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Evolutionary trees

@ A set of ntaxa S.

@ An evolutionary tree T = (V,E) on S:

> internal vertices with degree 3.
> bijection from S to the leaves of T.
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Clusters

@ Clusters: nonempty proper subsets of S according to T.

» C={X C S| X #0,Je € E such that any two taxa in X are
connected by a path in T avoiding e, and X is maximal
with respect to this property}.

@ Splits: two complementary clusters.
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Clusters

@ Clusters: nonempty proper subsets of S according to T.

» C={X C S| X #0,Je € E such that any two taxa in X are
connected by a path in T avoiding e, and X is maximal
with respect to this property}.

@ Splits: two complementary clusters.

@ There are (2n — 3) splits.

o C={{A},{B},{C},{D},{E},{A B},{C,D},{A,B,E},{C,D,E}
{A,B,C,D},{A,B,C,E},{A,B,D,E},{A C,D,E},{B,C,D,E}}.
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A distinguished subsystem of clusters

@ X € p(v) iff the deletion of some edges e of T incident with v results
in two subtrees of T one of which contains the vertex v and is
defined on X.
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A distinguished subsystem of clusters (contd.)

@ Assume that

C = {{A},{B}.{C},{D},{E}.{A,B},{C,D},{A,B,E},{C,D,E}
{A,B,C,D},{A,B,C,E},{A,B,D,E},{A C,D,E},{B,C,D,E}}.




A distinguished subsystem of clusters (contd.)

@ Assume that
C={{A}{B},{C}.{D}.{E}.{A,B},{C,D},{A,B,E},{C,D,E}
{A,B,C,D},{A,B,C,E},{A,B,D,E} {A,C,D,E},{B,C,D,E}}.

o p(A) = {{A}}, n(B) ={{B}}, n(C)={{C}},...
o p(x)={{A,B},{A,C,D,E} {B,C,D,E}};
p(y):{{A,B,E},{A,B,C,D},{C,D,E}};
p(z) ={{C,D},{A,B,C,E},{A,B,D,E}}.
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Proposition 1
C is the cluster system of an evolutionary tree on S
if and only if

o {A} € C foreach A€ S,
e Y eC & YecC (totally (4n — 6) clusters) and
o for X, Y € C, either X CY, X CY, X CY, or X CY (compatible).

S S
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Proposition 1
C is the cluster system of an evolutionary tree on S
if and only if

o {A} € C foreach A€ S,
@ Y eC & YecC (totally (4n — 6) clusters) and
o for X, Y € C, either X CY, X CY, X CY, or X CY (compatible).

S S

<2 00

@ Equivalent definition: X = Y iff at least one of the following
intersections are empty:

» XNY, XNY, XNy Xn).




Compatible clusters

e S={A,B,C,D,E}
e X=1{AB,C,D},Y ={C,D,E},
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Compatible clusters

e S={A B,C,D,E}
e X ={AB,C,D},Y={C,D,E}, X ={E},Y = {A, B}.
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Compatible clusters

e S={A B,C,D,E}
e X ={AB,C,D},Y={C,D,E}, X ={E},Y = {A, B}.
o XNY={C,D}, xnY={AB}, XnY={E}, XnY =1
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Compatible clusters (contd.)

° S:{A,B,C,D,E}
° X:{AvB}ay:{AvB’CvD}v ‘)E:{C?D7E}’)7:{E}
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Compatible clusters (contd.)

o S={AB,C,D E}
° X:{AvB}ay:{AvB’CvD}v ‘)E:{C?D7E}’)7:{E}
o XNY={AB}, XnY=0,XnY={C,D}, XnY = {E}.

S
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Compatible clusters (contd.)
o S={AB,C,D,E}

o X ={AB},Yy={C,D}, X ={C,D,E},Y = {A,B,E}.
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Compatible clusters (contd.)

e S={AB,C,D,E}
o X ={AB},Yy={C,D}, X ={C,D,E},Y = {A,B,E}.
o XNY=0,XnY={AB}, XxnYy={C,D}, ¥XnY ={E}.

S

o =1 = = ERRING
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Compatible clusters (contd.)

e S={AB,C,D,E}
o X ={AB},Yy={C,D,E}, X={C,D,E},Y = {A, B}.

o =1 = = ERRING
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Compatible clusters (contd.)

e S={AB,C,D,E}
o X ={AB},Yy={C,D,E}, X={C,D,E},Y = {A, B}.
o XNY=0,XNnY={AB}, XxnYy={C,D}, XnY =0.

S

o =1 = = ERRING
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Non-compatible clusters
e S={AB,C,D,E}
e X={AB,C},Yy={B,C,D}, X ={D,E},Y = {A E}.
o XNY={B,C},XnY={A}, XnYy={D}, XnY={E}.

S
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Some observations (for a compatible C)

Y& YCX for any two clusters X, V.
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Some observations (for a compatible C)

e XCY<eYCX for any two clusters X', ).

o VX, Y eC, where Y C Y, if X C Zy,...,2,C Y and |Zi| < |Z]]
for i <j, then 21 C Z,... C 24 (Z1,..., 2k forms a chain).

— Z,

z, z, : a
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L2k CY, and |2 < |Z]
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Some observations (for a compatible C)

e XCY<eYCX for any two clusters X', ).
o VX,V eC, where Y C Y, if X C Zq,...,2(CY, and | Zi| < |Z]]
for i <j, then 21 C Z,... C 24 (Z1,..., 2k forms a chain).
» CXCZ,ZCY=0£XC2ZN2Zandd#YC 2N 2
> then we have Z; C Z; or Z; C Z; for all /.
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Recall the distinguished subsystem of C ...

o p(A) ={{A}}, p(B) ={{B}}, p(C)={{C}},...,
p(x) ={{A,B},{A,C,D,E} {B,C,D,E}};
p( ) {{Av B, E},{A,B,C, D},{C, D, E}};
p(z) ={{C,D},{A,B,C,E},{A,B,D,E}}.

@ We can DEFINE a corresponding equivalence relation on C:
» For X,Y € C, wesay X =) if and only if either ¥ =) or X is a
maximal proper subcluster of ).
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How to reconstruct T from a corresponding C?

@ Each equivalence class p(x) of = represents a vertex of T.
e p(x) ={A} < a leaf node A.

@ p(x),p(y) represent adjacent vertices x, y iff 3) € C such that
Y € p(x) and Y € p(y).

17 /41



Sketch of the proof of Proposition 1

Proposition 1

C is the cluster system of an evolutionary tree T on S
if and only if

o {A} € Cforeach Ac S,
e YecC«&YeCand
@ every two X, ) € C are compatible.

@ The if-part is easy (by observing clusters corresponding to T).
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Sketch of the proof of Proposition 1

Proposition 1

C is the cluster system of an evolutionary tree T on S

if and only if

{A} € C for each A€ S,
YeC«)YeCand
every two X, ) € C are compatible.

(]

The if-part is easy (by observing clusters corresponding to T).

(]

For the only-if-part:

1. Prove that = is an equivalence relation (reflexive, symmetric, transitive).

* X =) iff either X =) or X is a maximal proper subcluster of Y.

2. Construct a corresponding graph T by =.
3. Show that the graph T is an evolutionary tree on S.

18/41



= is an equivalence relation

@ It is easy to see that = is reflexive and symmetric.
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= is an equivalence relation
@ It is easy to see that = is reflexive and symmetric.
@ Assume that V1 = )» and V> = V5 and V1, )», V3 are distinct.

@ V1 and Y; are maximal proper subsets of ), in C by assumption.

@ We have ); C ).
» V1 € Vs and V3 € Y1 (by maximality)
> NV # D (oY SYN ).
» Hence ) C )5 (by the assumption of compatibility).
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= is an equivalence relation (contd.)

Vi CYsand V3 C s

o Let Y €eCsuchthat); CX C); Then X =Yy or X = )5
(Thus Y1 = )%3).
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= is an equivalence relation (contd.)

Vi CYsand V3 C s

o Let Y €eCsuchthat); CX C); Then X =Yy or X = )5
(Thus Y1 = )%3).

» Either X C)hor X CYh (0 # D CINX and () # Y3 C o N A).
* X CW? X CY?

» Hence 1 CX C )sor Y3 C X C )s.
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= is an equivalence relation (contd.)

Vi CYsand V3 C s

o Let Y €eCsuchthat); CX C); Then X =Yy or X = )5
(Thus Y1 = )%3).

» Either ¥ C)hor X C Y (0 £ Y1 CIoNX and 0 #£ Y3 C N A).
* X CI? X CI?
» Hence 1 CX C )sor Y3 C X C )s.

» By maximality we have either X = Y} or X = )s.
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Constructing a graph T according to ‘=’

@ The vertices correspond to the equivalence classes of =.

@ Two classes are adjacent iff they contain some complementary pair

y,j-

@ An equivalence class represents a taxa A if it has only one member

{AL.
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An observation

Note:

v b A subcluster means a subset
' of a cluster which is also a

cluster.

@ From the point of view of clusters, two clusters )1, V> represent
adjacent vertices iff

» Vi =D (01 NYs = in this case);

» Y1 is a maximal proper subcluster of J» (V1 < V1 = W»);
» ) is a maximal proper subcluster of Yy (V2 < Mo = J1);
» X €cCsuchthat ) CX CH (=X « X =).
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How about the connectivity of the constructed
graph?
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Proof of the connectivity and the cycle-freeness of T

@ Let X', X be an arbitrary pair of complementary clusters.
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Proof of the connectivity and the cycle-freeness of T

@ Let X', X be an arbitrary pair of complementary clusters.

@ Forany Y € C, 31), with Yy = Y such that Yy C X or Yy C X.

» Existence: either YC X, YC X, YC X, or Y C X.
* Either ) or the minimal subcluster of X (or /'?) containing ) can be
chosen as ).

» Uniqueness: Yy = )1 # )io = Yo U1 = S so we cannot have
y07y1 g X or yO)yl g X

o WLOG, let Yy CX. Then Yy C Y C ... C Y, = X gives a path
on T joining the vertices represented by ) and X.

» Thus T is connected.

@ Moreover, no cycle in T.
» No edge between Y; and )); for |i — j| > 1 (by maximality).
» Z; C X cannot be adjacent to Z; C X unless Z; = X and Zi= X.
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The one-to-one correspondence with complementary
cluster pairs

eY=Xand)Y=X=YV=24X.

@ So the edges of T are in one-to-one correspondence with the
complementary cluster pairs X, X.
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The one-to-one correspondence with complementary
cluster pairs

eY=Xand)Y=X=YV=24X.

@ So the edges of T are in one-to-one correspondence with the
complementary cluster pairs X, X.

@ Hence the clusters in a given equivalence class correspond in a

one-to-one manner to the edges incident with this equivalence class

(regarded as a vertex).
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Is every taxon A represented by a unique equivalence class
p(A)?

@ Yes.

o {A} € Cforall A€ S and p(A) = {A}.
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Quartet topologies

F
A
A
D D B A

EG > B > > <

B (& D
o C
T The path structure The topology of

connecting A, B,C,Don T {A,B, C,D}

[ABICD] [ACIBD] [ADIBC]
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Quartet topologies (contd.)

o Let @ be a set of quartet topologies over S.

@ Assume that Q is complete: every four taxa in S has exactly one
quartet topology in Q.
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Translation between clusters and quartet topologies

e [AB|CD] € Qifand only if A,B € Y and C,D € Y for some cluster
Y eC.

@ Y is a cluster of size at least two if and only if Y # S and
[AB|CD] € Q for all A,B € Y and forall C,D e Y.
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The substitution property
[AB|CD] € Q =

« [AB|CE], [AB|DE] € Q or [AE|CD],[BE|CD] € Q
forany E € S\ {A,B, C,D}.

@ We say a quintet g = {s1, s, S3, 54, S5} is consistent if for every
bijection o : ¢ — {A, B, C, D, E}, we have
[AB|CD] € Q = [AB|CE], [AB|DE] € Q or [AE|CD],[BE|CD] € Q.
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Transitive property

Lemma 1

If every quintet over S satisfies the substitution property, then for every
quintet {A,B,C,D, E}, we have

[AB|CD], [AB|DE] € Q = [AB|CE] € Q.

.
.

A Ep E C
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Q is tree-like:

3 an evolutionary tree T whose set of induced quartet topologies is exactly

Q.
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Quartet topologies and tree-likeness

Proposition 2

Q is tree-like < every quintet over S is consistent.

E F

B D

o Assume that Q = {[AB|CD], [AB|CE], [AB|CF],[AB|DE], [AB|DF],
[AB|EF], [AE|CD], [AF|CD], [AE|CF], [AD|EF],[BC|DE], [BF|CD],
[BE|CF], |BE|DF],[CD|EF]}.
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Proof of Proposition 2

@ The if-part is clearly true.
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Proof of Proposition 2 (contd.)

Construct the corresponding clusters and show that they coincide with Q.
@ Assume that [AB|CD] € Q and let

Y ={E| [AE|CD] € Q or [BE|CD] € Q}.
» [AE|CD] € Q & [BE|CD] € Q (transitivity).
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Proof of Proposition 2 (contd.)

Construct the corresponding clusters and show that they coincide with Q.

@ Assume that [AB|CD] € Q and let
Y ={E| [AE|CD] € Q or [BE|CD] € Q}.
» [AE|CD] € Q & [BE|CD] € Q (transitivity).

@ ABeYand C,D e ).

e If ECY,Fc), then [AE|CF] € @ (by the substitution property &
[AF|CD] ¢ Q since F ¢ ))).

@ Hence for taxa My, Mo € Y and Ny, N> € Y we have [AM;|CNj] € Q
fori,j=1,2.

@ By transitivity, [MyM>|CN;] € Q for j = 1,2, and further
[M1M2|N1N2] € Q.
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An improved result...

Proposition 3

Given any fixed taxon F, then:
Q is tree-like < every quintet containing F is consistent.
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Proof of Proposition 3

@ Assume that [AB|CD] € Q and let E be any taxon
in S\ {A, B, C,D}.
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@ Wish to show: either [AE|CD] € Q or [AB|CE] € Q.
» By the assumption, either [AB|CF] € Q or [AF|CD] € Q is true.
» = [AB|DF] € Q.
> = either [AB|EF] € Q or [AE|DF] € Q.

* |If [AB|EF] € Q, so does [AB|CE] € Q (transitivity & [AB|CF] € Q).

* Otherwise, (i.e., [AE|DF] € Q).
-+ [AB|CE] € Q or [AE|CF] € Q (. [AB|CF] € Q).

The latter with [AE|DF] € Q gives [AE|CD] € Q.
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Outline

@ Conclusions

Sae
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Conclusions

@ The arguments in the paper are very unclear.

@ | felt painful when reading this paper.
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Thank you!



