Clusters and quartet topologies

Hans-Jürgen Bendelt and Andreas Dress: Reconstructing the shape of a tree from observed dissimilarity data. *Advances in Applied Mathematics* **7** (1986) 309–343.

> Speaker: Joseph, Chuang-Chieh Lin Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

May 19, 2009

1/41

Outline

- 2 Cluster and tree-likeness
- 3 Quartet topologies and tree-likeness

2/41

4 Conclusions

Outline

1 Introduction

- 2 Cluster and tree-likeness
- 3 Quartet topologies and tree-likeness

4 Conclusions

<ロ > < 部 > < 書 > < 書 > 達 > く き > 達 の Q () 3/41

Evolutionary trees

- A set of *n* taxa *S*.
- An evolutionary tree T = (V, E) on S:
 - internal vertices with degree 3.
 - bijection from S to the leaves of T.

Clusters

- Clusters: nonempty proper subsets of S according to T.
 - C = {X ⊂ S | X ≠ Ø, ∃e ∈ E such that any two taxa in X are connected by a path in T avoiding e, and X is maximal with respect to this property}.
- Splits: two complementary clusters.

- There are (2n-3) splits.
- $\mathbb{C} = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}, \{A, B\}, \{C, D\}, \{A, B, E\}, \{C, D, E\}$ $\{A, B, C, D\}, \{A, B, C, E\}, \{A, B, D, E\}, \{A, C, D, E\}, \{B, C, D, E\}\}.$

Clusters

- Clusters: nonempty proper subsets of S according to T.
 - C = {X ⊂ S | X ≠ Ø, ∃e ∈ E such that any two taxa in X are connected by a path in T avoiding e, and X is maximal with respect to this property}.
- Splits: two complementary clusters.

- There are (2n-3) splits.
- $\mathbb{C} = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}, \{A, B\}, \{C, D\}, \{A, B, E\}, \{C, D, E\}$ $\{A, B, C, D\}, \{A, B, C, E\}, \{A, B, D, E\}, \{A, C, D, E\}, \{B, C, D, E\}\}.$

(日)

Clusters

- Clusters: nonempty proper subsets of S according to T.
 - C = {X ⊂ S | X ≠ Ø, ∃e ∈ E such that any two taxa in X are connected by a path in T avoiding e, and X is maximal with respect to this property}.
- Splits: two complementary clusters.

- There are (2n-3) splits.
- $\mathbb{C} = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}, \{A, B\}, \{C, D\}, \{A, B, E\}, \{C, D, E\}$ $\{A, B, C, D\}, \{A, B, C, E\}, \{A, B, D, E\}, \{A, C, D, E\}, \{B, C, D, E\}\}.$

(日) (同) (三) (三)

A distinguished subsystem of clusters

 X ∈ ρ(v) iff the deletion of some edges e of T incident with v results in two subtrees of T one of which contains the vertex v and is defined on X.

A distinguished subsystem of clusters (contd.)

Assume that

• $\rho(A) = \{\{A\}\}, \ \rho(B) = \{\{B\}\}, \ \rho(C) = \{\{C\}\}, \dots$ • $\rho(x) = \{\{A, B\}, \{A, C, D, E\}, \{B, C, D, E\}\};$ $\rho(y) = \{\{A, B, E\}, \{A, B, C, D\}, \{C, D, E\}\};$ $\rho(z) = \{\{C, D\}, \{A, B, C, E\}, \{A, B, D, E\}\}.$

A distinguished subsystem of clusters (contd.)

Assume that

•
$$\rho(A) = \{\{A\}\}, \ \rho(B) = \{\{B\}\}, \ \rho(C) = \{\{C\}\}, ...$$

• $\rho(x) = \{\{A, B\}, \{A, C, D, E\}, \{B, C, D, E\}\};$
 $\rho(y) = \{\{A, B, E\}, \{A, B, C, D\}, \{C, D, E\}\};$
 $\rho(z) = \{\{C, D\}, \{A, B, C, E\}, \{A, B, D, E\}\}.$

Outline

Introduction

- 2 Cluster and tree-likeness
 - 3 Quartet topologies and tree-likeness

4 Conclusions

<ロ > < 部 > < 書 > < 書 > < 書 > こ > < 名 < C < 8/41

Proposition 1

 $\ensuremath{\mathbb{C}}$ is the cluster system of an evolutionary tree on S

if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \bar{\mathcal{Y}} \in \mathbb{C}$ (totally (4n 6) clusters) and
- for $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$, either $\mathcal{X} \subseteq \mathcal{Y}$, $\mathcal{X} \subseteq \overline{\mathcal{Y}}$, $\overline{\mathcal{X}} \subseteq \mathcal{Y}$, or $\overline{\mathcal{X}} \subseteq \overline{\mathcal{Y}}$ (compatible).

 Equivalent definition: X = Y iff at least one of the following intersections are empty:

•□▶ <□ > < □ > < □ >

9/41

 $\blacktriangleright \mathcal{X} \cap \mathcal{Y}, \, \mathcal{X} \cap \bar{\mathcal{Y}}, \, \bar{\mathcal{X}} \cap \mathcal{Y}, \, \bar{\mathcal{X}} \cap \bar{\mathcal{Y}}.$

Proposition 1

 ${\mathbb C}$ is the cluster system of an evolutionary tree on S

if and only if

•
$$\{A\} \in \mathbb{C}$$
 for each $A \in S$,

- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \bar{\mathcal{Y}} \in \mathbb{C}$ (totally (4n 6) clusters) and
- for $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$, either $\mathcal{X} \subseteq \mathcal{Y}$, $\mathcal{X} \subseteq \overline{\mathcal{Y}}$, $\overline{\mathcal{X}} \subseteq \mathcal{Y}$, or $\overline{\mathcal{X}} \subseteq \overline{\mathcal{Y}}$ (compatible).

 Equivalent definition: X = Y iff at least one of the following intersections are empty:

$$\blacktriangleright \ \mathcal{X} \cap \mathcal{Y}, \ \mathcal{X} \cap \bar{\mathcal{Y}}, \ \bar{\mathcal{X}} \cap \mathcal{Y}, \ \bar{\mathcal{X}} \cap \bar{\mathcal{Y}}.$$

Compatible clusters

•
$$S = \{A, B, C, D, E\}$$

•
$$\mathcal{X} = \{A, B, C, D\}, \mathcal{Y} = \{C, D, E\}, \ \bar{\mathcal{X}} = \{E\}, \ \bar{\mathcal{Y}} = \{A, B\}.$$

• $\mathcal{X} \cap \mathcal{Y} = \{C, D\}, \ \mathcal{X} \cap \bar{\mathcal{Y}} = \{A, B\}, \ \bar{\mathcal{X}} \cap \mathcal{Y} = \{E\}, \ \bar{\mathcal{X}} \cap \bar{\mathcal{Y}} = \emptyset.$

Compatible clusters

Compatible clusters

•
$$S = \{A, B, C, D, E\}$$

• $\mathcal{X} = \{A, B, C, D\}, \mathcal{Y} = \{C, D, E\}, \ \bar{\mathcal{X}} = \{E\}, \ \bar{\mathcal{Y}} = \{A, B\}.$
• $\mathcal{X} \cap \mathcal{Y} = \{C, D\}, \ \mathcal{X} \cap \ \bar{\mathcal{Y}} = \{A, B\}, \ \bar{\mathcal{X}} \cap \mathcal{Y} = \{E\}, \ \bar{\mathcal{X}} \cap \ \bar{\mathcal{Y}} = \emptyset.$

<ロ > < 部 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 10 / 41

•
$$S = \{A, B, C, D, E\}$$

- $\mathcal{X} = \{A, B\}, \mathcal{Y} = \{A, B, C, D\}, \ \bar{\mathcal{X}} = \{C, D, E\}, \ \bar{\mathcal{Y}} = \{E\}.$
- $\mathcal{X} \cap \mathcal{Y} = \{A, B\}, \ \mathcal{X} \cap \overline{\mathcal{Y}} = \emptyset, \ \overline{\mathcal{X}} \cap \mathcal{Y} = \{C, D\}, \ \overline{\mathcal{X}} \cap \overline{\mathcal{Y}} = \{E\}.$

•
$$S = \{A, B, C, D, E\}$$

• $\mathcal{X} = \{A, B\}, \mathcal{Y} = \{A, B, C, D\}, \ \bar{\mathcal{X}} = \{C, D, E\}, \ \bar{\mathcal{Y}} = \{E\}.$
• $\mathcal{X} \cap \mathcal{Y} = \{A, B\}, \ \mathcal{X} \cap \ \bar{\mathcal{Y}} = \emptyset, \ \bar{\mathcal{X}} \cap \mathcal{Y} = \{C, D\}, \ \bar{\mathcal{X}} \cap \ \bar{\mathcal{Y}} = \{E\}.$

・ロ ・ < 合 ・ < 言 ・ < 言 ・ 言 ・ う へ で 11/41

•
$$S = \{A, B, C, D, E\}$$

- $\mathcal{X} = \{A, B\}, \mathcal{Y} = \{C, D\}, \ \bar{\mathcal{X}} = \{C, D, E\}, \ \bar{\mathcal{Y}} = \{A, B, E\}.$
- $\mathcal{X} \cap \mathcal{Y} = \emptyset$, $\mathcal{X} \cap \overline{\mathcal{Y}} = \{A, B\}$, $\overline{\mathcal{X}} \cap \mathcal{Y} = \{C, D\}$, $\overline{\mathcal{X}} \cap \overline{\mathcal{Y}} = \{E\}$.

・ロ ・ <
一 ・ <
一 ・ <
三 ・ <
三 ・ <
三 ・ <
こ ・ 、
、 2 / 41
</p>

•
$$S = \{A, B, C, D, E\}$$

• $\mathcal{X} = \{A, B\}, \mathcal{Y} = \{C, D\}, \ \bar{\mathcal{X}} = \{C, D, E\}, \ \bar{\mathcal{Y}} = \{A, B, E\}.$
• $\mathcal{X} \cap \mathcal{Y} = \emptyset, \ \mathcal{X} \cap \bar{\mathcal{Y}} = \{A, B\}, \ \bar{\mathcal{X}} \cap \mathcal{Y} = \{C, D\}, \ \bar{\mathcal{X}} \cap \bar{\mathcal{Y}} = \{E\}.$

・ロ ・ < 部 ・ < 言 ・ < 言 ・ 言 ・ う へ で 12/41

•
$$S = \{A, B, C, D, E\}$$

- $\mathcal{X} = \{A, B\}, \mathcal{Y} = \{C, D, E\}, \ \bar{\mathcal{X}} = \{C, D, E\}, \ \bar{\mathcal{Y}} = \{A, B\}.$
- $\mathcal{X} \cap \mathcal{Y} = \emptyset$, $\mathcal{X} \cap \overline{\mathcal{Y}} = \{A, B\}$, $\overline{\mathcal{X}} \cap \mathcal{Y} = \{C, D\}$, $\overline{\mathcal{X}} \cap \overline{\mathcal{Y}} = \emptyset$.

•
$$S = \{A, B, C, D, E\}$$

• $\mathcal{X} = \{A, B\}, \mathcal{Y} = \{C, D, E\}, \ \bar{\mathcal{X}} = \{C, D, E\}, \ \bar{\mathcal{Y}} = \{A, B\}.$
• $\mathcal{X} \cap \mathcal{Y} = \emptyset, \ \mathcal{X} \cap \bar{\mathcal{Y}} = \{A, B\}, \ \bar{\mathcal{X}} \cap \mathcal{Y} = \{C, D\}, \ \bar{\mathcal{X}} \cap \bar{\mathcal{Y}} = \emptyset.$

S

Non-compatible clusters

・ロ ・ ・ 日 ・ ・ 目 ・ 日 ・ 日 ・ 日 ・ 14/41

• $\mathcal{X} \subseteq \mathcal{Y} \Leftrightarrow \overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$ for any two clusters \mathcal{X}, \mathcal{Y} .

• $\forall \mathcal{X}, \mathcal{Y} \in \mathbb{C}$, where $\mathcal{X} \subseteq \mathcal{Y}$, if $\mathcal{X} \subseteq \mathcal{Z}_1, \dots, \mathcal{Z}_k \subseteq \mathcal{Y}$, and $|\mathcal{Z}_i| \le |\mathcal{Z}_j|$ for $i \le j$, then $\mathcal{Z}_1 \subseteq \mathcal{Z}_2 \dots \subseteq \mathcal{Z}_k (\mathcal{Z}_1, \dots, \mathcal{Z}_k \text{ forms a chain})$.

 $\blacktriangleright \ :: \mathcal{X} \subseteq \mathcal{Z}_i, \mathcal{Z}_j \subseteq \mathcal{Y} \Rightarrow \emptyset \neq \mathcal{X} \subseteq \mathcal{Z}_i \cap \mathcal{Z}_j \text{ and } \emptyset \neq \bar{\mathcal{Y}} \subseteq \bar{\mathcal{Z}}_i \cap \bar{\mathcal{Z}}_j$

 \triangleright then we have $Z_i \subseteq Z_J$ or $Z_i \subseteq Z_i$ for all i, j.

• $\mathcal{X} \subseteq \mathcal{Y} \Leftrightarrow \overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$ for any two clusters \mathcal{X}, \mathcal{Y} .

• $\forall \mathcal{X}, \mathcal{Y} \in \mathbb{C}$, where $\mathcal{X} \subseteq \mathcal{Y}$, if $\mathcal{X} \subseteq \mathcal{Z}_1, \dots, \mathcal{Z}_k \subseteq \mathcal{Y}$, and $|\mathcal{Z}_i| \le |\mathcal{Z}_j|$ for $i \le j$, then $\mathcal{Z}_1 \subseteq \mathcal{Z}_2 \dots \subseteq \mathcal{Z}_k$ ($\mathcal{Z}_1, \dots, \mathcal{Z}_k$ forms a chain).

• $\therefore \mathcal{X} \subseteq \mathcal{Z}_i, \mathcal{Z}_j \subseteq \mathcal{Y} \Rightarrow \emptyset \neq \mathcal{X} \subseteq \mathcal{Z}_i \cap \mathcal{Z}_j \text{ and } \emptyset \neq \bar{\mathcal{Y}} \subseteq \bar{\mathcal{Z}}_i \cap \bar{\mathcal{Z}}_j$ \triangleright then we have $\mathcal{Z}_i \subseteq \mathcal{Z}_j$ or $\mathcal{Z}_j \subseteq \mathcal{Z}_i$ for all i, j.

• $\mathcal{X} \subseteq \mathcal{Y} \Leftrightarrow \overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$ for any two clusters \mathcal{X}, \mathcal{Y} .

• $\forall \mathcal{X}, \mathcal{Y} \in \mathbb{C}$, where $\mathcal{X} \subseteq \mathcal{Y}$, if $\mathcal{X} \subseteq \mathcal{Z}_1, \dots, \mathcal{Z}_k \subseteq \mathcal{Y}$, and $|\mathcal{Z}_i| \le |\mathcal{Z}_j|$ for $i \le j$, then $\mathcal{Z}_1 \subseteq \mathcal{Z}_2 \dots \subseteq \mathcal{Z}_k$ ($\mathcal{Z}_1, \dots, \mathcal{Z}_k$ forms a chain).

 $\blacktriangleright \ :: \mathcal{X} \subseteq \mathcal{Z}_i, \mathcal{Z}_j \subseteq \mathcal{Y} \Rightarrow \emptyset \neq \mathcal{X} \subseteq \mathcal{Z}_i \cap \mathcal{Z}_j \text{ and } \emptyset \neq \bar{\mathcal{Y}} \subseteq \bar{\mathcal{Z}}_i \cap \bar{\mathcal{Z}}_j$

> then we have $\mathcal{Z}_i \subseteq \mathcal{Z}_J$ or $\mathcal{Z}_i \subseteq \mathcal{Z}_i$ for all i, j.

• $\mathcal{X} \subseteq \mathcal{Y} \Leftrightarrow \overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$ for any two clusters \mathcal{X}, \mathcal{Y} .

• $\forall \mathcal{X}, \mathcal{Y} \in \mathbb{C}$, where $\mathcal{X} \subseteq \mathcal{Y}$, if $\mathcal{X} \subseteq \mathcal{Z}_1, \dots, \mathcal{Z}_k \subseteq \mathcal{Y}$, and $|\mathcal{Z}_i| \le |\mathcal{Z}_j|$ for $i \le j$, then $\mathcal{Z}_1 \subseteq \mathcal{Z}_2 \dots \subseteq \mathcal{Z}_k \ (\mathcal{Z}_1, \dots, \mathcal{Z}_k \text{ forms a chain})$.

 $\blacktriangleright \ \because \mathcal{X} \subseteq \mathcal{Z}_i, \mathcal{Z}_j \subseteq \mathcal{Y} \Rightarrow \emptyset \neq \mathcal{X} \subseteq \mathcal{Z}_i \cap \mathcal{Z}_j \text{ and } \emptyset \neq \bar{\mathcal{Y}} \subseteq \bar{\mathcal{Z}}_i \cap \bar{\mathcal{Z}}_j$

> then we have $\mathcal{Z}_i \subseteq \mathcal{Z}_J$ or $\mathcal{Z}_i \subseteq \mathcal{Z}_i$ for all i, j.

• $\mathcal{X} \subseteq \mathcal{Y} \Leftrightarrow \overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$ for any two clusters \mathcal{X}, \mathcal{Y} .

• $\forall \mathcal{X}, \mathcal{Y} \in \mathbb{C}$, where $\mathcal{X} \subseteq \mathcal{Y}$, if $\mathcal{X} \subseteq \mathcal{Z}_1, \dots, \mathcal{Z}_k \subseteq \mathcal{Y}$, and $|\mathcal{Z}_i| \le |\mathcal{Z}_j|$ for $i \le j$, then $\mathcal{Z}_1 \subseteq \mathcal{Z}_2 \dots \subseteq \mathcal{Z}_k \ (\mathcal{Z}_1, \dots, \mathcal{Z}_k \text{ forms a chain})$.

 $\blacktriangleright \ :: \mathcal{X} \subseteq \mathcal{Z}_i, \mathcal{Z}_j \subseteq \mathcal{Y} \Rightarrow \emptyset \neq \mathcal{X} \subseteq \mathcal{Z}_i \cap \mathcal{Z}_j \text{ and } \emptyset \neq \bar{\mathcal{Y}} \subseteq \bar{\mathcal{Z}}_i \cap \bar{\mathcal{Z}}_j$

▷ then we have $Z_i \subseteq Z_J$ or $Z_j \subseteq Z_i$ for all i, j.

• $\mathcal{X} \subseteq \mathcal{Y} \Leftrightarrow \overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$ for any two clusters \mathcal{X}, \mathcal{Y} .

- $\forall \mathcal{X}, \mathcal{Y} \in \mathbb{C}$, where $\mathcal{X} \subseteq \mathcal{Y}$, if $\mathcal{X} \subseteq \mathcal{Z}_1, \dots, \mathcal{Z}_k \subseteq \mathcal{Y}$, and $|\mathcal{Z}_i| \le |\mathcal{Z}_j|$ for $i \le j$, then $\mathcal{Z}_1 \subseteq \mathcal{Z}_2 \dots \subseteq \mathcal{Z}_k$ ($\mathcal{Z}_1, \dots, \mathcal{Z}_k$ forms a chain).
 - $\blacktriangleright \ \because \mathcal{X} \subseteq \mathcal{Z}_i, \mathcal{Z}_j \subseteq \mathcal{Y} \Rightarrow \emptyset \neq \mathcal{X} \subseteq \mathcal{Z}_i \cap \mathcal{Z}_j \text{ and } \emptyset \neq \bar{\mathcal{Y}} \subseteq \bar{\mathcal{Z}}_i \cap \bar{\mathcal{Z}}_j$

▷ then we have $Z_i \subseteq Z_J$ or $Z_j \subseteq Z_i$ for all i, j.

Recall the distinguished subsystem of $\mathbb C$...

• $\rho(A) = \{\{A\}\}, \ \rho(B) = \{\{B\}\}, \ \rho(C) = \{\{C\}\}, \dots, \\ \rho(x) = \{\{A, B\}, \{A, C, D, E\}, \{B, C, D, E\}\}; \\ \rho(y) = \{\{A, B, E\}, \{A, B, C, D\}, \{C, D, E\}\}; \\ \rho(z) = \{\{C, D\}, \{A, B, C, E\}, \{A, B, D, E\}\}.$

• We can **DEFINE** a corresponding equivalence relation on \mathbb{C} :

For X, Y ∈ C, we say X ≡ Y if and only if either X = Y or X is a maximal proper subcluster of Y.

How to reconstruct T from a corresponding \mathbb{C} ?

- Each equivalence class $\rho(x)$ of \equiv represents a vertex of T.
- $\rho(x) = \{A\} \Leftrightarrow$ a leaf node A.
- $\rho(x), \rho(y)$ represent **adjacent** vertices x, y iff $\exists \mathcal{Y} \in \mathbb{C}$ such that $\mathcal{Y} \in \rho(x)$ and $\overline{\mathcal{Y}} \in \rho(y)$.

Proposition 1

 ${\mathbb C}$ is the cluster system of an evolutionary tree ${\mathcal T}$ on ${\mathcal S}$

if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \bar{\mathcal{Y}} \in \mathbb{C}$ and
- every two $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$ are compatible.

• The if-part is easy (by observing clusters corresponding to T).

- For the only-if-part:
 - 1. Prove that \equiv is an equivalence relation (reflexive, symmetric, transitive).
 - \star $\mathcal{X}\equiv\mathcal{Y}$ iff either $\mathcal{X}=\mathcal{Y}$ or $ar{\mathcal{X}}$ is a maximal proper subcluster of \mathcal{Y} .
 - 2. Construct a corresponding graph T by \equiv .
 - 3. Show that the graph *T* is an evolutionary tree on *S*.

(日)

Proposition 1

 ${\mathbb C}$ is the cluster system of an evolutionary tree ${\mathcal T}$ on ${\mathcal S}$

if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \bar{\mathcal{Y}} \in \mathbb{C}$ and
- every two $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$ are compatible.
- The if-part is easy (by observing clusters corresponding to T).
- For the only-if-part:
 - 1. Prove that \equiv is an equivalence relation (reflexive, symmetric, transitive).

★ $X \equiv Y$ iff either X = Y or \overline{X} is a maximal proper subcluster of Y.

- 2. Construct a corresponding graph T by \equiv .
- 3. Show that the graph T is an evolutionary tree on S.

(日)

Proposition 1

 ${\mathbb C}$ is the cluster system of an evolutionary tree ${\mathcal T}$ on ${\mathcal S}$

if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \bar{\mathcal{Y}} \in \mathbb{C}$ and
- every two $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$ are compatible.
- The if-part is easy (by observing clusters corresponding to T).
- For the only-if-part:
 - 1. Prove that \equiv is an equivalence relation (reflexive, symmetric, transitive).

* $\mathcal{X} \equiv \mathcal{Y}$ iff either $\mathcal{X} = \mathcal{Y}$ or $\overline{\mathcal{X}}$ is a maximal proper subcluster of \mathcal{Y} .

- 2. Construct a corresponding graph T by \equiv .
- 3. Show that the graph T is an evolutionary tree on S.

イロン イロン イヨン トヨ

Proposition 1

 ${\mathbb C}$ is the cluster system of an evolutionary tree ${\mathcal T}$ on ${\mathcal S}$

if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \bar{\mathcal{Y}} \in \mathbb{C}$ and
- every two $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$ are compatible.
- The if-part is easy (by observing clusters corresponding to T).
- For the only-if-part:
 - 1. Prove that \equiv is an equivalence relation (reflexive, symmetric, transitive).
 - * $\mathcal{X} \equiv \mathcal{Y}$ iff either $\mathcal{X} = \mathcal{Y}$ or $\overline{\mathcal{X}}$ is a maximal proper subcluster of \mathcal{Y} .
 - 2. Construct a corresponding graph T by \equiv .
 - 3. Show that the graph T is an evolutionary tree on S.

Proposition 1

 ${\mathbb C}$ is the cluster system of an evolutionary tree ${\mathcal T}$ on ${\mathcal S}$

if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \bar{\mathcal{Y}} \in \mathbb{C}$ and
- every two $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$ are compatible.
- The if-part is easy (by observing clusters corresponding to T).
- For the only-if-part:
 - 1. Prove that \equiv is an equivalence relation (reflexive, symmetric, transitive).

* $\mathcal{X} \equiv \mathcal{Y}$ iff either $\mathcal{X} = \mathcal{Y}$ or $\overline{\mathcal{X}}$ is a maximal proper subcluster of \mathcal{Y} .

- 2. Construct a corresponding graph T by \equiv .
- 3. Show that the graph T is an evolutionary tree on S.
Sketch of the proof of Proposition 1

Proposition 1

 ${\mathbb C}$ is the cluster system of an evolutionary tree ${\mathcal T}$ on ${\mathcal S}$

if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \bar{\mathcal{Y}} \in \mathbb{C}$ and
- every two $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$ are compatible.
- The if-part is easy (by observing clusters corresponding to T).
- For the only-if-part:
 - 1. Prove that \equiv is an equivalence relation (reflexive, symmetric, transitive).

* $\mathcal{X} \equiv \mathcal{Y}$ iff either $\mathcal{X} = \mathcal{Y}$ or $\overline{\mathcal{X}}$ is a maximal proper subcluster of \mathcal{Y} .

- 2. Construct a corresponding graph T by \equiv .
- 3. Show that the graph T is an evolutionary tree on S.

- It is easy to see that \equiv is reflexive and symmetric.
- Assume that $\mathcal{Y}_1 \equiv \mathcal{Y}_2$ and $\mathcal{Y}_2 \equiv \mathcal{Y}_3$ and $\mathcal{Y}_1, \mathcal{Y}_2, \mathcal{Y}_3$ are distinct.
- $\bar{\mathcal{Y}_1}$ and $\bar{\mathcal{Y}_3}$ are maximal proper subsets of \mathcal{Y}_2 in $\mathbb C$ by assumption.
- We have $\overline{\mathcal{Y}}_1 \subseteq \mathcal{Y}_3$.
 - $\mathcal{Y}_1 \nsubseteq \mathcal{Y}_3$ and $\mathcal{Y}_3 \nsubseteq \mathcal{Y}_1$ (by maximality)
 - $\blacktriangleright \quad \mathcal{Y}_1 \cap \mathcal{Y}_3 \neq \emptyset \; (:: \; \bar{\mathcal{Y}_2} \subseteq \mathcal{Y}_1 \cap \mathcal{Y}_3).$
 - Hence $\overline{\mathcal{Y}}_1 \subseteq \mathcal{Y}_3$ (by the assumption of compatibility)

- It is easy to see that \equiv is reflexive and symmetric.
- Assume that $\mathcal{Y}_1 \equiv \mathcal{Y}_2$ and $\mathcal{Y}_2 \equiv \mathcal{Y}_3$ and $\mathcal{Y}_1, \mathcal{Y}_2, \mathcal{Y}_3$ are distinct.
- $\bar{\mathcal{Y}}_1$ and $\bar{\mathcal{Y}}_3$ are maximal proper subsets of \mathcal{Y}_2 in $\mathbb C$ by assumption.
- We have $\overline{\mathcal{Y}}_1 \subseteq \mathcal{Y}_3$.
 - $\mathcal{Y}_1 \nsubseteq \mathcal{Y}_3$ and $\mathcal{Y}_3 \nsubseteq \mathcal{Y}_1$ (by maximality)
 - $\blacktriangleright \hspace{0.1cm} \mathcal{Y}_1 \cap \mathcal{Y}_3 \neq \emptyset \hspace{0.1cm} (\because \overline{\mathcal{Y}}_2 \subseteq \mathcal{Y}_1 \cap \mathcal{Y}_3).$
 - Hence $\overline{\mathcal{Y}}_1 \subseteq \mathcal{Y}_3$ (by the assumption of compatibility)

- It is easy to see that \equiv is reflexive and symmetric.
- Assume that $\mathcal{Y}_1 \equiv \mathcal{Y}_2$ and $\mathcal{Y}_2 \equiv \mathcal{Y}_3$ and $\mathcal{Y}_1, \mathcal{Y}_2, \mathcal{Y}_3$ are distinct.
- $\bar{\mathcal{Y}}_1$ and $\bar{\mathcal{Y}}_3$ are maximal proper subsets of \mathcal{Y}_2 in $\mathbb C$ by assumption.
- We have $\overline{\mathcal{Y}}_1 \subseteq \mathcal{Y}_3$.
 - $\mathcal{Y}_1 \nsubseteq \mathcal{Y}_3$ and $\mathcal{Y}_3 \nsubseteq \mathcal{Y}_1$ (by maximality)
 - $\blacktriangleright \mathcal{Y}_1 \cap \mathcal{Y}_3 \neq \emptyset \ (\because \bar{\mathcal{Y}}_2 \subseteq \mathcal{Y}_1 \cap \mathcal{Y}_3).$
 - Hence $\bar{\mathcal{Y}}_1 \subseteq \mathcal{Y}_3$ (by the assumption of compatibility).

19/41

- It is easy to see that \equiv is reflexive and symmetric.
- Assume that $\mathcal{Y}_1 \equiv \mathcal{Y}_2$ and $\mathcal{Y}_2 \equiv \mathcal{Y}_3$ and $\mathcal{Y}_1, \mathcal{Y}_2, \mathcal{Y}_3$ are distinct.
- $\bar{\mathcal{Y}}_1$ and $\bar{\mathcal{Y}}_3$ are maximal proper subsets of \mathcal{Y}_2 in \mathbb{C} by assumption.
- We have $\bar{\mathcal{Y}}_1 \subseteq \mathcal{Y}_3$.
 - $\mathcal{Y}_1 \nsubseteq \mathcal{Y}_3$ and $\mathcal{Y}_3 \nsubseteq \mathcal{Y}_1$ (by maximality)
 - $\blacktriangleright \mathcal{Y}_1 \cap \mathcal{Y}_3 \neq \emptyset \; (:: \bar{\mathcal{Y}}_2 \subseteq \mathcal{Y}_1 \cap \mathcal{Y}_3).$
 - Hence $\overline{\mathcal{Y}}_1 \subseteq \mathcal{Y}_3$ (by the assumption of compatibility).

- It is easy to see that \equiv is reflexive and symmetric.
- Assume that $\mathcal{Y}_1 \equiv \mathcal{Y}_2$ and $\mathcal{Y}_2 \equiv \mathcal{Y}_3$ and $\mathcal{Y}_1, \mathcal{Y}_2, \mathcal{Y}_3$ are distinct.
- $\bar{\mathcal{Y}}_1$ and $\bar{\mathcal{Y}}_3$ are maximal proper subsets of \mathcal{Y}_2 in $\mathbb C$ by assumption.
- We have $\overline{\mathcal{Y}}_1 \subseteq \mathcal{Y}_3$.
 - $\mathcal{Y}_1 \nsubseteq \mathcal{Y}_3$ and $\mathcal{Y}_3 \nsubseteq \mathcal{Y}_1$ (by maximality)
 - $\blacktriangleright \mathcal{Y}_1 \cap \mathcal{Y}_3 \neq \emptyset \ (\because \bar{\mathcal{Y}}_2 \subseteq \mathcal{Y}_1 \cap \mathcal{Y}_3).$
 - Hence $\overline{\mathcal{Y}}_1 \subseteq \mathcal{Y}_3$ (by the assumption of compatibility).

19/41

- It is easy to see that \equiv is reflexive and symmetric.
- Assume that $\mathcal{Y}_1 \equiv \mathcal{Y}_2$ and $\mathcal{Y}_2 \equiv \mathcal{Y}_3$ and $\mathcal{Y}_1, \mathcal{Y}_2, \mathcal{Y}_3$ are distinct.
- $\bar{\mathcal{Y}}_1$ and $\bar{\mathcal{Y}}_3$ are maximal proper subsets of \mathcal{Y}_2 in $\mathbb C$ by assumption.
- We have $\bar{\mathcal{Y}}_1 \subseteq \mathcal{Y}_3$.
 - $\mathcal{Y}_1 \nsubseteq \mathcal{Y}_3$ and $\mathcal{Y}_3 \nsubseteq \mathcal{Y}_1$ (by maximality)
 - $\blacktriangleright \mathcal{Y}_1 \cap \mathcal{Y}_3 \neq \emptyset \ (\because \bar{\mathcal{Y}}_2 \subseteq \mathcal{Y}_1 \cap \mathcal{Y}_3).$
 - Hence $\bar{\mathcal{Y}}_1 \subseteq \mathcal{Y}_3$ (by the assumption of compatibility).

 $ar{\mathcal{Y}_1} \subseteq \mathcal{Y}_2 \text{ and } ar{\mathcal{Y}_3} \subseteq \mathcal{Y}_2$

- Let $\mathcal{X} \in \mathbb{C}$ such that $\overline{\mathcal{Y}}_1 \subseteq \mathcal{X} \subseteq \mathcal{Y}_3$. Then $\mathcal{X} = \overline{\mathcal{Y}}_1$ or $\mathcal{X} = \mathcal{Y}_3$ (Thus $\mathcal{Y}_1 \equiv \mathcal{Y}_3$).
 - Either $\mathcal{X} \subseteq \mathcal{Y}_2$ or $\overline{\mathcal{X}} \subseteq \mathcal{Y}_2$ ($:: \emptyset \neq \overline{\mathcal{Y}_1} \subseteq \mathcal{Y}_2 \cap \mathcal{X}$ and $\emptyset \neq \overline{\mathcal{Y}_3} \subseteq \mathcal{Y}_2 \cap \overline{\mathcal{X}}$).

 $\star \ \mathcal{X} \subseteq \overline{\mathcal{Y}}_2? \ \ \overline{\mathcal{X}} \subseteq \overline{\mathcal{Y}}_2?$

- Hence $\overline{\mathcal{Y}}_1 \subseteq \mathcal{X} \subseteq \mathcal{Y}_2$ or $\overline{\mathcal{Y}}_3 \subseteq \overline{\mathcal{X}} \subseteq \mathcal{Y}_2$.
- By maximality we have either $\mathcal{X} = \overline{\mathcal{Y}}_1$ or $\mathcal{X} = \mathcal{Y}_3$.

 $ar{\mathcal{Y}_1} \subseteq \mathcal{Y}_2 \text{ and } ar{\mathcal{Y}_3} \subseteq \mathcal{Y}_2$

• Let $\mathcal{X} \in \mathbb{C}$ such that $\overline{\mathcal{Y}}_1 \subseteq \mathcal{X} \subseteq \mathcal{Y}_3$. Then $\mathcal{X} = \overline{\mathcal{Y}}_1$ or $\mathcal{X} = \mathcal{Y}_3$ (Thus $\mathcal{Y}_1 \equiv \mathcal{Y}_3$).

• Either $\mathcal{X} \subseteq \mathcal{Y}_2$ or $\overline{\mathcal{X}} \subseteq \mathcal{Y}_2$ (:: $\emptyset \neq \overline{\mathcal{Y}}_1 \subseteq \mathcal{Y}_2 \cap \mathcal{X}$ and $\emptyset \neq \overline{\mathcal{Y}}_3 \subseteq \mathcal{Y}_2 \cap \overline{\mathcal{X}}$).

20/41

 $\star \quad \mathcal{X} \subseteq \bar{\mathcal{Y}}_2? \quad \bar{\mathcal{X}} \subseteq \bar{\mathcal{Y}}_2?$

• Hence $\overline{\mathcal{Y}}_1 \subseteq \mathcal{X} \subseteq \mathcal{Y}_2$ or $\overline{\mathcal{Y}}_3 \subseteq \overline{\mathcal{X}} \subseteq \mathcal{Y}_2$.

• By maximality we have either $\mathcal{X} = \mathcal{Y}_1$ or $\mathcal{X} = \mathcal{Y}_3$.

 $ar{\mathcal{Y}_1} \subseteq \mathcal{Y}_2 \text{ and } ar{\mathcal{Y}_3} \subseteq \mathcal{Y}_2$

• Let $\mathcal{X} \in \mathbb{C}$ such that $\overline{\mathcal{Y}}_1 \subseteq \mathcal{X} \subseteq \mathcal{Y}_3$. Then $\mathcal{X} = \overline{\mathcal{Y}}_1$ or $\mathcal{X} = \mathcal{Y}_3$ (Thus $\mathcal{Y}_1 \equiv \mathcal{Y}_3$).

• Either $\mathcal{X} \subseteq \mathcal{Y}_2$ or $\overline{\mathcal{X}} \subseteq \mathcal{Y}_2$ (:: $\emptyset \neq \overline{\mathcal{Y}}_1 \subseteq \mathcal{Y}_2 \cap \mathcal{X}$ and $\emptyset \neq \overline{\mathcal{Y}}_3 \subseteq \mathcal{Y}_2 \cap \overline{\mathcal{X}}$).

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □</p>

20/41

 $\star \ \mathcal{X} \subseteq \bar{\mathcal{Y}}_2? \ \bar{\mathcal{X}} \subseteq \bar{\mathcal{Y}}_2?$

• Hence $\overline{\mathcal{Y}}_1 \subseteq \mathcal{X} \subseteq \mathcal{Y}_2$ or $\overline{\mathcal{Y}}_3 \subseteq \overline{\mathcal{X}} \subseteq \mathcal{Y}_2$.

• By maximality we have either $\mathcal{X} = \overline{\mathcal{Y}}_1$ or $\mathcal{X} = \mathcal{Y}_3$.

 $ar{\mathcal{Y}_1} \subseteq \mathcal{Y}_2 \text{ and } ar{\mathcal{Y}_3} \subseteq \mathcal{Y}_2$

- Let $\mathcal{X} \in \mathbb{C}$ such that $\overline{\mathcal{Y}}_1 \subseteq \mathcal{X} \subseteq \mathcal{Y}_3$. Then $\mathcal{X} = \overline{\mathcal{Y}}_1$ or $\mathcal{X} = \mathcal{Y}_3$ (Thus $\mathcal{Y}_1 \equiv \mathcal{Y}_3$).
 - Either $\mathcal{X} \subseteq \mathcal{Y}_2$ or $\bar{\mathcal{X}} \subseteq \mathcal{Y}_2$ (:: $\emptyset \neq \bar{\mathcal{Y}}_1 \subseteq \mathcal{Y}_2 \cap \mathcal{X}$ and $\emptyset \neq \bar{\mathcal{Y}}_3 \subseteq \mathcal{Y}_2 \cap \bar{\mathcal{X}}$).

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □</p>

20/41

 $\star \ \mathcal{X} \subseteq \bar{\mathcal{Y}}_2? \ \bar{\mathcal{X}} \subseteq \bar{\mathcal{Y}}_2?$

- Hence $\overline{\mathcal{Y}}_1 \subseteq \mathcal{X} \subseteq \mathcal{Y}_2$ or $\overline{\mathcal{Y}}_3 \subseteq \overline{\mathcal{X}} \subseteq \mathcal{Y}_2$.
- By maximality we have either $\mathcal{X} = \overline{\mathcal{Y}}_1$ or $\mathcal{X} = \mathcal{Y}_3$.

Constructing a graph T according to ' \equiv '

- The vertices correspond to the equivalence classes of \equiv .
- Two classes are adjacent iff they contain some complementary pair $\mathcal{Y}, \bar{\mathcal{Y}}.$
- An equivalence class represents a taxa *A* if it has only one member {*A*}.

An observation

Note:

A **subcluster** means a subset of a cluster which is also a cluster.

- From the point of view of clusters, two clusters $\mathcal{Y}_1, \mathcal{Y}_2$ represent adjacent vertices iff
 - $\overline{\mathcal{Y}}_1 = \mathcal{Y}_2 \ (\mathcal{Y}_1 \cap \mathcal{Y}_2 = \emptyset \text{ in this case});$
 - \mathcal{Y}_1 is a maximal proper subcluster of \mathcal{Y}_2 ($\mathcal{Y}_1 \leftrightarrow \overline{\mathcal{Y}_1} \equiv \mathcal{Y}_2$);
 - \mathcal{Y}_2 is a maximal proper subcluster of \mathcal{Y}_1 ($\mathcal{Y}_2 \leftrightarrow \overline{\mathcal{Y}}_2 \equiv \mathcal{Y}_1$);
 - $\exists ! \mathcal{X} \in \mathbb{C}$ such that $\overline{\mathcal{Y}}_1 \subset \mathcal{X} \subset \mathcal{Y}_2$ $(\mathcal{Y}_1 \equiv \mathcal{X} \leftrightarrow \overline{\mathcal{X}} \equiv \mathcal{Y}_2).$

How about the connectivity of the constructed graph?

23/41

- Let $\mathcal{X}, \bar{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}$, $\exists ! \mathcal{Y}_0$ with $\mathcal{Y}_0 \equiv \mathcal{Y}$ such that $\mathcal{Y}_0 \subseteq \mathcal{X}$ or $\mathcal{Y}_0 \subseteq \overline{\mathcal{X}}$.
 - Existence: either $\mathcal{Y} \subseteq \mathcal{X}$, $\mathcal{Y} \subseteq \overline{\mathcal{X}}$, $\overline{\mathcal{Y}} \subseteq \mathcal{X}$, or $\overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$.
 - * Either \mathcal{Y} or the minimal subcluster of \mathcal{X} (or $\overline{\mathcal{X}}$) containing $\overline{\mathcal{Y}}$ can be chosen as \mathcal{Y}_0 .

• Uniqueness: $\mathcal{Y}_0 \equiv \mathcal{Y}_1 \neq \mathcal{Y}_0 \Rightarrow \mathcal{Y}_0 \cup \mathcal{Y}_1 = S$ so we cannot have $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \mathcal{X}$ or $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \overline{\mathcal{X}}$.

- WLOG, let 𝒴₀ ⊆ 𝒴. Then 𝒴₀ ⊆ 𝒴₁ ⊆ ... ⊆ 𝒴_n = 𝒴 gives a path on 𝒯 joining the vertices represented by 𝒴 and 𝒴.
 - ► Thus *T* is **connected**.
- Moreover, **no cycle** in *T*.
 - ▶ No edge between \mathcal{Y}_i and \mathcal{Y}_j for |i j| > 1 (by maximality).
 - ▶ $Z_i \subseteq X$ cannot be adjacent to $Z_j \subseteq \overline{X}$ unless $Z_i = X$ and $Z_j = \overline{X}$.

- Let $\mathcal{X}, \bar{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}$, $\exists ! \mathcal{Y}_0$ with $\mathcal{Y}_0 \equiv \mathcal{Y}$ such that $\mathcal{Y}_0 \subseteq \mathcal{X}$ or $\mathcal{Y}_0 \subseteq \overline{\mathcal{X}}$.
 - Existence: either $\mathcal{Y} \subseteq \mathcal{X}, \ \mathcal{Y} \subseteq \bar{\mathcal{X}}, \ \bar{\mathcal{Y}} \subseteq \mathcal{X}$, or $\bar{\mathcal{Y}} \subseteq \bar{\mathcal{X}}$.
 - * Either \mathcal{Y} or the minimal subcluster of \mathcal{X} (or $\overline{\mathcal{X}}$) containing $\overline{\mathcal{Y}}$ can be chosen as \mathcal{Y}_0 .
 - Uniqueness: $\mathcal{Y}_0 \equiv \mathcal{Y}_1 \neq \mathcal{Y}_0 \Rightarrow \mathcal{Y}_0 \cup \mathcal{Y}_1 = S$ so we cannot have $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \mathcal{X}$ or $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \overline{\mathcal{X}}$.
- WLOG, let Y₀ ⊆ X. Then Y₀ ⊆ Y₁ ⊆ ... ⊆ Y_n = X gives a path on T joining the vertices represented by Y and X.
 - ► Thus *T* is **connected**.
- Moreover, no cycle in T.
 - No edge between \mathcal{Y}_i and \mathcal{Y}_j for |i j| > 1 (by maximality).
 - ▶ $Z_i \subseteq X$ cannot be adjacent to $Z_j \subseteq \overline{X}$ unless $Z_i = X$ and $Z_j = \overline{X}$.

- Let $\mathcal{X}, \bar{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}$, $\exists ! \mathcal{Y}_0$ with $\mathcal{Y}_0 \equiv \mathcal{Y}$ such that $\mathcal{Y}_0 \subseteq \mathcal{X}$ or $\mathcal{Y}_0 \subseteq \overline{\mathcal{X}}$.
 - Existence: either $\mathcal{Y} \subseteq \mathcal{X}$, $\mathcal{Y} \subseteq \overline{\mathcal{X}}$, $\overline{\mathcal{Y}} \subseteq \mathcal{X}$, or $\overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$.
 - * Either \mathcal{Y} or the minimal subcluster of \mathcal{X} (or $\overline{\mathcal{X}}$) containing $\overline{\mathcal{Y}}$ can be chosen as \mathcal{Y}_0 .
 - Uniqueness: $\mathcal{Y}_0 \equiv \mathcal{Y}_1 \neq \mathcal{Y}_0 \Rightarrow \mathcal{Y}_0 \cup \mathcal{Y}_1 = S$ so we cannot have $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \mathcal{X}$ or $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \overline{\mathcal{X}}$.
- WLOG, let 𝒴₀ ⊆ 𝒴. Then 𝒴₀ ⊆ 𝒴₁ ⊆ ... ⊆ 𝒴_n = 𝒴 gives a path on 𝒯 joining the vertices represented by 𝒴 and 𝒴.
 - ► Thus *T* is **connected**.
- Moreover, **no cycle** in *T*.
 - No edge between \mathcal{Y}_i and \mathcal{Y}_j for |i j| > 1 (by maximality).
 - ▶ $Z_i \subseteq X$ cannot be adjacent to $Z_j \subseteq \overline{X}$ unless $Z_i = X$ and $Z_j = \overline{X}$.

- Let $\mathcal{X}, \bar{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}$, $\exists ! \mathcal{Y}_0$ with $\mathcal{Y}_0 \equiv \mathcal{Y}$ such that $\mathcal{Y}_0 \subseteq \mathcal{X}$ or $\mathcal{Y}_0 \subseteq \overline{\mathcal{X}}$.
 - Existence: either $\mathcal{Y} \subseteq \mathcal{X}$, $\mathcal{Y} \subseteq \overline{\mathcal{X}}$, $\overline{\mathcal{Y}} \subseteq \mathcal{X}$, or $\overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$.
 - * Either \mathcal{Y} or the minimal subcluster of \mathcal{X} (or $\overline{\mathcal{X}}$) containing $\overline{\mathcal{Y}}$ can be chosen as \mathcal{Y}_0 .
 - Uniqueness: $\mathcal{Y}_0 \equiv \mathcal{Y}_1 \neq \mathcal{Y}_0 \Rightarrow \mathcal{Y}_0 \cup \mathcal{Y}_1 = S$ so we cannot have $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \mathcal{X}$ or $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \overline{\mathcal{X}}$.
- WLOG, let $\mathcal{Y}_0 \subseteq \mathcal{X}$. Then $\mathcal{Y}_0 \subseteq \mathcal{Y}_1 \subseteq \ldots \subseteq \mathcal{Y}_n = \mathcal{X}$ gives a path on \mathcal{T} joining the vertices represented by \mathcal{Y} and \mathcal{X} .
 - ► Thus *T* is **connected**.
- Moreover, **no cycle** in *T*.
 - ▶ No edge between \mathcal{Y}_i and \mathcal{Y}_j for |i j| > 1 (by maximality)
 - $Z_i \subseteq X$ cannot be adjacent to $Z_j \subseteq \overline{X}$ unless $Z_i = X$ and $Z_j = \overline{X}$.

- Let $\mathcal{X}, \bar{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}$, $\exists ! \mathcal{Y}_0$ with $\mathcal{Y}_0 \equiv \mathcal{Y}$ such that $\mathcal{Y}_0 \subseteq \mathcal{X}$ or $\mathcal{Y}_0 \subseteq \overline{\mathcal{X}}$.
 - Existence: either $\mathcal{Y} \subseteq \mathcal{X}$, $\mathcal{Y} \subseteq \overline{\mathcal{X}}$, $\overline{\mathcal{Y}} \subseteq \mathcal{X}$, or $\overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$.
 - * Either \mathcal{Y} or the minimal subcluster of \mathcal{X} (or $\overline{\mathcal{X}}$) containing $\overline{\mathcal{Y}}$ can be chosen as \mathcal{Y}_0 .
 - Uniqueness: $\mathcal{Y}_0 \equiv \mathcal{Y}_1 \neq \mathcal{Y}_0 \Rightarrow \mathcal{Y}_0 \cup \mathcal{Y}_1 = S$ so we cannot have $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \mathcal{X}$ or $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \overline{\mathcal{X}}$.
- WLOG, let $\mathcal{Y}_0 \subseteq \mathcal{X}$. Then $\mathcal{Y}_0 \subseteq \mathcal{Y}_1 \subseteq \ldots \subseteq \mathcal{Y}_n = \mathcal{X}$ gives a path on \mathcal{T} joining the vertices represented by \mathcal{Y} and \mathcal{X} .
 - Thus T is connected.
- Moreover, **no cycle** in T.
 - ▶ No edge between \mathcal{Y}_i and \mathcal{Y}_j for |i j| > 1 (by maximality).
 - $Z_i \subseteq X$ cannot be adjacent to $Z_j \subseteq \overline{X}$ unless $Z_i = X$ and $Z_j = \overline{X}$.

- Let $\mathcal{X}, \bar{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}$, $\exists ! \mathcal{Y}_0$ with $\mathcal{Y}_0 \equiv \mathcal{Y}$ such that $\mathcal{Y}_0 \subseteq \mathcal{X}$ or $\mathcal{Y}_0 \subseteq \overline{\mathcal{X}}$.
 - Existence: either $\mathcal{Y} \subseteq \mathcal{X}$, $\mathcal{Y} \subseteq \overline{\mathcal{X}}$, $\overline{\mathcal{Y}} \subseteq \mathcal{X}$, or $\overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$.
 - * Either \mathcal{Y} or the minimal subcluster of \mathcal{X} (or $\overline{\mathcal{X}}$) containing $\overline{\mathcal{Y}}$ can be chosen as \mathcal{Y}_0 .
 - Uniqueness: $\mathcal{Y}_0 \equiv \mathcal{Y}_1 \neq \mathcal{Y}_0 \Rightarrow \mathcal{Y}_0 \cup \mathcal{Y}_1 = S$ so we cannot have $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \mathcal{X}$ or $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \overline{\mathcal{X}}$.
- WLOG, let $\mathcal{Y}_0 \subseteq \mathcal{X}$. Then $\mathcal{Y}_0 \subseteq \mathcal{Y}_1 \subseteq \ldots \subseteq \mathcal{Y}_n = \mathcal{X}$ gives a path on \mathcal{T} joining the vertices represented by \mathcal{Y} and \mathcal{X} .
 - ► Thus *T* is **connected**.
- Moreover, no cycle in T.
 - ▶ No edge between \mathcal{Y}_i and \mathcal{Y}_j for |i j| > 1 (by maximality).
 - $Z_i \subseteq X$ cannot be adjacent to $Z_j \subseteq \overline{X}$ unless $Z_i = X$ and $Z_j = \overline{X}$.

- Let $\mathcal{X}, \bar{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}$, $\exists ! \mathcal{Y}_0$ with $\mathcal{Y}_0 \equiv \mathcal{Y}$ such that $\mathcal{Y}_0 \subseteq \mathcal{X}$ or $\mathcal{Y}_0 \subseteq \overline{\mathcal{X}}$.
 - Existence: either $\mathcal{Y} \subseteq \mathcal{X}$, $\mathcal{Y} \subseteq \overline{\mathcal{X}}$, $\overline{\mathcal{Y}} \subseteq \mathcal{X}$, or $\overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$.
 - * Either \mathcal{Y} or the minimal subcluster of \mathcal{X} (or $\overline{\mathcal{X}}$) containing $\overline{\mathcal{Y}}$ can be chosen as \mathcal{Y}_0 .
 - Uniqueness: $\mathcal{Y}_0 \equiv \mathcal{Y}_1 \neq \mathcal{Y}_0 \Rightarrow \mathcal{Y}_0 \cup \mathcal{Y}_1 = S$ so we cannot have $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \mathcal{X}$ or $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \overline{\mathcal{X}}$.
- WLOG, let $\mathcal{Y}_0 \subseteq \mathcal{X}$. Then $\mathcal{Y}_0 \subseteq \mathcal{Y}_1 \subseteq \ldots \subseteq \mathcal{Y}_n = \mathcal{X}$ gives a path on \mathcal{T} joining the vertices represented by \mathcal{Y} and \mathcal{X} .
 - ► Thus *T* is **connected**.
- Moreover, no cycle in T.
 - ▶ No edge between \mathcal{Y}_i and \mathcal{Y}_j for |i j| > 1 (by maximality).
 - $Z_i \subseteq X$ cannot be adjacent to $Z_j \subseteq \overline{X}$ unless $Z_i = X$ and $Z_j = \overline{X}$.

The one-to-one correspondence with complementary cluster pairs

•
$$\mathcal{Y} \equiv \mathcal{X}$$
 and $\overline{\mathcal{Y}} \equiv \overline{\mathcal{X}} \Rightarrow \mathcal{Y} = \mathcal{X}$.

- So the edges of T are in one-to-one correspondence with the complementary cluster pairs $\mathcal{X}, \overline{\mathcal{X}}$.
- Hence the clusters in a given equivalence class correspond in a one-to-one manner to the edges incident with this equivalence class (regarded as a vertex).

The one-to-one correspondence with complementary cluster pairs

•
$$\mathcal{Y} \equiv \mathcal{X}$$
 and $\bar{\mathcal{Y}} \equiv \bar{\mathcal{X}} \Rightarrow \mathcal{Y} = \mathcal{X}$.

- So the edges of T are in one-to-one correspondence with the complementary cluster pairs X, X.
- Hence the clusters in a given equivalence class correspond in a one-to-one manner to the edges incident with this equivalence class (regarded as a vertex).

Is every taxon A represented by a unique equivalence class $\rho(A)$?

• Yes.

• $\{A\} \in \mathbb{C}$ for all $A \in S$ and $\rho(A) = \{A\}$.

Outline

Introduction

- 2 Cluster and tree-likeness
- 3 Quartet topologies and tree-likeness

4 Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Quartet topologies

<ロ > < 部 > < 書 > < 書 > 書 > 名 () 28 / 41 Quartet topologies (contd.)

- Let Q be a set of quartet topologies over S.
- Assume that Q is complete: every four taxa in S has exactly one quartet topology in Q.

Translation between clusters and quartet topologies

- $[AB|CD] \in Q$ if and only if $A, B \in Y$ and $C, D \in \overline{Y}$ for some cluster $Y \in \mathbb{C}$.
- Y is a cluster of size at least two if and only if $Y \neq S$ and $[AB|CD] \in Q$ for all $A, B \in Y$ and for all $C, D \in \overline{Y}$.

The substitution property

 $[AB|CD] \in Q \implies \\ \star [AB|CE], [AB|DE] \in Q \text{ or } [AE|CD], [BE|CD] \in Q \\ \text{for any } E \in S \setminus \{A, B, C, D\}.$

• We say a quintet $q = \{s_1, s_2, s_3, s_4, s_5\}$ is consistent if for every bijection $\sigma : q \rightarrow \{A, B, C, D, E\}$, we have $[AB|CD] \in Q \Rightarrow [AB|CE], [AB|DE] \in Q$ or $[AE|CD], [BE|CD] \in Q$.

Transitive property

Lemma 1

If every quintet over S satisfies the substitution property, then for every quintet $\{A, B, C, D, E\}$, we have

 $[AB|CD], [AB|DE] \in Q \Rightarrow [AB|CE] \in Q.$

Q is tree-like:

 \exists an evolutionary tree T whose set of induced quartet topologies is exactly Q.

Proposition 2

Q is tree-like \Leftrightarrow every quintet over S is consistent.

• Assume that $Q = \{[AB|CD], [AB|CE], [AB|CF], [AB|DE], [AB|DF], [AB|DF], [AB|EF], [AE|CD], [AF|CD], [AE|CF], [AD|EF], [BC|DE], [BF|CD], [BE|CF], [BE|DF], [CD|EF]\}.$

Proposition 2

Q is tree-like \Leftrightarrow every quintet over S is consistent.

• Assume that $Q = \{[AB|CD], [AB|CE], [AB|CF], [AB|DE], [AB|DF], [AB|DF], [AB|EF], [AE|CD], [AF|CD], [AE|CF], [AD|EF], [BC|DE], [BF|CD], [BE|CF], [BE|DF], [CD|EF]\}.$

Proposition 2

Q is tree-like \Leftrightarrow every quintet over S is consistent.

• Assume that $Q = \{[AB|CD], [AB|CE], [AB|CF], [AB|DE], [AB|DF], [AB|DF], [AB|EF], [AE|CD], [AF|CD], [AE|CF], [AD|EF], [BC|DE], [BF|CD], [BE|CF], [BE|DF], [CD|EF]\}.$

Proposition 2

Q is tree-like \Leftrightarrow every quintet over S is consistent.

• Assume that $Q = \{[AB|CD], [AB|CE], [AB|CF], [AB|DE], [AB|DF], [AB|DF], [AB|EF], [AE|CD], [AF|CD], [AE|CF], [AD|EF], [BC|DE], [BF|CD], [BE|CF], [BE|DF], [CD|EF]\}.$

Proposition 2

Q is tree-like \Leftrightarrow every quintet over S is consistent.

• Assume that $Q = \{[AB|CD], [AB|CE], [AB|CF], [AB|DE], [AB|DF], [AB|DF], [AB|EF], [AE|CD], [AF|CD], [AE|CF], [AD|EF], [BC|DE], [BF|CD], [BE|CF], [BE|DF], [CD|EF]\}.$
• The if-part is clearly true.

- We construct abstract clusters w.r.t. Q as follows.
 - Construct clusters {A} and their complementary clusters S \ {A} for each A ∈ S. (Trivial clusters)
 - Construct a cluster \mathcal{Y} w.r.t. Q when $1 < |\mathcal{Y}| < n-1$ and $[AB|CD] \in Q$ for all $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
 - \mathcal{Y} is a cluster $\Leftrightarrow \overline{\mathcal{Y}}$ is a cluster.
- Any two clusters \mathcal{X}, \mathcal{Y} w.r.t. Q are compatible.
 - ► Assume $A \in X \cap \mathcal{Y}$, $B \in X \cap \overline{\mathcal{Y}}$, $C \in \overline{X} \cap \mathcal{Y}$, $D \in \overline{X} \cap \overline{\mathcal{Y}}$. We have $[AB|CD], [AC|BD] \in Q (\Rightarrow \Leftarrow)$

• The if-part is clearly true.

• We construct abstract clusters w.r.t. Q as follows.

- Construct clusters {A} and their complementary clusters S \ {A} for each A ∈ S. (Trivial clusters)
- Construct a cluster \mathcal{Y} w.r.t. Q when $1 < |\mathcal{Y}| < n-1$ and $[AB|CD] \in Q$ for all $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.

• \mathcal{Y} is a cluster $\Leftrightarrow \overline{\mathcal{Y}}$ is a cluster.

- Any two clusters \mathcal{X}, \mathcal{Y} w.r.t. Q are compatible.
 - ► Assume $A \in \mathcal{X} \cap \mathcal{Y}$, $B \in \mathcal{X} \cap \overline{\mathcal{Y}}$, $C \in \overline{\mathcal{X}} \cap \mathcal{Y}$, $D \in \overline{\mathcal{X}} \cap \overline{\mathcal{Y}}$. We have $[AB|CD], [AC|BD] \in Q (\Rightarrow \Leftarrow)$

- The if-part is clearly true.
- We construct abstract clusters w.r.t. Q as follows.
 - Construct clusters {A} and their complementary clusters S \ {A} for each A ∈ S. (Trivial clusters)
 - ▶ Construct a cluster \mathcal{Y} w.r.t. Q when $1 < |\mathcal{Y}| < n-1$ and $[AB|CD] \in Q$ for all $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
 - \mathcal{Y} is a cluster $\Leftrightarrow \overline{\mathcal{Y}}$ is a cluster.
- Any two clusters \mathcal{X}, \mathcal{Y} w.r.t. Q are compatible.
 - ► Assume $A \in \mathcal{X} \cap \mathcal{Y}$, $B \in \mathcal{X} \cap \overline{\mathcal{Y}}$, $C \in \overline{\mathcal{X}} \cap \mathcal{Y}$, $D \in \overline{\mathcal{X}} \cap \overline{\mathcal{Y}}$. We have $[AB|CD], [AC|BD] \in Q \implies (\Rightarrow \Leftarrow)$

- The if-part is clearly true.
- We construct abstract clusters w.r.t. Q as follows.
 - Construct clusters {A} and their complementary clusters S \ {A} for each A ∈ S. (Trivial clusters)
 - Construct a cluster \mathcal{Y} w.r.t. Q when $1 < |\mathcal{Y}| < n-1$ and $[AB|CD] \in Q$ for all $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.

•
$$\mathcal{Y}$$
 is a cluster $\Leftrightarrow \overline{\mathcal{Y}}$ is a cluster.

- Any two clusters \mathcal{X}, \mathcal{Y} w.r.t. Q are compatible.
 - ► Assume $A \in \mathcal{X} \cap \mathcal{Y}$, $B \in \mathcal{X} \cap \overline{\mathcal{Y}}$, $C \in \overline{\mathcal{X}} \cap \mathcal{Y}$, $D \in \overline{\mathcal{X}} \cap \overline{\mathcal{Y}}$. We have $[AB|CD], [AC|BD] \in Q (\Rightarrow \Leftarrow)$

- The if-part is clearly true.
- We construct abstract clusters w.r.t. Q as follows.
 - Construct clusters {A} and their complementary clusters S \ {A} for each A ∈ S. (Trivial clusters)
 - ▶ Construct a cluster \mathcal{Y} w.r.t. Q when $1 < |\mathcal{Y}| < n 1$ and $[AB|CD] \in Q$ for all $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.

•
$$\mathcal{Y}$$
 is a cluster $\Leftrightarrow \overline{\mathcal{Y}}$ is a cluster.

- Any two clusters \mathcal{X}, \mathcal{Y} w.r.t. Q are compatible.
 - ► Assume $A \in \mathcal{X} \cap \mathcal{Y}$, $B \in \mathcal{X} \cap \overline{\mathcal{Y}}$, $C \in \overline{\mathcal{X}} \cap \mathcal{Y}$, $D \in \overline{\mathcal{X}} \cap \overline{\mathcal{Y}}$. We have $[AB|CD], [AC|BD] \in Q \implies (\Rightarrow \Leftarrow)$

- The if-part is clearly true.
- We construct abstract clusters w.r.t. Q as follows.
 - Construct clusters {A} and their complementary clusters S \ {A} for each A ∈ S. (Trivial clusters)
 - Construct a cluster \mathcal{Y} w.r.t. Q when $1 < |\mathcal{Y}| < n-1$ and $[AB|CD] \in Q$ for all $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.

•
$$\mathcal{Y}$$
 is a cluster $\Leftrightarrow \overline{\mathcal{Y}}$ is a cluster.

- Any two clusters \mathcal{X}, \mathcal{Y} w.r.t. Q are compatible.
 - ► Assume $A \in \mathcal{X} \cap \mathcal{Y}$, $B \in \mathcal{X} \cap \overline{\mathcal{Y}}$, $C \in \overline{\mathcal{X}} \cap \mathcal{Y}$, $D \in \overline{\mathcal{X}} \cap \overline{\mathcal{Y}}$. We have $[AB|CD], [AC|BD] \in Q \implies (\Rightarrow \Leftarrow)$

Construct the corresponding clusters and show that they coincide with Q.

- Assume that $[AB|CD] \in Q$ and let $\mathcal{Y} = \{E \mid [AE|CD] \in Q \text{ or } [BE|CD] \in Q\}.$ • $[AE|CD] \in Q \Leftrightarrow [BE|CD] \in Q \text{ (transitivity)}.$
- $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- If $E \in \mathcal{Y}, F \in \overline{\mathcal{Y}}$, then $[AE|CF] \in Q$ (by the substitution property & $[AF|CD] \notin Q$ since $F \notin \mathcal{Y}$).
- Hence for taxa M₁, M₂ ∈ 𝒱 and N₁, N₂ ∈ 𝒱 we have [AM_i|CN_j] ∈ Q for i, j = 1, 2.
- By transitivity, $[M_1M_2|CN_j] \in Q$ for j = 1, 2, and further $[M_1M_2|N_1N_2] \in Q$.

Construct the corresponding clusters and show that they coincide with Q.

• Assume that $[AB|CD] \in Q$ and let $\mathcal{Y} = \{E \mid [AE|CD] \in Q \text{ or } [BE|CD] \in Q\}.$ • $[AE|CD] \in Q \Leftrightarrow [BE|CD] \in Q \text{ (transitivity)}.$

- $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- If $E \in \mathcal{Y}, F \in \overline{\mathcal{Y}}$, then $[AE|CF] \in Q$ (by the substitution property & $[AF|CD] \notin Q$ since $F \notin \mathcal{Y}$).
- Hence for taxa M₁, M₂ ∈ 𝒱 and N₁, N₂ ∈ 𝒱 we have [AM_i|CN_j] ∈ Q for i, j = 1, 2.
- By transitivity, $[M_1M_2|CN_j] \in Q$ for j = 1, 2, and further $[M_1M_2|N_1N_2] \in Q$.

Construct the corresponding clusters and show that they coincide with Q.

- Assume that $[AB|CD] \in Q$ and let $\mathcal{Y} = \{E \mid [AE|CD] \in Q \text{ or } [BE|CD] \in Q\}.$ • $[AE|CD] \in Q \Leftrightarrow [BE|CD] \in Q \text{ (transitivity)}.$
- $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- If $E \in \mathcal{Y}, F \in \overline{\mathcal{Y}}$, then $[AE|CF] \in Q$ (by the substitution property & $[AF|CD] \notin Q$ since $F \notin \mathcal{Y}$).
- Hence for taxa M₁, M₂ ∈ 𝔅 and N₁, N₂ ∈ 𝔅 we have [AM_i|CN_j] ∈ Q for i, j = 1, 2.

36 / 41

• By transitivity, $[M_1M_2|CN_j] \in Q$ for j = 1, 2, and further $[M_1M_2|N_1N_2] \in Q$.

Construct the corresponding clusters and show that they coincide with Q.

- Assume that $[AB|CD] \in Q$ and let $\mathcal{Y} = \{E \mid [AE|CD] \in Q \text{ or } [BE|CD] \in Q\}.$ • $[AE|CD] \in Q \Leftrightarrow [BE|CD] \in Q \text{ (transitivity)}.$
- $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- If $E \in \mathcal{Y}, F \in \overline{\mathcal{Y}}$, then $[AE|CF] \in Q$ (by the substitution property & $[AF|CD] \notin Q$ since $F \notin \mathcal{Y}$).
- Hence for taxa $M_1, M_2 \in \mathcal{Y}$ and $N_1, N_2 \in \overline{\mathcal{Y}}$ we have $[AM_i | CN_j] \in Q$ for i, j = 1, 2.

36 / 41

• By transitivity, $[M_1M_2|CN_j] \in Q$ for j = 1, 2, and further $[M_1M_2|N_1N_2] \in Q$.

Construct the corresponding clusters and show that they coincide with Q.

- Assume that $[AB|CD] \in Q$ and let $\mathcal{Y} = \{E \mid [AE|CD] \in Q \text{ or } [BE|CD] \in Q\}.$ • $[AE|CD] \in Q \Leftrightarrow [BE|CD] \in Q \text{ (transitivity)}.$
- $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- If $E \in \mathcal{Y}, F \in \overline{\mathcal{Y}}$, then $[AE|CF] \in Q$ (by the substitution property & $[AF|CD] \notin Q$ since $F \notin \mathcal{Y}$).
- Hence for taxa $M_1, M_2 \in \mathcal{Y}$ and $N_1, N_2 \in \overline{\mathcal{Y}}$ we have $[AM_i|CN_j] \in Q$ for i, j = 1, 2.

36 / 41

• By transitivity, $[M_1M_2|CN_j] \in Q$ for j = 1, 2, and further $[M_1M_2|N_1N_2] \in Q$.

Construct the corresponding clusters and show that they coincide with Q.

- Assume that $[AB|CD] \in Q$ and let $\mathcal{Y} = \{E \mid [AE|CD] \in Q \text{ or } [BE|CD] \in Q\}.$ • $[AE|CD] \in Q \Leftrightarrow [BE|CD] \in Q \text{ (transitivity)}.$
- $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- If $E \in \mathcal{Y}, F \in \overline{\mathcal{Y}}$, then $[AE|CF] \in Q$ (by the substitution property & $[AF|CD] \notin Q$ since $F \notin \mathcal{Y}$).
- Hence for taxa $M_1, M_2 \in \mathcal{Y}$ and $N_1, N_2 \in \overline{\mathcal{Y}}$ we have $[AM_i | CN_j] \in Q$ for i, j = 1, 2.
- By transitivity, $[M_1M_2|CN_j] \in Q$ for j = 1, 2, and further $[M_1M_2|N_1N_2] \in Q$.

An improved result...

Proposition 3

Given any fixed taxon F, then: Q is tree-like \Leftrightarrow every quintet containing F is consistent.

< □ > < @ > < E > < E > E のQ (~ 37/41

• Assume that $[AB|CD] \in Q$ and let E be any taxon in $S \setminus \{A, B, C, D\}$.

• Wish to show: either $[AE|CD] \in Q$ or $[AB|CE] \in Q$.

- ▶ By the assumption, either $[AB|CF] \in Q$ or $[AF|CD] \in Q$ is true.
- $\blacktriangleright \Rightarrow [AB|DF] \in Q.$
- ▶ \Rightarrow either $[AB|EF] \in Q$ or $[AE|DF] \in Q$.
 - * If $[AB|EF] \in Q$, so does $[AB|CE] \in Q$ (transitivity & $[AB|CF] \in Q$)

★ Otherwise, (i.e., $[AE|DF] \in Q$). $\because [AB|CE] \in Q$ or $[AE|CF] \in Q$ ($\because [AB|CF] \in Q$).

- Assume that $[AB|CD] \in Q$ and let E be any taxon in $S \setminus \{A, B, C, D\}$.
- Wish to show: either $[AE|CD] \in Q$ or $[AB|CE] \in Q$.
 - ▶ By the assumption, either $[AB|CF] \in Q$ or $[AF|CD] \in Q$ is true.
 - $\blacktriangleright \Rightarrow [AB|DF] \in Q.$
 - ▶ \Rightarrow either $[AB|EF] \in Q$ or $[AE|DF] \in Q$.
 - ★ If $[AB|EF] \in Q$, so does $[AB|CE] \in Q$ (transitivity & $[AB|CF] \in Q$)

★ Otherwise, (i.e., $[AE|DF] \in Q$). ∵ $[AB|CE] \in Q$ or $[AE|CF] \in Q$ (∵ $[AB|CF] \in Q$).

- Assume that $[AB|CD] \in Q$ and let E be any taxon in $S \setminus \{A, B, C, D\}$.
- Wish to show: either $[AE|CD] \in Q$ or $[AB|CE] \in Q$.
 - ▶ By the assumption, either $[AB|CF] \in Q$ or $[AF|CD] \in Q$ is true.
 - $\blacktriangleright \Rightarrow [AB|DF] \in Q.$
 - \Rightarrow either $[AB|EF] \in Q$ or $[AE|DF] \in Q$.
 - ★ If $[AB|EF] \in Q$, so does $[AB|CE] \in Q$ (transitivity & $[AB|CF] \in Q$).

★ Otherwise, (i.e., $[AE|DF] \in Q$). ∵ $[AB|CE] \in Q$ or $[AE|CF] \in Q$ (∵ $[AB|CF] \in Q$).

- Assume that $[AB|CD] \in Q$ and let E be any taxon in $S \setminus \{A, B, C, D\}$.
- Wish to show: either $[AE|CD] \in Q$ or $[AB|CE] \in Q$.
 - ▶ By the assumption, either $[AB|CF] \in Q$ or $[AF|CD] \in Q$ is true.
 - ▶ \Rightarrow [AB|DF] \in Q.
 - ▶ ⇒ either $[AB|EF] \in Q$ or $[AE|DF] \in Q$.
 - ★ If $[AB|EF] \in Q$, so does $[AB|CE] \in Q$ (transitivity & $[AB|CF] \in Q$).

★ Otherwise, (i.e., $[AE|DF] \in Q$). ∵ $[AB|CE] \in Q$ or $[AE|CF] \in Q$ (∵ $[AB|CF] \in Q$

- Assume that $[AB|CD] \in Q$ and let E be any taxon in $S \setminus \{A, B, C, D\}$.
- Wish to show: either $[AE|CD] \in Q$ or $[AB|CE] \in Q$.
 - ▶ By the assumption, either $[AB|CF] \in Q$ or $[AF|CD] \in Q$ is true.
 - $\blacktriangleright \Rightarrow [AB|DF] \in Q.$
 - ▶ \Rightarrow either $[AB|EF] \in Q$ or $[AE|DF] \in Q$.
 - ★ If $[AB|EF] \in Q$, so does $[AB|CE] \in Q$ (transitivity & $[AB|CF] \in Q$).

38 / 41

★ Otherwise, (i.e., $[AE|DF] \in Q$). $\therefore [AB|CE] \in Q$ or $[AE|CF] \in Q$ ($\therefore [AB|CF] \in Q$).

- Assume that $[AB|CD] \in Q$ and let E be any taxon in $S \setminus \{A, B, C, D\}$.
- Wish to show: either $[AE|CD] \in Q$ or $[AB|CE] \in Q$.
 - ▶ By the assumption, either $[AB|CF] \in Q$ or $[AF|CD] \in Q$ is true.
 - ► \Rightarrow [AB|DF] \in Q.
 - \Rightarrow either $[AB|EF] \in Q$ or $[AE|DF] \in Q$.
 - ★ If $[AB|EF] \in Q$, so does $[AB|CE] \in Q$ (transitivity & $[AB|CF] \in Q$).

38 / 41

★ Otherwise, (i.e., $[AE|DF] \in Q$). $\therefore [AB|CE] \in Q$ or $[AE|CF] \in Q$ ($\therefore [AB|CF] \in Q$).

- Assume that $[AB|CD] \in Q$ and let E be any taxon in $S \setminus \{A, B, C, D\}$.
- Wish to show: either $[AE|CD] \in Q$ or $[AB|CE] \in Q$.
 - ▶ By the assumption, either $[AB|CF] \in Q$ or $[AF|CD] \in Q$ is true.
 - ▶ \Rightarrow [AB|DF] \in Q.
 - ▶ ⇒ either $[AB|EF] \in Q$ or $[AE|DF] \in Q$.
 - ★ If $[AB|EF] \in Q$, so does $[AB|CE] \in Q$ (transitivity & $[AB|CF] \in Q$).

★ Otherwise, (i.e., $[AE|DF] \in Q$). $\therefore [AB|CE] \in Q$ or $[AE|CF] \in Q$ ($\therefore [AB|CF] \in Q$).

- Assume that $[AB|CD] \in Q$ and let E be any taxon in $S \setminus \{A, B, C, D\}$.
- Wish to show: either $[AE|CD] \in Q$ or $[AB|CE] \in Q$.
 - ▶ By the assumption, either $[AB|CF] \in Q$ or $[AF|CD] \in Q$ is true.
 - ▶ \Rightarrow [AB|DF] \in Q.
 - ▶ ⇒ either $[AB|EF] \in Q$ or $[AE|DF] \in Q$.
 - ★ If $[AB|EF] \in Q$, so does $[AB|CE] \in Q$ (transitivity & $[AB|CF] \in Q$).

★ Otherwise, (i.e., $[AE|DF] \in Q$). $\therefore [AB|CE] \in Q$ or $[AE|CF] \in Q$ ($\therefore [AB|CF] \in Q$).

The latter with $[AE|DF] \in Q$ gives $[AE|CD] \in Q$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Introduction

- 2 Cluster and tree-likeness
- 3 Quartet topologies and tree-likeness

4 Conclusions

・ロト (高) (言) (言) (言) (言) (39/41)

Conclusions

- The arguments in the paper are very unclear.
- I felt painful when reading this paper.

Thank you!