Clusters and quartet topologies

Hans-Jürgen Bendelt and Andreas Dress:
Reconstructing the shape of a tree from observed dissimilarity data.
Advances in Applied Mathematics 7 (1986) 309-343.

Speaker: Joseph, Chuang-Chieh Lin
Supervisor: Professor Maw-Shang Chang
Computation Theory Laboratory
Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

May 19, 2009

Outline

(1) Introduction
(2) Cluster and tree-likeness
(3) Quartet topologies and tree-likeness

4 Conclusions

Outline

(1) Introduction
(2) Cluster and tree-likeness
(3) Quartet topologies and tree-likeness
4. Conclusions

Evolutionary trees

- A set of n taxa S.
- An evolutionary tree $T=(V, E)$ on S :
- internal vertices with degree 3.
- bijection from S to the leaves of T.

Clusters

- Clusters: nonempty proper subsets of S according to T.
- $\mathbb{C}=\{\mathcal{X} \subset S \mid \mathcal{X} \neq \emptyset, \exists e \in E$ such that any two taxa in \mathcal{X} are connected by a path in T avoiding e, and \mathcal{X} is maximal with respect to this property\}.
- Splits: two complementary clusters.

- There are $(2 n-3)$ splits.

Clusters

- Clusters: nonempty proper subsets of S according to T.
- $\mathbb{C}=\{\mathcal{X} \subset S \mid \mathcal{X} \neq \emptyset, \exists e \in E$ such that any two taxa in \mathcal{X} are connected by a path in T avoiding e, and \mathcal{X} is maximal with respect to this property\}.
- Splits: two complementary clusters.

- There are $(2 n-3)$ splits.

Clusters

- Clusters: nonempty proper subsets of S according to T.
- $\mathbb{C}=\{\mathcal{X} \subset S \mid \mathcal{X} \neq \emptyset, \exists e \in E$ such that any two taxa in \mathcal{X} are connected by a path in T avoiding e, and \mathcal{X} is maximal with respect to this property\}.
- Splits: two complementary clusters.

- There are $(2 n-3)$ splits.
- $\mathbb{C}=\{\{A\},\{B\},\{C\},\{D\},\{E\},\{A, B\},\{C, D\},\{A, B, E\},\{C, D, E\}$ $\{A, B, C, D\},\{A, B, C, E\},\{A, B, D, E\},\{A, C, D, E\},\{B, C, D, E\}\}$.

A distinguished subsystem of clusters

- $\mathcal{X} \in \rho(v)$ iff the deletion of some edges e of T incident with v results in two subtrees of T one of which contains the vertex v and is defined on \mathcal{X}.

A distinguished subsystem of clusters (contd.)

- Assume that
$\mathbb{C}=\{\{A\},\{B\},\{C\},\{D\},\{E\},\{A, B\},\{C, D\},\{A, B, E\},\{C, D, E\}$ $\{A, B, C, D\},\{A, B, C, E\},\{A, B, D, E\},\{A, C, D, E\},\{B, C, D, E\}\}$.

A distinguished subsystem of clusters (contd.)

- Assume that
$\mathbb{C}=\{\{A\},\{B\},\{C\},\{D\},\{E\},\{A, B\},\{C, D\},\{A, B, E\},\{C, D, E\}$ $\{A, B, C, D\},\{A, B, C, E\},\{A, B, D, E\},\{A, C, D, E\},\{B, C, D, E\}\}$.

- $\rho(A)=\{\{A\}\}, \rho(B)=\{\{B\}\}, \rho(C)=\{\{C\}\}, \ldots$
- $\rho(x)=\{\{A, B\},\{A, C, D, E\},\{B, C, D, E\}\}$;
$\rho(y)=\{\{A, B, E\},\{A, B, C, D\},\{C, D, E\}\} ;$
$\rho(z)=\{\{C, D\},\{A, B, C, E\},\{A, B, D, E\}\}$.

Outline

(1) Introduction

(2) Cluster and tree-likeness

(3) Quartet topologies and tree-likeness

4. Conclusions

Proposition 1

\mathbb{C} is the cluster system of an evolutionary tree on S

if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \overline{\mathcal{Y}} \in \mathbb{C}$ (totally $(4 n-6)$ clusters) and
- for $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$, either $\mathcal{X} \subseteq \mathcal{Y}, \mathcal{X} \subseteq \overline{\mathcal{Y}}, \overline{\mathcal{X}} \subseteq \mathcal{Y}$, or $\overline{\mathcal{X}} \subseteq \overline{\mathcal{Y}}$ (compatible).

- Equivalent definition: $\mathcal{X} \equiv \mathcal{Y}$ iff at least one of the following intersections are empty:

Proposition 1

\mathbb{C} is the cluster system of an evolutionary tree on S

if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \overline{\mathcal{Y}} \in \mathbb{C}$ (totally $(4 n-6)$ clusters) and
- for $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$, either $\mathcal{X} \subseteq \mathcal{Y}, \mathcal{X} \subseteq \overline{\mathcal{Y}}, \overline{\mathcal{X}} \subseteq \mathcal{Y}$, or $\overline{\mathcal{X}} \subseteq \overline{\mathcal{Y}}$ (compatible).

- Equivalent definition: $\mathcal{X} \equiv \mathcal{Y}$ iff at least one of the following intersections are empty:
- $\mathcal{X} \cap \mathcal{Y}, \mathcal{X} \cap \overline{\mathcal{Y}}, \overline{\mathcal{X}} \cap \mathcal{Y}, \overline{\mathcal{X}} \cap \overline{\mathcal{Y}}$.

Compatible clusters

- $S=\{A, B, C, D, E\}$
- $\mathcal{X}=\{A, B, C, D\}, \mathcal{Y}=\{C, D, E\}, \overline{\mathcal{X}}=\{E\}, \overline{\mathcal{V}}=\{A, B\}$

Compatible clusters

- $S=\{A, B, C, D, E\}$
- $\mathcal{X}=\{A, B, C, D\}, \mathcal{Y}=\{C, D, E\}, \overline{\mathcal{X}}=\{E\}, \overline{\mathcal{Y}}=\{A, B\}$.
- $\mathcal{X} \cap \mathcal{Y}=\{C, D\}, \mathcal{X} \cap \overline{\mathcal{Y}}=\{A, B\}, \overline{\mathcal{X}} \cap \mathcal{Y}=\{E\}$,

Compatible clusters

- $S=\{A, B, C, D, E\}$
- $\mathcal{X}=\{A, B, C, D\}, \mathcal{Y}=\{C, D, E\}, \overline{\mathcal{X}}=\{E\}, \overline{\mathcal{Y}}=\{A, B\}$.
- $\mathcal{X} \cap \mathcal{Y}=\{C, D\}, \mathcal{X} \cap \overline{\mathcal{Y}}=\{A, B\}, \overline{\mathcal{X}} \cap \mathcal{Y}=\{E\}, \overline{\mathcal{X}} \cap \overline{\mathcal{Y}}=\emptyset$.

Compatible clusters (contd.)

- $S=\{A, B, C, D, E\}$
- $\mathcal{X}=\{A, B\}, \mathcal{Y}=\{A, B, C, D\}, \overline{\mathcal{X}}=\{C, D, E\}, \overline{\mathcal{Y}}=\{E\}$.
- $\mathcal{X} \cap \mathcal{Y}=\{A, B\}, \mathcal{X} \cap \mathcal{Y}=\emptyset, \mathcal{X} \cap \mathcal{Y}=\{C, D\}, \overline{\mathcal{X}} \cap \mathcal{Y}=\{E\}$

Compatible clusters (contd.)

- $S=\{A, B, C, D, E\}$
- $\mathcal{X}=\{A, B\}, \mathcal{Y}=\{A, B, C, D\}, \overline{\mathcal{X}}=\{C, D, E\}, \overline{\mathcal{Y}}=\{E\}$.
- $\mathcal{X} \cap \mathcal{Y}=\{A, B\}, \mathcal{X} \cap \overline{\mathcal{Y}}=\emptyset, \overline{\mathcal{X}} \cap \mathcal{Y}=\{C, D\}, \overline{\mathcal{X}} \cap \overline{\mathcal{Y}}=\{E\}$.

Compatible clusters (contd.)

- $S=\{A, B, C, D, E\}$
- $\mathcal{X}=\{A, B\}, \mathcal{Y}=\{C, D\}, \overline{\mathcal{X}}=\{C, D, E\}, \overline{\mathcal{Y}}=\{A, B, E\}$.

Compatible clusters (contd.)

- $S=\{A, B, C, D, E\}$
- $\mathcal{X}=\{A, B\}, \mathcal{Y}=\{C, D\}, \overline{\mathcal{X}}=\{C, D, E\}, \overline{\mathcal{Y}}=\{A, B, E\}$.
- $\mathcal{X} \cap \mathcal{Y}=\emptyset, \mathcal{X} \cap \overline{\mathcal{Y}}=\{A, B\}, \overline{\mathcal{X}} \cap \mathcal{Y}=\{C, D\}, \overline{\mathcal{X}} \cap \overline{\mathcal{Y}}=\{E\}$.

Compatible clusters (contd.)

- $S=\{A, B, C, D, E\}$
- $\mathcal{X}=\{A, B\}, \mathcal{Y}=\{C, D, E\}, \overline{\mathcal{X}}=\{C, D, E\}, \overline{\mathcal{Y}}=\{A, B\}$.

Compatible clusters (contd.)

- $S=\{A, B, C, D, E\}$
- $\mathcal{X}=\{A, B\}, \mathcal{Y}=\{C, D, E\}, \overline{\mathcal{X}}=\{C, D, E\}, \overline{\mathcal{Y}}=\{A, B\}$.
- $\mathcal{X} \cap \mathcal{Y}=\emptyset, \mathcal{X} \cap \overline{\mathcal{Y}}=\{A, B\}, \overline{\mathcal{X}} \cap \mathcal{Y}=\{C, D\}, \overline{\mathcal{X}} \cap \overline{\mathcal{Y}}=\emptyset$.

Non-compatible clusters

- $S=\{A, B, C, D, E\}$
- $\mathcal{X}=\{A, B, C\}, \mathcal{Y}=\{B, C, D\}, \overline{\mathcal{X}}=\{D, E\}, \overline{\mathcal{Y}}=\{A, E\}$.
- $\mathcal{X} \cap \mathcal{Y}=\{B, C\}, \mathcal{X} \cap \overline{\mathcal{Y}}=\{A\}, \overline{\mathcal{X}} \cap \mathcal{Y}=\{D\}, \overline{\mathcal{X}} \cap \overline{\mathcal{Y}}=\{E\}$.

Some observations (for a compatible \mathbb{C})

- $\mathcal{X} \subseteq \mathcal{Y} \Leftrightarrow \overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$ for any two clusters \mathcal{X}, \mathcal{Y}.

Some observations (for a compatible \mathbb{C})

- $\mathcal{X} \subseteq \mathcal{Y} \Leftrightarrow \overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$ for any two clusters \mathcal{X}, \mathcal{Y}.
- $\forall \mathcal{X}, \mathcal{Y} \in \mathbb{C}$, where $\mathcal{X} \subseteq \mathcal{Y}$, if $\mathcal{X} \subseteq \mathcal{Z}_{1}, \ldots, \mathcal{Z}_{k} \subseteq \mathcal{Y}$, and $\left|\mathcal{Z}_{i}\right| \leq\left|\mathcal{Z}_{j}\right|$ for $i \leq j$, then $\mathcal{Z}_{1} \subseteq \mathcal{Z}_{2} \ldots \subseteq \mathcal{Z}_{k}\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{k}\right.$ forms a chain $)$.

Some observations (for a compatible \mathbb{C})

- $\mathcal{X} \subseteq \mathcal{Y} \Leftrightarrow \overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$ for any two clusters \mathcal{X}, \mathcal{Y}.
- $\forall \mathcal{X}, \mathcal{Y} \in \mathbb{C}$, where $\mathcal{X} \subseteq \mathcal{Y}$, if $\mathcal{X} \subseteq \mathcal{Z}_{1}, \ldots, \mathcal{Z}_{k} \subseteq \mathcal{Y}$, and $\left|\mathcal{Z}_{i}\right| \leq\left|\mathcal{Z}_{j}\right|$ for $i \leq j$, then $\mathcal{Z}_{1} \subseteq \mathcal{Z}_{2} \ldots \subseteq \mathcal{Z}_{k}\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{k}\right.$ forms a chain $)$.

$$
\forall \because \mathcal{X} \subseteq \mathcal{Z}_{i}, \mathcal{Z}_{j} \subseteq \mathcal{Y}
$$

Some observations (for a compatible \mathbb{C})

- $\mathcal{X} \subseteq \mathcal{Y} \Leftrightarrow \overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$ for any two clusters \mathcal{X}, \mathcal{Y}.
- $\forall \mathcal{X}, \mathcal{Y} \in \mathbb{C}$, where $\mathcal{X} \subseteq \mathcal{Y}$, if $\mathcal{X} \subseteq \mathcal{Z}_{1}, \ldots, \mathcal{Z}_{k} \subseteq \mathcal{Y}$, and $\left|\mathcal{Z}_{i}\right| \leq\left|\mathcal{Z}_{j}\right|$ for $i \leq j$, then $\mathcal{Z}_{1} \subseteq \mathcal{Z}_{2} \ldots \subseteq \mathcal{Z}_{k}\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{k}\right.$ forms a chain $)$.

$$
\because \mathcal{X} \subseteq \mathcal{Z}_{i}, \mathcal{Z}_{j} \subseteq \mathcal{Y} \Rightarrow \emptyset \neq \mathcal{X} \subseteq \mathcal{Z}_{i} \cap \mathcal{Z}_{j} \text { and } \emptyset \neq \overline{\mathcal{Y}} \subseteq \overline{\mathcal{Z}}_{i} \cap \overline{\mathcal{Z}}_{j}
$$

\triangleright then we have $\mathcal{Z}_{i} \subseteq \mathcal{Z}_{j}$ or $\mathcal{Z}_{j} \subseteq \mathcal{Z}_{i}$ for all i, j.

Some observations (for a compatible \mathbb{C})

- $\mathcal{X} \subseteq \mathcal{Y} \Leftrightarrow \overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$ for any two clusters \mathcal{X}, \mathcal{Y}.
- $\forall \mathcal{X}, \mathcal{Y} \in \mathbb{C}$, where $\mathcal{X} \subseteq \mathcal{Y}$, if $\mathcal{X} \subseteq \mathcal{Z}_{1}, \ldots, \mathcal{Z}_{k} \subseteq \mathcal{Y}$, and $\left|\mathcal{Z}_{i}\right| \leq\left|\mathcal{Z}_{j}\right|$ for $i \leq j$, then $\mathcal{Z}_{1} \subseteq \mathcal{Z}_{2} \ldots \subseteq \mathcal{Z}_{k}\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{k}\right.$ forms a chain $)$.
$-\because \mathcal{X} \subseteq \mathcal{Z}_{i}, \mathcal{Z}_{j} \subseteq \mathcal{Y} \Rightarrow \emptyset \neq \mathcal{X} \subseteq \mathcal{Z}_{i} \cap \mathcal{Z}_{j}$ and $\emptyset \neq \overline{\mathcal{Y}} \subseteq \overline{\mathcal{Z}}_{i} \cap \overline{\mathcal{Z}}_{j}$
\triangleright then we have $\mathcal{Z}_{i} \subseteq \mathcal{Z}_{J}$ or $\mathcal{Z}_{j} \subseteq \mathcal{Z}_{i}$ for all i, j.

Some observations (for a compatible \mathbb{C})

- $\mathcal{X} \subseteq \mathcal{Y} \Leftrightarrow \overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$ for any two clusters \mathcal{X}, \mathcal{Y}.
- $\forall \mathcal{X}, \mathcal{Y} \in \mathbb{C}$, where $\mathcal{X} \subseteq \mathcal{Y}$, if $\mathcal{X} \subseteq \mathcal{Z}_{1}, \ldots, \mathcal{Z}_{k} \subseteq \mathcal{Y}$, and $\left|\mathcal{Z}_{i}\right| \leq\left|\mathcal{Z}_{j}\right|$ for $i \leq j$, then $\mathcal{Z}_{1} \subseteq \mathcal{Z}_{2} \ldots \subseteq \mathcal{Z}_{k}\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{k}\right.$ forms a chain $)$.
$-\because \mathcal{X} \subseteq \mathcal{Z}_{i}, \mathcal{Z}_{j} \subseteq \mathcal{Y} \Rightarrow \emptyset \neq \mathcal{X} \subseteq \mathcal{Z}_{i} \cap \mathcal{Z}_{j}$ and $\emptyset \neq \overline{\mathcal{Y}} \subseteq \overline{\mathcal{Z}}_{i} \cap \overline{\mathcal{Z}}_{j}$
\triangleright then we have $\mathcal{Z}_{i} \subseteq \mathcal{Z}_{J}$ or $\mathcal{Z}_{j} \subseteq \mathcal{Z}_{i}$ for all i, j.

Recall the distinguished subsystem of $\mathbb{C} \ldots$

- $\rho(A)=\{\{A\}\}, \rho(B)=\{\{B\}\}, \rho(C)=\{\{C\}\}, \ldots$,
$\rho(x)=\{\{A, B\},\{A, C, D, E\},\{B, C, D, E\}\} ;$
$\rho(y)=\{\{A, B, E\},\{A, B, C, D\},\{C, D, E\}\} ;$
$\rho(z)=\{\{C, D\},\{A, B, C, E\},\{A, B, D, E\}\}$.
- We can DEFINE a corresponding equivalence relation on \mathbb{C} :
- For $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$, we say $\mathcal{X} \equiv \mathcal{Y}$ if and only if either $\mathcal{X}=\mathcal{Y}$ or $\overline{\mathcal{X}}$ is a maximal proper subcluster of \mathcal{Y}.

How to reconstruct T from a corresponding \mathbb{C} ?

- Each equivalence class $\rho(x)$ of \equiv represents a vertex of T.
- $\rho(x)=\{A\} \Leftrightarrow$ a leaf node A.
- $\rho(x), \rho(y)$ represent adjacent vertices x, y iff $\exists \mathcal{Y} \in \mathbb{C}$ such that $\mathcal{Y} \in \rho(x)$ and $\overline{\mathcal{Y}} \in \rho(y)$.

Sketch of the proof of Proposition 1

Proposition 1

\mathbb{C} is the cluster system of an evolutionary tree T on S
if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \overline{\mathcal{Y}} \in \mathbb{C}$ and
- every two $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$ are compatible.
- The if-part is easy (by observing clusters corresponding to T).
- For the only-if-part:

Sketch of the proof of Proposition 1

Proposition 1

\mathbb{C} is the cluster system of an evolutionary tree T on S
if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \overline{\mathcal{Y}} \in \mathbb{C}$ and
- every two $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$ are compatible.
- The if-part is easy (by observing clusters corresponding to T).
- For the only-if-part:

Sketch of the proof of Proposition 1

Proposition 1

\mathbb{C} is the cluster system of an evolutionary tree T on S
if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \overline{\mathcal{Y}} \in \mathbb{C}$ and
- every two $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$ are compatible.
- The if-part is easy (by observing clusters corresponding to T).
- For the only-if-part:

1. Prove that \equiv is an equivalence relation (reflexive, symmetric, transitive).

Sketch of the proof of Proposition 1

Proposition 1

\mathbb{C} is the cluster system of an evolutionary tree T on S
if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \overline{\mathcal{Y}} \in \mathbb{C}$ and
- every two $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$ are compatible.
- The if-part is easy (by observing clusters corresponding to T).
- For the only-if-part:

1. Prove that \equiv is an equivalence relation (reflexive, symmetric, transitive).
$\star \mathcal{X} \equiv \mathcal{Y}$ iff either $\mathcal{X}=\mathcal{Y}$ or $\overline{\mathcal{X}}$ is a maximal proper subcluster of \mathcal{Y}.
2. Construct a corresponding graph T by \equiv.

Sketch of the proof of Proposition 1

Proposition 1

\mathbb{C} is the cluster system of an evolutionary tree T on S
if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \overline{\mathcal{Y}} \in \mathbb{C}$ and
- every two $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$ are compatible.
- The if-part is easy (by observing clusters corresponding to T).
- For the only-if-part:

1. Prove that \equiv is an equivalence relation (reflexive, symmetric, transitive).
$\star \mathcal{X} \equiv \mathcal{Y}$ iff either $\mathcal{X}=\mathcal{Y}$ or $\overline{\mathcal{X}}$ is a maximal proper subcluster of \mathcal{Y}.
2. Construct a corresponding graph T by \equiv.
3. Show that the graph T is an evolutionary tree on S.

Sketch of the proof of Proposition 1

Proposition 1

\mathbb{C} is the cluster system of an evolutionary tree T on S
if and only if

- $\{A\} \in \mathbb{C}$ for each $A \in S$,
- $\mathcal{Y} \in \mathbb{C} \Leftrightarrow \overline{\mathcal{Y}} \in \mathbb{C}$ and
- every two $\mathcal{X}, \mathcal{Y} \in \mathbb{C}$ are compatible.
- The if-part is easy (by observing clusters corresponding to T).
- For the only-if-part:

1. Prove that \equiv is an equivalence relation (reflexive, symmetric, transitive).
$\star \mathcal{X} \equiv \mathcal{Y}$ iff either $\mathcal{X}=\mathcal{Y}$ or $\overline{\mathcal{X}}$ is a maximal proper subcluster of \mathcal{Y}.
2. Construct a corresponding graph T by \equiv.
3. Show that the graph T is an evolutionary tree on S.

\equiv is an equivalence relation

- It is easy to see that \equiv is reflexive and symmetric.
- Assume that $\mathcal{V}_{1} \equiv \mathcal{V}_{2}$ and $\mathcal{V}_{2} \equiv \mathcal{V}_{3}$ and $\mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{V}_{3}$ are distinct. - $\overline{\mathcal{Y}}_{1}$ and $\overline{\mathcal{Y}}_{3}$ are maximal proper subsets of \mathcal{Y}_{2} in \mathbb{C} by assumption

\equiv is an equivalence relation

- It is easy to see that \equiv is reflexive and symmetric.
- Assume that $\mathcal{Y}_{1} \equiv \mathcal{Y}_{2}$ and $\mathcal{Y}_{2} \equiv \mathcal{Y}_{3}$ and $\mathcal{Y}_{1}, \mathcal{Y}_{2}, \mathcal{Y}_{3}$ are distinct.
- $\overline{\mathcal{Y}}_{1}$ and $\overline{\mathcal{Y}}_{3}$ are maximal proper subsets of \mathcal{V}_{2} in \mathbb{C} by assumption.

\equiv is an equivalence relation

- It is easy to see that \equiv is reflexive and symmetric.
- Assume that $\mathcal{Y}_{1} \equiv \mathcal{Y}_{2}$ and $\mathcal{Y}_{2} \equiv \mathcal{Y}_{3}$ and $\mathcal{Y}_{1}, \mathcal{Y}_{2}, \mathcal{Y}_{3}$ are distinct.
- $\overline{\mathcal{Y}}_{1}$ and $\overline{\mathcal{Y}}_{3}$ are maximal proper subsets of \mathcal{Y}_{2} in \mathbb{C} by assumption.
- We have $\begin{aligned} & \overline{\mathcal{V}}_{1} \subseteq \mathcal{\nu}_{3} . \\ & \quad \text { - } \mathcal{\nu}_{1} \nsubseteq \mathcal{\nu}_{3} \text { and } \mathcal{\nu}_{3} \nsubseteq \mathcal{\nu}_{1} \text { (by maximality) }\end{aligned}$

\equiv is an equivalence relation

- It is easy to see that \equiv is reflexive and symmetric.
- Assume that $\mathcal{Y}_{1} \equiv \mathcal{Y}_{2}$ and $\mathcal{Y}_{2} \equiv \mathcal{Y}_{3}$ and $\mathcal{Y}_{1}, \mathcal{Y}_{2}, \mathcal{Y}_{3}$ are distinct.
- $\overline{\mathcal{Y}}_{1}$ and $\overline{\mathcal{Y}}_{3}$ are maximal proper subsets of \mathcal{Y}_{2} in \mathbb{C} by assumption.
- We have $\overline{\mathcal{Y}}_{1} \subseteq \mathcal{Y}_{3}$.
- $\mathcal{Y}_{1} \nsubseteq \mathcal{Y}_{3}$ and $\mathcal{Y}_{3} \nsubseteq \mathcal{Y}_{1}$ (by maximality)

\equiv is an equivalence relation

- It is easy to see that \equiv is reflexive and symmetric.
- Assume that $\mathcal{Y}_{1} \equiv \mathcal{Y}_{2}$ and $\mathcal{Y}_{2} \equiv \mathcal{Y}_{3}$ and $\mathcal{Y}_{1}, \mathcal{Y}_{2}, \mathcal{Y}_{3}$ are distinct.
- $\overline{\mathcal{Y}}_{1}$ and $\overline{\mathcal{Y}}_{3}$ are maximal proper subsets of \mathcal{Y}_{2} in \mathbb{C} by assumption.
- We have $\overline{\mathcal{Y}}_{1} \subseteq \mathcal{Y}_{3}$.
- $\mathcal{Y}_{1} \nsubseteq \mathcal{Y}_{3}$ and $\mathcal{Y}_{3} \nsubseteq \mathcal{Y}_{1}$ (by maximality)
- $\mathcal{Y}_{1} \cap \mathcal{Y}_{3} \neq \emptyset\left(\because \overline{\mathcal{Y}}_{2} \subseteq \mathcal{Y}_{1} \cap \mathcal{Y}_{3}\right)$.
- Hence $\overline{\mathcal{\nu}}_{1} \subseteq \mathcal{\nu}_{3}$ (by the assumption of compatibility).

\equiv is an equivalence relation

- It is easy to see that \equiv is reflexive and symmetric.
- Assume that $\mathcal{Y}_{1} \equiv \mathcal{Y}_{2}$ and $\mathcal{Y}_{2} \equiv \mathcal{Y}_{3}$ and $\mathcal{Y}_{1}, \mathcal{Y}_{2}, \mathcal{Y}_{3}$ are distinct.
- $\overline{\mathcal{Y}}_{1}$ and $\overline{\mathcal{Y}}_{3}$ are maximal proper subsets of \mathcal{Y}_{2} in \mathbb{C} by assumption.
- We have $\overline{\mathcal{Y}}_{1} \subseteq \mathcal{Y}_{3}$.
- $\mathcal{Y}_{1} \nsubseteq \mathcal{Y}_{3}$ and $\mathcal{Y}_{3} \nsubseteq \mathcal{Y}_{1}$ (by maximality)
- $\mathcal{Y}_{1} \cap \mathcal{Y}_{3} \neq \emptyset\left(\because \overline{\mathcal{Y}}_{2} \subseteq \mathcal{Y}_{1} \cap \mathcal{Y}_{3}\right)$.
- Hence $\overline{\mathcal{Y}}_{1} \subseteq \mathcal{Y}_{3}$ (by the assumption of compatibility).

\equiv is an equivalence relation (contd.)

$$
\overline{\mathcal{Y}}_{1} \subseteq \mathcal{Y}_{2} \text { and } \overline{\mathcal{Y}}_{3} \subseteq \mathcal{Y}_{2}
$$

- Let $\mathcal{X} \in \mathbb{C}$ such that $\overline{\mathcal{Y}_{1}} \subseteq \mathcal{X} \subseteq \mathcal{Y}_{3}$. Then $\mathcal{X}=\overline{\mathcal{Y}_{1}}$ or $\mathcal{X}=\mathcal{Y}_{3}$ (Thus $\mathcal{Y}_{1} \equiv \mathcal{Y}_{3}$).

\equiv is an equivalence relation (contd.)

$$
\overline{\mathcal{Y}}_{1} \subseteq \mathcal{Y}_{2} \text { and } \overline{\mathcal{Y}}_{3} \subseteq \mathcal{Y}_{2}
$$

- Let $\mathcal{X} \in \mathbb{C}$ such that $\overline{\mathcal{Y}_{1}} \subseteq \mathcal{X} \subseteq \mathcal{Y}_{3}$. Then $\mathcal{X}=\overline{\mathcal{Y}_{1}}$ or $\mathcal{X}=\mathcal{Y}_{3}$ (Thus $\mathcal{Y}_{1} \equiv \mathcal{Y}_{3}$).
- Either $\mathcal{X} \subseteq \mathcal{Y}_{2}$ or $\overline{\mathcal{X}} \subseteq \mathcal{Y}_{2}\left(\because \emptyset \neq \overline{\mathcal{Y}}_{1} \subseteq \mathcal{Y}_{2} \cap \mathcal{X}\right.$ and $\left.\emptyset \neq \overline{\mathcal{Y}}_{3} \subseteq \mathcal{Y}_{2} \cap \overline{\mathcal{X}}\right)$.

$$
\star \mathcal{X} \subseteq \overline{\mathcal{Y}}_{2} ? \quad \overline{\mathcal{X}} \subseteq \overline{\mathcal{Y}}_{2} ?
$$

- Hence $\overline{\mathcal{V}}_{1} \subseteq \mathcal{X} \subseteq \mathcal{V}_{2}$ or $\overline{\mathcal{V}}_{3} \subseteq \overline{\mathcal{X}} \subseteq \mathcal{V}_{2}$.
\equiv is an equivalence relation (contd.)

$$
\overline{\mathcal{Y}}_{1} \subseteq \mathcal{Y}_{2} \text { and } \overline{\mathcal{Y}}_{3} \subseteq \mathcal{Y}_{2}
$$

- Let $\mathcal{X} \in \mathbb{C}$ such that $\overline{\mathcal{Y}}_{1} \subseteq \mathcal{X} \subseteq \mathcal{Y}_{3}$. Then $\mathcal{X}=\overline{\mathcal{Y}}_{1}$ or $\mathcal{X}=\mathcal{Y}_{3}$ (Thus $\mathcal{Y}_{1} \equiv \mathcal{Y}_{3}$).
- Either $\mathcal{X} \subseteq \mathcal{Y}_{2}$ or $\overline{\mathcal{X}} \subseteq \mathcal{Y}_{2}\left(\because \emptyset \neq \overline{\mathcal{Y}}_{1} \subseteq \mathcal{Y}_{2} \cap \mathcal{X}\right.$ and $\left.\emptyset \neq \overline{\mathcal{Y}}_{3} \subseteq \mathcal{Y}_{2} \cap \overline{\mathcal{X}}\right)$.

$$
\star \mathcal{X} \subseteq \overline{\mathcal{V}_{2}} ? \quad \overline{\mathcal{X}} \subseteq \overline{\mathcal{V}_{2}} ?
$$

- Hence $\overline{\mathcal{Y}_{1}} \subseteq \mathcal{X} \subseteq \mathcal{Y}_{2}$ or $\overline{\mathcal{Y}}_{3} \subseteq \overline{\mathcal{X}} \subseteq \mathcal{Y}_{2}$.
- By maximality we have either $\mathcal{X}=\overline{\mathcal{V}}_{1}$ or $\mathcal{X}=\mathcal{Y}_{3}$.

\equiv is an equivalence relation (contd.)

$$
\overline{\mathcal{Y}}_{1} \subseteq \mathcal{Y}_{2} \text { and } \overline{\mathcal{Y}}_{3} \subseteq \mathcal{Y}_{2}
$$

- Let $\mathcal{X} \in \mathbb{C}$ such that $\overline{\mathcal{Y}}_{1} \subseteq \mathcal{X} \subseteq \mathcal{Y}_{3}$. Then $\mathcal{X}=\overline{\mathcal{Y}}_{1}$ or $\mathcal{X}=\mathcal{Y}_{3}$ (Thus $\mathcal{Y}_{1} \equiv \mathcal{Y}_{3}$).
- Either $\mathcal{X} \subseteq \mathcal{Y}_{2}$ or $\overline{\mathcal{X}} \subseteq \mathcal{Y}_{2}\left(\because \emptyset \neq \overline{\mathcal{Y}}_{1} \subseteq \mathcal{Y}_{2} \cap \mathcal{X}\right.$ and $\left.\emptyset \neq \overline{\mathcal{Y}}_{3} \subseteq \mathcal{Y}_{2} \cap \overline{\mathcal{X}}\right)$.

$$
\star \mathcal{X} \subseteq \overline{\mathcal{V}_{2}} ? \quad \overline{\mathcal{X}} \subseteq \overline{\mathcal{V}_{2}} ?
$$

- Hence $\overline{\mathcal{V}}_{1} \subseteq \mathcal{X} \subseteq \mathcal{Y}_{2}$ or $\overline{\mathcal{V}}_{3} \subseteq \overline{\mathcal{X}} \subseteq \mathcal{Y}_{2}$.
- By maximality we have either $\mathcal{X}=\overline{\mathcal{Y}}_{1}$ or $\mathcal{X}=\mathcal{Y}_{3}$.

Constructing a graph T according to ' \equiv '

- The vertices correspond to the equivalence classes of \equiv.
- Two classes are adjacent iff they contain some complementary pair $\mathcal{Y}, \overline{\mathcal{Y}}$.
- An equivalence class represents a taxa A if it has only one member $\{A\}$.

An observation

Note:
A subcluster means a subset of a cluster which is also a cluster.

- From the point of view of clusters, two clusters $\mathcal{Y}_{1}, \mathcal{Y}_{2}$ represent adjacent vertices iff
- $\overline{\mathcal{Y}}_{1}=\mathcal{Y}_{2}\left(\mathcal{Y}_{1} \cap \mathcal{Y}_{2}=\emptyset\right.$ in this case $) ;$
- \mathcal{Y}_{1} is a maximal proper subcluster of $\mathcal{Y}_{2}\left(\mathcal{Y}_{1} \leftrightarrow \overline{\mathcal{Y}}_{1} \equiv \mathcal{Y}_{2}\right)$;
- \mathcal{Y}_{2} is a maximal proper subcluster of $\mathcal{Y}_{1}\left(\mathcal{Y}_{2} \leftrightarrow \overline{\mathcal{Y}}_{2} \equiv \mathcal{Y}_{1}\right)$;
- $\exists!\mathcal{X} \in \mathbb{C}$ such that $\overline{\mathcal{Y}}_{1} \subset \mathcal{X} \subset \mathcal{Y}_{2}\left(\mathcal{Y}_{1} \equiv \mathcal{X} \leftrightarrow \overline{\mathcal{X}} \equiv \mathcal{Y}_{2}\right)$.

How about the connectivity of the constructed graph?

Proof of the connectivity and the cycle-freeness of T

- Let $\mathcal{X}, \overline{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}, \exists!\mathcal{Y}_{0}$ with $\mathcal{Y}_{0} \equiv \mathcal{Y}$ such that $\mathcal{Y}_{0} \subseteq \mathcal{X}$ or $\mathcal{Y}_{0} \subseteq \overline{\mathcal{X}}$. - Existence: either $\mathcal{Y} \subseteq \mathcal{X}, \mathcal{Y} \subseteq \overline{\mathcal{X}}, \overline{\mathcal{Y}} \subseteq \mathcal{X}$, or $\overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$. \star Either \mathcal{Y} or the minimal
chosen as \mathcal{Y}_{0}
${ }^{\text {Uniqueness: }} \mathcal{V}_{0} \equiv \mathcal{V}_{1} \neq \mathcal{V}_{0}$
$\mathcal{V}_{0}, \mathcal{V}_{1} \subseteq \mathcal{X}$ or $\mathcal{V}_{0}, \mathcal{V}_{1} \subseteq \bar{X}$.

Proof of the connectivity and the cycle-freeness of T

- Let $\mathcal{X}, \overline{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}, \exists!\mathcal{Y}_{0}$ with $\mathcal{Y}_{0} \equiv \mathcal{Y}$ such that $\mathcal{Y}_{0} \subseteq \mathcal{X}$ or $\mathcal{Y}_{0} \subseteq \overline{\mathcal{X}}$.
- Existence: either $\mathcal{Y} \subseteq \mathcal{X}, \mathcal{Y} \subseteq \overline{\mathcal{X}}, \overline{\mathcal{Y}} \subseteq \mathcal{X}$, or $\overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$.
* Either \mathcal{Y} or the minimal subcluster of \mathcal{X} (or $\overline{\mathcal{X}}$) containing $\overline{\mathcal{Y}}$ can be chosen as \mathcal{Y}_{0}.
- Uniqueness: $\mathcal{V}_{0} \equiv \mathcal{V}_{1} \neq \mathcal{\nu}_{0} \Rightarrow \mathcal{\nu}_{0} \cup \mathcal{V}_{1}=S$ so we cannot have $\mathcal{Y}_{0}, \mathcal{Y}_{1} \subseteq \mathcal{X}$ or $\mathcal{Y}_{0}, \mathcal{Y}_{1} \subseteq \overline{\mathcal{X}}$.

Proof of the connectivity and the cycle-freeness of T

- Let $\mathcal{X}, \overline{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}, \exists!\mathcal{Y}_{0}$ with $\mathcal{Y}_{0} \equiv \mathcal{Y}$ such that $\mathcal{Y}_{0} \subseteq \mathcal{X}$ or $\mathcal{Y}_{0} \subseteq \overline{\mathcal{X}}$.
- Existence: either $\mathcal{Y} \subseteq \mathcal{X}, \mathcal{Y} \subseteq \overline{\mathcal{X}}, \overline{\mathcal{Y}} \subseteq \mathcal{X}$, or $\overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$.
\star Either \mathcal{Y} or the minimal subcluster of \mathcal{X} (or $\overline{\mathcal{X}}$) containing $\overline{\mathcal{Y}}$ can be chosen as \mathcal{Y}_{0}.
- Uniqueness: $\mathcal{Y}_{0} \equiv \mathcal{Y}_{1} \neq \mathcal{Y}_{0} \Rightarrow \mathcal{Y}_{0} \cup \mathcal{Y}_{1}=S$ so we cannot have $\mathcal{Y}_{0}, \mathcal{Y}_{1} \subseteq \mathcal{X}$ or $\mathcal{Y}_{0}, \mathcal{Y}_{1} \subseteq \overline{\mathcal{X}}$.
- WLOG, let $\mathcal{V}_{0} \subseteq \mathcal{X}$. Then $\mathcal{V}_{0} \subseteq \mathcal{V}_{1} \subseteq \ldots \subseteq \mathcal{V}_{n}=\mathcal{X}$ gives a path on T joining the vertices represented by \mathcal{Y} and \mathcal{X}.

Proof of the connectivity and the cycle-freeness of T

- Let $\mathcal{X}, \overline{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}, \exists!\mathcal{Y}_{0}$ with $\mathcal{Y}_{0} \equiv \mathcal{Y}$ such that $\mathcal{Y}_{0} \subseteq \mathcal{X}$ or $\mathcal{Y}_{0} \subseteq \overline{\mathcal{X}}$.
- Existence: either $\mathcal{Y} \subseteq \mathcal{X}, \mathcal{Y} \subseteq \overline{\mathcal{X}}, \overline{\mathcal{Y}} \subseteq \mathcal{X}$, or $\overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$.
\star Either \mathcal{Y} or the minimal subcluster of \mathcal{X} (or $\overline{\mathcal{X}}$) containing $\overline{\mathcal{Y}}$ can be chosen as \mathcal{Y}_{0}.
- Uniqueness: $\mathcal{Y}_{0} \equiv \mathcal{Y}_{1} \neq \mathcal{Y}_{0} \Rightarrow \mathcal{Y}_{0} \cup \mathcal{Y}_{1}=S$ so we cannot have $\mathcal{Y}_{0}, \mathcal{Y}_{1} \subseteq \mathcal{X}$ or $\mathcal{Y}_{0}, \mathcal{Y}_{1} \subseteq \overline{\mathcal{X}}$.
- WLOG, let $\mathcal{Y}_{0} \subseteq \mathcal{X}$. Then $\mathcal{Y}_{0} \subseteq \mathcal{Y}_{1} \subseteq \ldots \subseteq \mathcal{Y}_{n}=\mathcal{X}$ gives a path on T joining the vertices represented by \mathcal{Y} and \mathcal{X}.
- Thus T is connected.

Proof of the connectivity and the cycle-freeness of T

- Let $\mathcal{X}, \overline{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}, \exists!\mathcal{Y}_{0}$ with $\mathcal{Y}_{0} \equiv \mathcal{Y}$ such that $\mathcal{Y}_{0} \subseteq \mathcal{X}$ or $\mathcal{Y}_{0} \subseteq \overline{\mathcal{X}}$.
- Existence: either $\mathcal{Y} \subseteq \mathcal{X}, \mathcal{Y} \subseteq \overline{\mathcal{X}}, \overline{\mathcal{Y}} \subseteq \mathcal{X}$, or $\overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$.
\star Either \mathcal{Y} or the minimal subcluster of \mathcal{X} (or $\overline{\mathcal{X}}$) containing $\overline{\mathcal{Y}}$ can be chosen as \mathcal{Y}_{0}.
- Uniqueness: $\mathcal{Y}_{0} \equiv \mathcal{Y}_{1} \neq \mathcal{Y}_{0} \Rightarrow \mathcal{Y}_{0} \cup \mathcal{Y}_{1}=S$ so we cannot have $\mathcal{Y}_{0}, \mathcal{Y}_{1} \subseteq \mathcal{X}$ or $\mathcal{Y}_{0}, \mathcal{Y}_{1} \subseteq \overline{\mathcal{X}}$.
- WLOG, let $\mathcal{Y}_{0} \subseteq \mathcal{X}$. Then $\mathcal{Y}_{0} \subseteq \mathcal{Y}_{1} \subseteq \ldots \subseteq \mathcal{Y}_{n}=\mathcal{X}$ gives a path on T joining the vertices represented by \mathcal{Y} and \mathcal{X}.
- Thus T is connected.
- Moreover, no cycle in T

Proof of the connectivity and the cycle-freeness of T

- Let $\mathcal{X}, \overline{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}, \exists!\mathcal{Y}_{0}$ with $\mathcal{Y}_{0} \equiv \mathcal{Y}$ such that $\mathcal{Y}_{0} \subseteq \mathcal{X}$ or $\mathcal{Y}_{0} \subseteq \overline{\mathcal{X}}$.
- Existence: either $\mathcal{Y} \subseteq \mathcal{X}, \mathcal{Y} \subseteq \overline{\mathcal{X}}, \overline{\mathcal{Y}} \subseteq \mathcal{X}$, or $\overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$.
\star Either \mathcal{Y} or the minimal subcluster of \mathcal{X} (or $\overline{\mathcal{X}}$) containing $\overline{\mathcal{Y}}$ can be chosen as \mathcal{Y}_{0}.
- Uniqueness: $\mathcal{Y}_{0} \equiv \mathcal{Y}_{1} \neq \mathcal{Y}_{0} \Rightarrow \mathcal{Y}_{0} \cup \mathcal{Y}_{1}=S$ so we cannot have $\mathcal{Y}_{0}, \mathcal{Y}_{1} \subseteq \mathcal{X}$ or $\mathcal{Y}_{0}, \mathcal{Y}_{1} \subseteq \overline{\mathcal{X}}$.
- WLOG, let $\mathcal{Y}_{0} \subseteq \mathcal{X}$. Then $\mathcal{Y}_{0} \subseteq \mathcal{Y}_{1} \subseteq \ldots \subseteq \mathcal{Y}_{n}=\mathcal{X}$ gives a path on T joining the vertices represented by \mathcal{Y} and \mathcal{X}.
- Thus T is connected.
- Moreover, no cycle in T.
- No edge between \mathcal{Y}_{i} and \mathcal{Y}_{j} for $|i-j|>1$ (by maximality).

Proof of the connectivity and the cycle-freeness of T

- Let $\mathcal{X}, \overline{\mathcal{X}}$ be an arbitrary pair of complementary clusters.
- For any $\mathcal{Y} \in \mathbb{C}, \exists!\mathcal{Y}_{0}$ with $\mathcal{Y}_{0} \equiv \mathcal{Y}$ such that $\mathcal{Y}_{0} \subseteq \mathcal{X}$ or $\mathcal{Y}_{0} \subseteq \overline{\mathcal{X}}$.
- Existence: either $\mathcal{Y} \subseteq \mathcal{X}, \mathcal{Y} \subseteq \overline{\mathcal{X}}, \overline{\mathcal{Y}} \subseteq \mathcal{X}$, or $\overline{\mathcal{Y}} \subseteq \overline{\mathcal{X}}$.
\star Either \mathcal{Y} or the minimal subcluster of \mathcal{X} (or $\overline{\mathcal{X}}$) containing $\overline{\mathcal{Y}}$ can be chosen as \mathcal{Y}_{0}.
- Uniqueness: $\mathcal{Y}_{0} \equiv \mathcal{Y}_{1} \neq \mathcal{Y}_{0} \Rightarrow \mathcal{Y}_{0} \cup \mathcal{Y}_{1}=S$ so we cannot have $\mathcal{Y}_{0}, \mathcal{Y}_{1} \subseteq \mathcal{X}$ or $\mathcal{Y}_{0}, \mathcal{Y}_{1} \subseteq \overline{\mathcal{X}}$.
- WLOG, let $\mathcal{Y}_{0} \subseteq \mathcal{X}$. Then $\mathcal{Y}_{0} \subseteq \mathcal{Y}_{1} \subseteq \ldots \subseteq \mathcal{Y}_{n}=\mathcal{X}$ gives a path on T joining the vertices represented by \mathcal{Y} and \mathcal{X}.
- Thus T is connected.
- Moreover, no cycle in T.
- No edge between \mathcal{Y}_{i} and \mathcal{Y}_{j} for $|i-j|>1$ (by maximality).
- $\mathcal{Z}_{i} \subseteq \mathcal{X}$ cannot be adjacent to $\mathcal{Z}_{j} \subseteq \overline{\mathcal{X}}$ unless $\mathcal{Z}_{i}=\mathcal{X}$ and $\mathcal{Z}_{j}=\overline{\mathcal{X}}$.

The one-to-one correspondence with complementary

 cluster pairs- $\mathcal{Y} \equiv \mathcal{X}$ and $\overline{\mathcal{Y}} \equiv \overline{\mathcal{X}} \Rightarrow \mathcal{Y}=\mathcal{X}$.
- So the edges of T are in one-to-one correspondence with the complementary cluster pairs $\mathcal{X}, \overline{\mathcal{X}}$.
- Hence the clusters in a given equivalence class correspond in a one-to-one manner to the edges incident with this equivalence class (regarded as a vertex).

The one-to-one correspondence with complementary cluster pairs

- $\mathcal{Y} \equiv \mathcal{X}$ and $\overline{\mathcal{Y}} \equiv \overline{\mathcal{X}} \Rightarrow \mathcal{Y}=\mathcal{X}$.
- So the edges of T are in one-to-one correspondence with the complementary cluster pairs $\mathcal{X}, \overline{\mathcal{X}}$.
- Hence the clusters in a given equivalence class correspond in a one-to-one manner to the edges incident with this equivalence class (regarded as a vertex).

Is every taxon A represented by a unique equivalence class $\rho(A)$?

- Yes.
- $\{A\} \in \mathbb{C}$ for all $A \in S$ and $\rho(A)=\{A\}$.

Outline

(1) Introduction

(2) Cluster and tree-likeness
(3) Quartet topologies and tree-likeness

4 Conclusions

Quartet topologies

Quartet topologies (contd.)

- Let Q be a set of quartet topologies over S.
- Assume that Q is complete: every four taxa in S has exactly one quartet topology in Q.

Translation between clusters and quartet topologies

- $[A B \mid C D] \in Q$ if and only if $A, B \in Y$ and $C, D \in \bar{Y}$ for some cluster $Y \in \mathbb{C}$.
- Y is a cluster of size at least two if and only if $Y \neq S$ and $[A B \mid C D] \in Q$ for all $A, B \in Y$ and for all $C, D \in \bar{Y}$.

The substitution property
$[A B \mid C D] \in Q \Rightarrow$

* $[A B \mid C E],[A B \mid D E] \in Q$ or $[A E \mid C D],[B E \mid C D] \in Q$ for any $E \in S \backslash\{A, B, C, D\}$.

- We say a quintet $q=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}$ is consistent if for every bijection $\sigma: q \rightarrow\{A, B, C, D, E\}$, we have $[A B \mid C D] \in Q \Rightarrow[A B \mid C E],[A B \mid D E] \in Q$ or $[A E \mid C D],[B E \mid C D] \in Q$.

Transitive property

Lemma 1

If every quintet over S satisfies the substitution property, then for every quintet $\{A, B, C, D, E\}$, we have

$$
[A B \mid C D],[A B \mid D E] \in Q \Rightarrow[A B \mid C E] \in Q .
$$

Q is tree-like:
\exists an evolutionary tree T whose set of induced quartet topologies is exactly Q.

Quartet topologies and tree-likeness

Proposition 2

Q is tree-like \Leftrightarrow every quintet over S is consistent.

- Assume that $Q=\{[A B \mid C D],[A B \mid C E],[A B \mid C F],[A B \mid D E],[A B \mid D F]$, $[A B \mid E F],[A E \mid C D],[A F \mid C D],[A E \mid C F],[A D \mid E F],[B C \mid D E],[B F \mid C D]$, $[B E \mid C F],[B E \mid D F],[C D \mid E F]\}$.

Quartet topologies and tree-likeness

Proposition 2

Q is tree-like \Leftrightarrow every quintet over S is consistent.

- Assume that $Q=\{[A B \mid C D],[A B \mid C E],[A B \mid C F],[A B \mid D E],[A B \mid D F]$, $[A B \mid E F],[A E \mid C D],[A F \mid C D],[A E \mid C F],[A D \mid E F],[B C \mid D E],[B F \mid C D]$, $[B E \mid C F],[B E \mid D F],[C D \mid E F]\}$.

Quartet topologies and tree-likeness

Proposition 2

Q is tree-like \Leftrightarrow every quintet over S is consistent.

- Assume that $Q=\{[A B \mid C D],[A B \mid C E],[A B \mid C F],[A B \mid D E],[A B \mid D F]$, $[A B \mid E F],[A E \mid C D],[A F \mid C D],[A E \mid C F],[A D \mid E F],[B C \mid D E],[B F \mid C D]$, $[B E \mid C F],[B E \mid D F],[C D \mid E F]\}$.

Quartet topologies and tree-likeness

Proposition 2

Q is tree-like \Leftrightarrow every quintet over S is consistent.

- Assume that $Q=\{[A B \mid C D],[A B \mid C E],[A B \mid C F],[A B \mid D E],[A B \mid D F]$, $[A B \mid E F],[A E \mid C D],[A F \mid C D],[A E \mid C F],[A D \mid E F],[B C \mid D E],[B F \mid C D]$, $[B E \mid C F],[B E \mid D F],[C D \mid E F]\}$.

Quartet topologies and tree-likeness

Proposition 2

Q is tree-like \Leftrightarrow every quintet over S is consistent.

- Assume that $Q=\{[A B \mid C D],[A B \mid C E],[A B \mid C F],[A B \mid D E],[A B \mid D F]$, $[A B \mid E F],[A E \mid C D],[A F \mid C D],[A E \mid C F],[A D \mid E F],[B C \mid D E],[B F \mid C D]$, $[B E \mid C F],[B E \mid D F],[C D \mid E F]\}$.

Proof of Proposition 2

- The if-part is clearly true.
- We construct abstract clusters w.r.t. Q as follows. $\begin{aligned} & \text { Construct clusters }\{A\} \text { and their complementary clusters } S \\ & \text { each } A \in S . \text { (Trivial clusters) } \\ - & \text { Construct a cluster } \mathcal{Y} \text { w.r.t. } Q \text { when } 1<|\mathcal{Y}|<n-1 \text { and } \\ & {[A B \mid C D] \in Q \text { for all } A, B \in \mathcal{Y} \text { and } C, D \in \mathcal{Y} . } \\ & \mathcal{Y} \text { is a cluster } \Leftrightarrow \overline{\mathcal{Y}} \text { is a cluster. }\end{aligned}$

Proof of Proposition 2

- The if-part is clearly true.
- We construct abstract clusters w.r.t. Q as follows.
- Construct clusters $\{A\}$ and their complementary clusters $S \backslash\{A\}$ for each $A \in S$. (Trivial clusters)
- Construct a cluster V w.r.t Q when $1<|\mathcal{V}|<n-1$ and $[A B \mid C D] \in Q$ for all $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{V}}$.
- \mathcal{Y} is a cluster $\Leftrightarrow \overline{\mathcal{Y}}$ is a cluster.
- Any two clusters \mathcal{X}, \mathcal{Y} w.r.t. Q are compatible.

Proof of Proposition 2

- The if-part is clearly true.
- We construct abstract clusters w.r.t. Q as follows.
- Construct clusters $\{A\}$ and their complementary clusters $S \backslash\{A\}$ for each $A \in S$. (Trivial clusters)
- Construct a cluster \mathcal{Y} w.r.t. Q when $1<|\mathcal{Y}|<n-1$ and $[A B \mid C D] \in Q$ for all $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- \mathcal{Y} is a cluster $\Leftrightarrow \overline{\mathcal{Y}}$ is a cluster.
- Any two clusters \mathcal{X}, \mathcal{Y} w.r.t. Q are compatible.

Proof of Proposition 2

- The if-part is clearly true.
- We construct abstract clusters w.r.t. Q as follows.
- Construct clusters $\{A\}$ and their complementary clusters $S \backslash\{A\}$ for each $A \in S$. (Trivial clusters)
- Construct a cluster \mathcal{Y} w.r.t. Q when $1<|\mathcal{Y}|<n-1$ and $[A B \mid C D] \in Q$ for all $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- \mathcal{Y} is a cluster $\Leftrightarrow \overline{\mathcal{Y}}$ is a cluster.
- Any two clusters \mathcal{X}, \mathcal{Y} w.r.t. Q are compatible.
$[A B \mid C D],[A C \mid B D] \in Q(\Rightarrow)$

Proof of Proposition 2

- The if-part is clearly true.
- We construct abstract clusters w.r.t. Q as follows.
- Construct clusters $\{A\}$ and their complementary clusters $S \backslash\{A\}$ for each $A \in S$. (Trivial clusters)
- Construct a cluster \mathcal{Y} w.r.t. Q when $1<|\mathcal{Y}|<n-1$ and $[A B \mid C D] \in Q$ for all $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- \mathcal{Y} is a cluster $\Leftrightarrow \overline{\mathcal{Y}}$ is a cluster.
- Any two clusters \mathcal{X}, \mathcal{Y} w.r.t. Q are compatible.
- Assume $A \in \mathcal{X} \cap \mathcal{Y}, B \in \mathcal{X} \cap \overline{\mathcal{Y}}, C \in \overline{\mathcal{X}} \cap \mathcal{Y}, D \in \overline{\mathcal{X}} \cap \overline{\mathcal{Y}}$. We have $[A B \mid C D],[A C \mid B D] \in Q(\Rightarrow)$

Proof of Proposition 2

- The if-part is clearly true.
- We construct abstract clusters w.r.t. Q as follows.
- Construct clusters $\{A\}$ and their complementary clusters $S \backslash\{A\}$ for each $A \in S$. (Trivial clusters)
- Construct a cluster \mathcal{Y} w.r.t. Q when $1<|\mathcal{Y}|<n-1$ and $[A B \mid C D] \in Q$ for all $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- \mathcal{Y} is a cluster $\Leftrightarrow \overline{\mathcal{Y}}$ is a cluster.
- Any two clusters \mathcal{X}, \mathcal{Y} w.r.t. Q are compatible.
- Assume $A \in \mathcal{X} \cap \mathcal{Y}, B \in \mathcal{X} \cap \overline{\mathcal{Y}}, C \in \overline{\mathcal{X}} \cap \mathcal{Y}, D \in \overline{\mathcal{X}} \cap \overline{\mathcal{Y}}$. We have $[A B \mid C D],[A C \mid B D] \in Q(\Rightarrow)$

Proof of Proposition 2 (contd.)

Construct the corresponding clusters and show that they coincide with Q.

- Assume that $[A B \mid C D] \in Q$ and let $\mathcal{Y}=\{E \mid[A E \mid C D] \in Q$ or $[B E \mid C D] \in Q\}$.
- $[A E \mid C D] \in Q \Leftrightarrow[B E \mid C D] \in Q$ (transitivity).
- $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- If $E \in \mathcal{Y}, F \in \overline{\mathcal{Y}}$, then $[A E \mid C F] \in Q$ (by the substitution property \&

Proof of Proposition 2 (contd.)

Construct the corresponding clusters and show that they coincide with Q.

- Assume that $[A B \mid C D] \in Q$ and let $\mathcal{Y}=\{E \mid[A E \mid C D] \in Q$ or $[B E \mid C D] \in Q\}$.
- $[A E \mid C D] \in Q \Leftrightarrow[B E \mid C D] \in Q$ (transitivity).
- $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- If $E \in \mathcal{Y}, F \in \overline{\mathcal{Y}}$, then $[A E \mid C F] \in Q$ (by the substitution property \& $[A F \mid C D] \notin Q$ since $F \notin \mathcal{Y})$.

Proof of Proposition 2 (contd.)

Construct the corresponding clusters and show that they coincide with Q.

- Assume that $[A B \mid C D] \in Q$ and let $\mathcal{Y}=\{E \mid[A E \mid C D] \in Q$ or $[B E \mid C D] \in Q\}$.
- $[A E \mid C D] \in Q \Leftrightarrow[B E \mid C D] \in Q$ (transitivity).
- $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- If $E \in \mathcal{Y}, F \in \overline{\mathcal{Y}}$, then $[A E \mid C F] \in Q$ (by the substitution property \& $[A F \mid C D] \notin Q$ since $F \notin \mathcal{Y})$.

Proof of Proposition 2 (contd.)

Construct the corresponding clusters and show that they coincide with Q.

- Assume that $[A B \mid C D] \in Q$ and let $\mathcal{Y}=\{E \mid[A E \mid C D] \in Q$ or $[B E \mid C D] \in Q\}$.
- $[A E \mid C D] \in Q \Leftrightarrow[B E \mid C D] \in Q$ (transitivity).
- $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- If $E \in \mathcal{Y}, F \in \overline{\mathcal{Y}}$, then $[A E \mid C F] \in Q$ (by the substitution property \& $[A F \mid C D] \notin Q$ since $F \notin \mathcal{Y})$.
- Hence for taxa $M_{1}, M_{2} \in \mathcal{Y}$ and $N_{1}, N_{2} \in \overline{\mathcal{Y}}$ we have $\left[A M_{i} \mid C N_{j}\right] \in Q$ for $i, j=1,2$.

Proof of Proposition 2 (contd.)

Construct the corresponding clusters and show that they coincide with Q.

- Assume that $[A B \mid C D] \in Q$ and let $\mathcal{Y}=\{E \mid[A E \mid C D] \in Q$ or $[B E \mid C D] \in Q\}$.
- $[A E \mid C D] \in Q \Leftrightarrow[B E \mid C D] \in Q$ (transitivity).
- $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- If $E \in \mathcal{Y}, F \in \overline{\mathcal{Y}}$, then $[A E \mid C F] \in Q$ (by the substitution property \& $[A F \mid C D] \notin Q$ since $F \notin \mathcal{Y})$.
- Hence for taxa $M_{1}, M_{2} \in \mathcal{Y}$ and $N_{1}, N_{2} \in \overline{\mathcal{Y}}$ we have $\left[A M_{i} \mid C N_{j}\right] \in Q$ for $i, j=1,2$.
- By transitivity, $\left[M_{1} M_{2} \mid C N_{j}\right] \in Q$ for $j=1,2$, and further

Proof of Proposition 2 (contd.)

Construct the corresponding clusters and show that they coincide with Q.

- Assume that $[A B \mid C D] \in Q$ and let $\mathcal{Y}=\{E \mid[A E \mid C D] \in Q$ or $[B E \mid C D] \in Q\}$.
- $[A E \mid C D] \in Q \Leftrightarrow[B E \mid C D] \in Q$ (transitivity).
- $A, B \in \mathcal{Y}$ and $C, D \in \overline{\mathcal{Y}}$.
- If $E \in \mathcal{Y}, F \in \overline{\mathcal{Y}}$, then $[A E \mid C F] \in Q$ (by the substitution property \& $[A F \mid C D] \notin Q$ since $F \notin \mathcal{Y})$.
- Hence for $\operatorname{taxa} M_{1}, M_{2} \in \mathcal{Y}$ and $N_{1}, N_{2} \in \overline{\mathcal{Y}}$ we have $\left[A M_{i} \mid C N_{j}\right] \in Q$ for $i, j=1,2$.
- By transitivity, $\left[M_{1} M_{2} \mid C N_{j}\right] \in Q$ for $j=1,2$, and further $\left[M_{1} M_{2} \mid N_{1} N_{2}\right] \in Q$.

An improved result...

Proposition 3

Given any fixed taxon F, then:
Q is tree-like \Leftrightarrow every quintet containing F is consistent.

Proof of Proposition 3

- Assume that $[A B \mid C D] \in Q$ and let E be any taxon in $S \backslash\{A, B, C, D\}$.
- Wish to show: either $[A E \mid C D] \in Q$ or $[A B \mid C E] \in Q$. - By the assumption, either $[A B \mid C F] \in Q$ or $[A F \mid C D] \in Q$ is true.

Proof of Proposition 3

- Assume that $[A B \mid C D] \in Q$ and let E be any taxon in $S \backslash\{A, B, C, D\}$.
- Wish to show: either $[A E \mid C D] \in Q$ or $[A B \mid C E] \in Q$.
- By the assumption, either $[A B \mid C F] \in Q$ or $[A F \mid C D] \in Q$ is true.

Proof of Proposition 3

- Assume that $[A B \mid C D] \in Q$ and let E be any taxon in $S \backslash\{A, B, C, D\}$.
- Wish to show: either $[A E \mid C D] \in Q$ or $[A B \mid C E] \in Q$.
- By the assumption, either $[A B \mid C F] \in Q$ or $[A F \mid C D] \in Q$ is true.
$\Rightarrow \quad \Rightarrow[A B \mid D F] \in Q$.
$\Rightarrow \Rightarrow$ either $[A B \mid E F] \in Q$

Proof of Proposition 3

- Assume that $[A B \mid C D] \in Q$ and let E be any taxon in $S \backslash\{A, B, C, D\}$.
- Wish to show: either $[A E \mid C D] \in Q$ or $[A B \mid C E] \in Q$.
- By the assumption, either $[A B \mid C F] \in Q$ or $[A F \mid C D] \in Q$ is true.
- $\Rightarrow[A B \mid D F] \in Q$.
$\Rightarrow \Rightarrow$ either $[A B \mid E F] \in Q$ or $[A E \mid D F] \in Q$.

Proof of Proposition 3

- Assume that $[A B \mid C D] \in Q$ and let E be any taxon in $S \backslash\{A, B, C, D\}$.
- Wish to show: either $[A E \mid C D] \in Q$ or $[A B \mid C E] \in Q$.
- By the assumption, either $[A B \mid C F] \in Q$ or $[A F \mid C D] \in Q$ is true.
- $\Rightarrow[A B \mid D F] \in Q$.
- \Rightarrow either $[A B \mid E F] \in Q$

Proof of Proposition 3

- Assume that $[A B \mid C D] \in Q$ and let E be any taxon in $S \backslash\{A, B, C, D\}$.
- Wish to show: either $[A E \mid C D] \in Q$ or $[A B \mid C E] \in Q$.
- By the assumption, either $[A B \mid C F] \in Q$ or $[A F \mid C D] \in Q$ is true.
- $\Rightarrow[A B \mid D F] \in Q$.
- \Rightarrow either $[A B \mid E F] \in Q$ or $[A E \mid D F] \in Q$.
* If $[A B \mid E F] \in Q$, so does $[A B \mid C E] \in Q$ (transitivity \& $[A B \mid C F] \in Q$).

The latter with $[A E \mid D F] \in Q$ gives $[A E \mid C D] \in Q$.

Proof of Proposition 3

- Assume that $[A B \mid C D] \in Q$ and let E be any taxon in $S \backslash\{A, B, C, D\}$.
- Wish to show: either $[A E \mid C D] \in Q$ or $[A B \mid C E] \in Q$.
- By the assumption, either $[A B \mid C F] \in Q$ or $[A F \mid C D] \in Q$ is true.
- $\Rightarrow[A B \mid D F] \in Q$.
- \Rightarrow either $[A B \mid E F] \in Q$ or $[A E \mid D F] \in Q$.
\star If $[A B \mid E F] \in Q$, so does $[A B \mid C E] \in Q$ (transitivity \& $[A B \mid C F] \in Q$).
$[A B \mid C E] \in Q$ or $[A E \mid C F] \in Q(\because[A B \mid C F] \in Q)$.
The latter with $[A E \mid D F] \in Q$ gives $[A E \mid C D] \in Q$.

Proof of Proposition 3

- Assume that $[A B \mid C D] \in Q$ and let E be any taxon in $S \backslash\{A, B, C, D\}$.
- Wish to show: either $[A E \mid C D] \in Q$ or $[A B \mid C E] \in Q$.
- By the assumption, either $[A B \mid C F] \in Q$ or $[A F \mid C D] \in Q$ is true.
- $\Rightarrow[A B \mid D F] \in Q$.
- \Rightarrow either $[A B \mid E F] \in Q$ or $[A E \mid D F] \in Q$.
\star If $[A B \mid E F] \in Q$, so does $[A B \mid C E] \in Q$ (transitivity \& $[A B \mid C F] \in Q$).
\star Otherwise, (i.e., $[A E \mid D F] \in Q$).
$\because[A B \mid C E] \in Q$ or $[A E \mid C F] \in Q(\because[A B \mid C F] \in Q)$.
The latter with $[A E \mid D F] \in Q$ gives $[A E \mid C D] \in Q$.

Outline

(1) Introduction
(2) Cluster and tree-likeness
(3) Quartet topologies and tree-likeness
(4) Conclusions

Conclusions

- The arguments in the paper are very unclear.
- I felt painful when reading this paper.

Thank you!

