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Introduction

In 1952, Herman Chernoff introduced a technique which gives sharp
upper bounds on the tails of the distribution of the sum of mutually
independent binary (Bernoulli) random variables.

Wassily Hoeffding extended Chernoff’s technique to deal with
bounded independent random variables.

Bounds obtained by using the above techniques are collectively called
Chernoff-Hoeffding bounds (CH bounds, in short).
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Introduction (contd.)

In many situations, tail probability bounds obtained using Markov’s

inequality or Chebyshev’s inequaility are too weak, while CH bounds
are just right.

CH bounds are extremely useful in design and analysis of randomized
algorithms, in proofs by the probabilistic method, analysis in
computational complexity, etc.

In this talk, we delve into limitations for using CH bounds, and a new
simple but powerful technique which extends CH bounds.
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Chernoff-Hoeffding bounds

Let X = {X1,X2, . . . ,Xn} denote a set of mutually independent
Bernoulli random variables with S =

∑n
i=1 Xi and µ = E[S ].

◮ Assume that, for all i , Pr[Xi = 1] = p for some p > 0.

We are interested in upper bounds on Pr[S ≥ (1 + δ)µ] and
Pr[S ≤ (1 − δ)µ].

Chernoff bounds lead to

Pr[S ≥ (1 + δ)µ] ≤

(

eδ

(1 + δ)(1+δ)

)µ

,
def
−−→ F+(µ, δ)

Pr[S ≤ (1 − δ)µ] ≤ e−µδ2/2.
def
−−→ F−(µ, δ)

When δ ≤ 1, we can derive F+(µ, δ) ≤ e−µδ2/3.
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A simple application (a generous teacher and diligent

students)

There are n students, who work very hard all the time just like us.
Their teacher, who is very generous, would like to reward them.

In front of them, there is a sealed box which has 3 golden balls and 1
black ball inside.

Each time one can pick a ball from the box and then put it back into
the box (we assume that the students are honest).

The teacher said he will treat the students a bountiful feast if more
than n/2 students get golden balls.

What is the probability that the students can’t have a bountiful feast?
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A simple application (a generous teacher and diligent

students) (contd.)

For i = 1, . . . , n, Xi = 1: the ith student gets a golden ball; Xi = 0:
the ith student gets a black ball.

Pr[Xi = 1] = 3/4 and Pr[Xi = 0] = 1/4.

Let S =
∑n

i=1 Xi . The event that the students have bad luck is
S ≤ n/2, and we have µ = E[S ] = 3n/4.

Pr[S ≤ n/2] = Pr[S ≤ (1 − 1/3)µ] ≤ e−µ(1/3)2/2 = e−n/24.

The probability is less than 0.66 if n = 10, less than 0.125 if n = 50,
and less than 0.005 if n = 130.
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Hoeffding’s extension

Consider the case that Xi ’s are mutually independent “bounded”
random variables (i.e., ai ≤ Xi ≤ bi , for some positive real ai and bi ).

Hoeffding’s extension of Chernoff’s technique:

Pr[|S − µ| ≥ δµ] ≤ 2e−2µ2δ2/
Pn

i=1(bi−ai )
2
.

In this talk, we omit Hoeffding-like bounds.
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The crucial step and limitation of CH bounds

A crucial step for deriving CH bounds is to calculate E[etS ] for any
positve real t (the moment generating function).

E[etS ] = E[et
Pn

i=1 Xi ] = E

[

n
∏

i=1

etXi

]

=
n

∏

i=1

E[etXi ].

The last of the above equalities depends on the Xi ’s being mutually
independent.

This is the limitation for CH bounds.

In this paper, the author extends CH bounds by allowing a rather
natural, limited kind of dependency among the Xi ’s.
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Some basic definitions

Let A be an event.

A is said to be mutually independent of a set of events B1,B2, . . . ,Bn

if for any I ⊆ {1, 2, . . . , n}, Pr[A |
⋂

j∈I Bj ] = Pr[A].
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Dependency graphs

X = {X1,X2, . . . ,Xn}: a set of random variables.

A dependency graph G = (V ,E ) for X has a vertex set
[n] = {1, 2, . . . , n} and for each i , Xi is mutually independent of the
events {Xj | (i , j) /∈ E}.

We say that X exhibits d-bounded dependence if X has a
dependency graph with maximum degree d .
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Note
Let G be a dependency graph of X .

Assume that X1,X2, . . . ,Xk correspond to an independent set of G .

Pr[X1 | X2 ∩ X3 ∩ . . . ∩ Xk ] =
Pr[X1 ∩ X2 ∩ X3 ∩ . . . ∩ Xk ]

Pr[X2 ∩ X3 ∩ . . . ∩ Xk ]
= Pr[X1].

Pr[X2 | X3 ∩ X4 ∩ . . . ∩ Xk ] =
Pr[X2 ∩ X3 ∩ X4 ∩ . . . ∩ Xk ]

Pr[X3 ∩ X4 ∩ . . . ∩ Xk ]
= Pr[X2].

...

Pr[X1 ∩ X2 ∩ . . . ∩ Xk ]

= Pr[X1] · Pr[X2 ∩ X3 ∩ X4 ∩ . . . ∩ Xk ]

= Pr[X1] · Pr[X2] · Pr[X3 ∩ X4 ∩ . . . ∩ Xk ]

...

= Pr[X1] · Pr[X2] · · ·Pr[Xk ].
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Examples for testing your understanding

Let S be a set of pairwise independent events.

� Must the dependency graph of S contain 0 edge?

Let S be a set of events.

� Is the dependency graph of S unique?

16 / 39



Examples for testing your understanding

Let S be a set of pairwise independent events.

� Must the dependency graph of S contain 0 edge?

Let S be a set of events.

� Is the dependency graph of S unique?

16 / 39



Another example for figuring out dependency graphs

Consider an experiment of flipping a fair coin twice. Let X be the set
of the following events.

◮ X1: the first flip is head;
◮ X2: the second flip is tail;
◮ X3: the two flips are the same.

The events can be shown to be pairwise independent for each two of
them.

If a graph with three vertices has at most one edge, it must NOT be
a dependency graph of X .

ANY graph with three vertices and at least two edges is a dependency
graph of X .
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The main theorem

Theorem 1

For identically distributed Bernoulli random variables Xi with d-bounded

dependence, for any 0 < δ ≤ 1, we have the upper tail probability bound

Pr[S ≥ (1 + δ)µ] ≤
4(d + 1)

e
F+(µ, δ)

1
d+1 =

4(d + 1)

e
e−µδ2/3(d+1)

and the lower tail probability bound

Pr[S ≤ (1 − δ)µ] ≤
4(d + 1)

e
F−(µ, δ)

1
d+1 =

4(d + 1)

e
e−µδ2/2(d+1)

.

Note that F+(µ, δ) and F−(µ, δ) are exponentially small when
µ/(d + 1) = Ω(log1+ρ n) for any ρ > 0.
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An example: a randomized algorithm for Maximum

Independent Set in a regular graph

Given a k-regular n-vertex graph G . The following steps compute a
large independent set in G .

Step 1: Delete each vertex from G independently with probability 1 − 1/k .

Step 2: For each remaining edge, delete one of its endpoints.

The vertices that remain after Step 2 form an independent set of G .
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An example: a randomized algorithm for Maximum

Independent Set in a regular graph (contd.)

Let Ai be an indicator r.v. such that Ai = 1 if vertex vi is not deleted
in Step 1.

◮ Let A =
∑

i Ai be a r.v.: the number of vertices remaining after Step 1.

Let Bj be an indicator r.v. such that Bj = 1 if edge ej is not deleted
in Step 1.

◮ Let B =
∑

j Bj be a r.v.: the number of remaining edges after Step 1.

It is easy to see that E[A] = n/k and E[B ] = (1/k)2 · kn/2 = n/2k.
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An example: a randomized algorithm for Maximum

Independent Set in a regular graph (contd.)

The size of the independent set computed by the algorithm:
≥ A − B .

Hence the expected size of the solution produced by the algorithm is
≥ n/2k.

◮ A randomized O(1)-factor approximation algorithm for Maximum
Independent Set.
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An example: a randomized algorithm for Maximum

Independent Set in a regular graph (contd.)

Actually we can show that A − B is very close to n/2k with high
probability.

It is clear that Ai ’s are mutually independent, so CH bounds can be
applied.

However, Bi ’s are NOT mutually independent.
◮ Bi is mutually independent of Bj ’s if edge j ’s are not incident on any

endpoints of edge i .

Let us consider the dependency graph of Bi ’s.
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An example: a randomized algorithm for Maximum

Independent Set in a regular graph (contd.)

The line graph (i.e., edge graph) L(G ) of G is a dependency graph of
the Bi ’s.

◮ L(G): every vertex of L(G) represents an edge of G , and two vertices
of L(G) are adjacent iff their corresponding edge share a common
endpoint in G .
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An example: a randomized algorithm for Maximum

Independent Set in a regular graph (contd.)

G is k-regular −→ L(G ) is 2(k − 1)-regular −→ Bi ’s exhibit
2(k − 1)-bounded dependence.

E[B ]/(2k − 1) = Ω(n).

◮ Ω(log1+ρ kn/2) for any ρ > 0.

Thus the main theorem of this paper can be applied, and then we
know the algorithm indeed produces a large independent set with high
probability.

24 / 39
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t-equitable coloring

Definition 2

A coloring of a graph is equitable if the sizes of any pair of color classes
are within one of each other.

t-equitable coloring: an equitable coloring using t colors.
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A deep result by Hajnal and Szemerédi

Hajnal-Szemerédi (1970)

A graph G with maximum degree ∆ has a (∆ + 1)-equitable coloring.
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Lemma 3

Suppose that Xi ’s are identical Bernoulli random variables with

dependency graph G, and suppose G has a t-equitable coloring. Then for

any 0 < δ ≤ 1, we have

Pr[S ≥ (1 + δ)µ] ≤
4t

e
F+(µ, δ)1/t ,

Pr[S ≤ (1 − δ)µ] ≤
4t

e
F−(µ, δ)1/t .

Theorem 4

Suppose the Xi ’s are identical Bernoulli random variables exhibiting

d-bounded dependence. Then, for any 0 < δ ≤ 1, we have

Pr[S ≥ (1 + δ)µ] ≤
4(d + 1)

e
F+(µ, δ)

1
d+1 ,

Pr[S ≤ (1 − δ)µ] ≤
4(d + 1)

e
F−(µ, δ)

1
d+1 .
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Proof of Lemma 3

For convenience, assume that E[Xi ] = µ′ for each i , and let [t] denote
{1, 2, . . . , t}.

Let C1,C2, . . . ,Ct be the t color classes in a t-equitable-coloring
of G .

For each i ∈ [t], let µi = E[
∑

j∈Ci
Xj ] (i.e., µ′|Ci |).
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Proof of Lemma 3 (contd.)

S ≥ (1 + δ)µ ≡ S ≥ (1 + δ)µ′n

≡ S ≥ (1 + δ)µ′
∑

i∈[t]

|Ci |

≡ S ≥
∑

i∈[t]

(1 + δ)µ′|Ci |

≡
∑

i∈[t]

∑

j∈Cj

Xj ≥
∑

i∈[t]

(1 + δ)µi .

The first equivalence: µ = E[
∑

i∈[n] Xi ] =
∑

i∈[n] E[Xi ] = nµ′.

The second equivalence: Ci ’s form a partition of [n].

The last equivalence: expressing S as the sum of the Xi ’s grouped
into color classes.
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Proof of Lemma 3 (contd.)
∑

i∈[t]

∑

j∈Ci

Xj ≥
∑

i∈[t]

(1 + δ)µi ⇒ ∃i ∈ [t]:
∑

j∈Ci

Xj ≥ (1 + δ)µi .

Hence

Pr [S ≥ (1 + δ)µ] = Pr





∑

i∈[t]

∑

j∈Ci

Xj ≥
∑

i∈[t]

(1 + δ)µi





≤ Pr



∃i ∈ [t] :
∑

j∈Ci

Xj ≥ (1 + δ)µi



 .

The last probability above is actually at most

∑

i∈[t]

Pr





∑

j∈Ci

Xj ≥ (1 + δ)µi



 (union bound)

≤
∑

i∈[t]

F+(µi , δ) (Chernoff bound).
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Proof of Lemma 3 (contd.)

|Ci | = ⌊n/t⌋ or ⌈n/t⌉ (∵ equitable coloring).

µi = µ′|Ci | ≥ ⌊n/t⌋µ′ ≥ (n/t − 1)µ′.

(n/t − 1)µ′ ≥ (nµ′/t − 1) = µ/t − 1 (∵ 0 ≤ µ′ ≤ 1).

Hence µi ≥ µ/t − 1.

Thus

Pr[S ≥ (1 + δ)µ] ≤
∑

i∈[t]

F+(µi , δ)

≤
∑

i∈[t]

F+(µ/t − 1, δ)

= t · F+(µ/t − 1, δ).
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Proof of Lemma 3 (contd.)

F+(µ/t − 1, δ) =

(

eδ

(1 + δ)1+δ

)µ/t

·

(

(1 + δ)1+δ

eδ

)

≤
4

e
F+(µ, δ)1/t .

The last inequality: (1 + δ)1+δ/eδ is a monotonically increasing
function of δ and its maximum occurs when δ = 1.

Thus the upper tail probability is proved.

Pr[S ≥ (1 + δ)µ] ≤
4t

e
F+(µ, δ)1/t .

◮ The proof of the lower tail probability is identical.
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Equitable chromatic number χeq(G )

χ(G ): the chromatic number of G .

χeq(G ): the fewest colors required to equitably color the graph G .

E.g., χ(G ) = 2 and χeq(G ) = ⌈(n − 1)/2⌉ + 1 when G is an n-vertex
star graph.

A small equitable chromatic number for a dependency graph leads to
sharp tail probability bounds.
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Bollobás-Guy (1983)

A tree T with n vertices is equitably 3-colorable if n ≥ 3∆(T ) − 8 or if
n = 3∆(T ) − 10.

The theorem implies that if ∆(T ) ≤ n/3, then T can be equitably
3-colored. Thus we have

Theorem 5

Suppose that Xi ’s are identical Bernoulli random variables such that the

corresponding dependency graph is a tree with maximum degree at most

n/3. Then we have the following bounds

Pr[S ≥ (1 + δ)µ] ≤
12

e
F+(µ, δ)1/3,

Pr[S ≤ (1 − δ)µ] ≤
12

e
F−(µ, δ)1/3.
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Pemmaraju (2001); technical report

A connected outerplanar graph with n vertices and vertex degree at most
n/6 has a 6-equitable coloring.

Theorem 6

Suppose that Xi ’s are identical Bernoulli random variables whose

dependency graph is outerplanar with maximum degree at most n/6. Then

we have the following bounds

Pr[S ≥ (1 + δ)µ] ≤
24

e
F+(µ, δ)1/6,

Pr[S ≤ (1 − δ)µ] ≤
24

e
F−(µ, δ)1/6.
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Some further remarks

Are the bounds on the vertex-degree required to obtain sharp
bounds?

a (c , α)-coloring: a vertex coloring such that
◮ ≤ c vertices are not colored.

◮ for any pair of color classes C and C ′, |C | ≤ α|C ′|.

It is possible to extend Bollobás-Guy Theorem to have the following
results.

Theorem 7

Every tree has a (1, 5)-coloring with two colors.

Every outerplanar graph has a (2, 5)-coloring with four colors.

Hence sharp bounds can still be obtained.
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Thank you!
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