Then we have the following bounds

$$\begin{aligned} &\mathsf{Pr}[S \geq (1+\delta)\mu] &\leq \ \frac{12}{e} F^+(\mu,\delta)^{1/3}, \\ &\mathsf{Pr}[S \leq (1-\delta)\mu] &\leq \ \frac{12}{e} F^-(\mu,\delta)^{1/3}. \end{aligned}$$

Pemmaraju (2001); technical report

A connected outerplanar graph with n vertices and vertex degree at most n/6 has a 6-equitable coloring.

Theorem 6

Suppose that X_i 's are identical Bernoulli random variables whose dependency graph is outerplanar with maximum degree at most n/6. Then we have the following bounds

$$\begin{aligned} &\mathsf{Pr}[S \ge (1+\delta)\mu] &\le \ \frac{24}{e} F^+(\mu,\delta)^{1/6}, \\ &\mathsf{Pr}[S \le (1-\delta)\mu] &\le \ \frac{24}{e} F^-(\mu,\delta)^{1/6}. \end{aligned}$$

・ロ ・ <
一 ト <
言 ト <
言 ト <
言 ト 、
言 や へ
の へ
の 37 / 39
</p>

Some further remarks

• Are the bounds on the vertex-degree required to obtain sharp bounds?

• a (c, α) -coloring: a vertex coloring such that

- $\blacktriangleright \leq c$ vertices are not colored.
- for any pair of color classes C and C', $|C| \le \alpha |C'|$.
- It is possible to extend Bollobás-Guy Theorem to have the following results.

<ロ> (四) (四) (三) (三)

38 / 39

Theorem 7

Every tree has a (1,5)-coloring with two colors. Every outerplanar graph has a (2,5)-coloring with four colors.

• Hence sharp bounds can still be obtained.

Some further remarks

- Are the bounds on the vertex-degree required to obtain sharp bounds?
- a (c, α) -coloring: a vertex coloring such that
 - $\leq c$ vertices are not colored.
 - for any pair of color classes C and C', $|C| \le \alpha |C'|$.
- It is possible to extend Bollobás-Guy Theorem to have the following results.

Theorem 7

Every tree has a (1,5)-coloring with two colors. Every outerplanar graph has a (2,5)-coloring with four colors.

• Hence sharp bounds can still be obtained.

Some further remarks

- Are the bounds on the vertex-degree required to obtain sharp bounds?
- a (c, α) -coloring: a vertex coloring such that
 - $\leq c$ vertices are not colored.
 - for any pair of color classes C and C', $|C| \leq \alpha |C'|$.
- It is possible to extend Bollobás-Guy Theorem to have the following results.

Theorem 7

Every tree has a (1,5)-coloring with two colors. Every outerplanar graph has a (2,5)-coloring with four colors.

• Hence sharp bounds can still be obtained.

Thank you!