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Evolutionary trees

A set of n taxa S .

An evolutionary tree T = (V ,E ) on S :
◮ internal vertices with degree 3.
◮ bijection from S to the leaves of T .
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Clusters

Clusters: nonempty proper subsets of S according to T .
◮ C = {X ⊂ S | X 6= ∅, ∃e ∈ E such that any two taxa in X are

connected by a path in T avoiding e, and X is maximal

with respect to this property}.

Splits: two complementary clusters.

There are (2n − 3) splits.

C = {{A}, {B}, {C}, {D}, {E}, {A,B}, {C ,D}, {A,B ,E}, {C , D,E}
{A,B ,C ,D}, {A,B ,C ,E}, {A,B ,D,E}, {A,C ,D,E}, {B ,C ,D,E}}.
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A distinguished subsystem of clusters

X ∈ ρ(v) iff the deletion of some edges e of T incident with v results
in two subtrees of T one of which contains the vertex v and is
defined on X .
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A distinguished subsystem of clusters (contd.)

Assume that
C = {{A}, {B}, {C}, {D}, {E}, {A,B}, {C ,D}, {A,B ,E}, {C , D,E}
{A,B ,C ,D}, {A,B ,C ,E}, {A,B ,D,E}, {A,C ,D,E}, {B ,C ,D,E}}.

ρ(A) = {{A}}, ρ(B) = {{B}}, ρ(C ) = {{C}}, . . .

ρ(x) = {{A,B}, {A,C ,D,E}, {B ,C ,D,E}};
ρ(y) = {{A,B ,E}, {A,B ,C ,D}, {C ,D,E}};
ρ(z) = {{C ,D}, {A,B ,C ,E}, {A,B ,D,E}}.
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Proposition 1

C is the cluster system of an evolutionary tree on S

if and only if

{A} ∈ C for each A ∈ S,

Y ∈ C ⇔ Ȳ ∈ C (totally (4n − 6) clusters) and

for X ,Y ∈ C, either X ⊆ Y, X ⊆ Ȳ, X̄ ⊆ Y, or X̄ ⊆ Ȳ (compatible).

Equivalent definition: X ≡ Y iff at least one of the following
intersections are empty:

◮ X ∩ Y, X ∩ Ȳ, X̄ ∩ Y, X̄ ∩ Ȳ.
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Y ∈ C ⇔ Ȳ ∈ C (totally (4n − 6) clusters) and

for X ,Y ∈ C, either X ⊆ Y, X ⊆ Ȳ, X̄ ⊆ Y, or X̄ ⊆ Ȳ (compatible).
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◮ X ∩ Y, X ∩ Ȳ, X̄ ∩ Y, X̄ ∩ Ȳ.

9 / 41



Compatible clusters

S = {A,B ,C ,D,E}

X = {A,B ,C ,D},Y = {C ,D,E}, X̄ = {E}, Ȳ = {A,B}.

X ∩ Y = {C ,D}, X ∩ Ȳ = {A,B}, X̄ ∩ Y = {E}, X̄ ∩ Ȳ = ∅.
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Compatible clusters (contd.)

S = {A,B ,C ,D,E}
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X ∩ Y = ∅, X ∩ Ȳ = {A,B}, X̄ ∩ Y = {C ,D}, X̄ ∩ Ȳ = {E}.
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Compatible clusters (contd.)
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Non-compatible clusters

S = {A,B ,C ,D,E}

X = {A,B ,C},Y = {B ,C ,D}, X̄ = {D,E}, Ȳ = {A,E}.

X ∩ Y = {B ,C}, X ∩ Ȳ = {A}, X̄ ∩ Y = {D}, X̄ ∩ Ȳ = {E}.
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Some observations (for a compatible C)

X ⊆ Y ⇔ Ȳ ⊆ X̄ for any two clusters X ,Y.

∀X ,Y ∈ C, where X ⊆ Y, if X ⊆ Z1, . . . ,Zk ⊆ Y, and |Zi | ≤ |Zj |
for i ≤ j , then Z1 ⊆ Z2 . . . ⊆ Zk (Z1, . . . ,Zk forms a chain).

◮ ∵ X ⊆ Zi ,Zj ⊆ Y ⇒ ∅ 6= X ⊆ Zi ∩ Zj and ∅ 6= Ȳ ⊆ Z̄i ∩ Z̄j

� then we have Zi ⊆ ZJ or Zj ⊆ Zi for all i , j .
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Recall the distinguished subsystem of C ...

ρ(A) = {{A}}, ρ(B) = {{B}}, ρ(C ) = {{C}}, . . .,
ρ(x) = {{A,B}, {A,C ,D,E}, {B ,C ,D,E}};
ρ(y) = {{A,B ,E}, {A,B ,C ,D}, {C ,D,E}};
ρ(z) = {{C ,D}, {A,B ,C ,E}, {A,B ,D,E}}.

We can DEFINE a corresponding equivalence relation on C:
◮ For X ,Y ∈ C, we say X ≡ Y if and only if either X = Y or X̄ is a

maximal proper subcluster of Y.
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How to reconstruct T from a corresponding C?

Each equivalence class ρ(x) of ≡ represents a vertex of T .

ρ(x) = {A} ⇔ a leaf node A.

ρ(x), ρ(y) represent adjacent vertices x , y iff ∃Y ∈ C such that
Y ∈ ρ(x) and Ȳ ∈ ρ(y).
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Sketch of the proof of Proposition 1

Proposition 1

C is the cluster system of an evolutionary tree T on S

if and only if

{A} ∈ C for each A ∈ S ,

Y ∈ C ⇔ Ȳ ∈ C and

every two X ,Y ∈ C are compatible.

The if-part is easy (by observing clusters corresponding to T ).

For the only-if-part:
1. Prove that ≡ is an equivalence relation (reflexive, symmetric, transitive).

⋆ X ≡ Y iff either X = Y or X̄ is a maximal proper subcluster of Y.

2. Construct a corresponding graph T by ≡.

3. Show that the graph T is an evolutionary tree on S .
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Y ∈ C ⇔ Ȳ ∈ C and

every two X ,Y ∈ C are compatible.

The if-part is easy (by observing clusters corresponding to T ).

For the only-if-part:
1. Prove that ≡ is an equivalence relation (reflexive, symmetric, transitive).

⋆ X ≡ Y iff either X = Y or X̄ is a maximal proper subcluster of Y.

2. Construct a corresponding graph T by ≡.

3. Show that the graph T is an evolutionary tree on S .

18 / 41



≡ is an equivalence relation

It is easy to see that ≡ is reflexive and symmetric.

Assume that Y1 ≡ Y2 and Y2 ≡ Y3 and Y1,Y2,Y3 are distinct.

Ȳ1 and Ȳ3 are maximal proper subsets of Y2 in C by assumption.

We have Ȳ1 ⊆ Y3.
◮ Y1 * Y3 and Y3 * Y1 (by maximality)

◮ Y1 ∩ Y3 6= ∅ (∵ Ȳ2 ⊆ Y1 ∩ Y3).

◮ Hence Ȳ1 ⊆ Y3 (by the assumption of compatibility).
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We have Ȳ1 ⊆ Y3.
◮ Y1 * Y3 and Y3 * Y1 (by maximality)

◮ Y1 ∩ Y3 6= ∅ (∵ Ȳ2 ⊆ Y1 ∩ Y3).
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≡ is an equivalence relation (contd.)

Ȳ1 ⊆ Y2 and Ȳ3 ⊆ Y2

Let X ∈ C such that Ȳ1 ⊆ X ⊆ Y3. Then X = Ȳ1 or X = Y3

(Thus Y1 ≡ Y3).

◮ Either X ⊆ Y2 or X̄ ⊆ Y2 (∵ ∅ 6= Ȳ1 ⊆ Y2 ∩X and ∅ 6= Ȳ3 ⊆ Y2 ∩ X̄ ).

⋆ X ⊆ Ȳ2? X̄ ⊆ Ȳ2?

◮ Hence Ȳ1 ⊆ X ⊆ Y2 or Ȳ3 ⊆ X̄ ⊆ Y2.

◮ By maximality we have either X = Ȳ1 or X = Y3.
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Constructing a graph T according to ‘≡’

The vertices correspond to the equivalence classes of ≡.

Two classes are adjacent iff they contain some complementary pair
Y, Ȳ .

An equivalence class represents a taxa A if it has only one member
{A}.
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An observation

Note:
A subcluster means a subset
of a cluster which is also a
cluster.

From the point of view of clusters, two clusters Y1,Y2 represent
adjacent vertices iff

◮ Ȳ1 = Y2 (Y1 ∩ Y2 = ∅ in this case);

◮ Y1 is a maximal proper subcluster of Y2 (Y1 ↔ Ȳ1 ≡ Y2);

◮ Y2 is a maximal proper subcluster of Y1 (Y2 ↔ Ȳ2 ≡ Y1);

◮ ∃!X ∈ C such that Ȳ1 ⊂ X ⊂ Y2 (Y1 ≡ X ↔ X̄ ≡ Y2).
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How about the connectivity of the constructed
graph?
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Proof of the connectivity and the cycle-freeness of T

Let X , X̄ be an arbitrary pair of complementary clusters.

For any Y ∈ C, ∃!Y0 with Y0 ≡ Y such that Y0 ⊆ X or Y0 ⊆ X̄ .

◮ Existence: either Y ⊆ X , Y ⊆ X̄ , Ȳ ⊆ X , or Ȳ ⊆ X̄ .
⋆ Either Y or the minimal subcluster of X (or X̄ ) containing Ȳ can be

chosen as Y0.

◮ Uniqueness: Y0 ≡ Y1 6= Y0 ⇒ Y0 ∪ Y1 = S so we cannot have
Y0,Y1 ⊆ X or Y0,Y1 ⊆ X̄ .

WLOG, let Y0 ⊆ X . Then Y0 ⊆ Y1 ⊆ . . . ⊆ Yn = X gives a path
on T joining the vertices represented by Y and X .

◮ Thus T is connected.

Moreover, no cycle in T .

◮ No edge between Yi and Yj for |i − j | > 1 (by maximality).

◮ Zi ⊆ X cannot be adjacent to Zj ⊆ X̄ unless Zi = X and Zj = X̄ .
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The one-to-one correspondence with complementary

cluster pairs

Y ≡ X and Ȳ ≡ X̄ ⇒ Y = X .

So the edges of T are in one-to-one correspondence with the
complementary cluster pairs X , X̄ .

Hence the clusters in a given equivalence class correspond in a
one-to-one manner to the edges incident with this equivalence class
(regarded as a vertex).
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Is every taxon A represented by a unique equivalence class

ρ(A)?

Yes.

{A} ∈ C for all A ∈ S and ρ(A) = {A}.
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Quartet topologies
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Quartet topologies (contd.)

Let Q be a set of quartet topologies over S .

Assume that Q is complete: every four taxa in S has exactly one
quartet topology in Q.
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Translation between clusters and quartet topologies

[AB |CD] ∈ Q if and only if A,B ∈ Y and C ,D ∈ Ȳ for some cluster
Y ∈ C.

Y is a cluster of size at least two if and only if Y 6= S and
[AB |CD] ∈ Q for all A,B ∈ Y and for all C ,D ∈ Ȳ .
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The substitution property

[AB |CD] ∈ Q ⇒

⋆ [AB |CE ], [AB |DE ] ∈ Q or [AE |CD], [BE |CD] ∈ Q

for any E ∈ S \ {A,B ,C ,D}.

We say a quintet q = {s1, s2, s3, s4, s5} is consistent if for every
bijection σ : q → {A,B ,C ,D,E}, we have
[AB |CD] ∈ Q ⇒ [AB |CE ], [AB |DE ] ∈ Q or [AE |CD], [BE |CD] ∈ Q.
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Transitive property

Lemma 1

If every quintet over S satisfies the substitution property, then for every
quintet {A,B ,C ,D,E}, we have

[AB |CD], [AB |DE ] ∈ Q ⇒ [AB |CE ] ∈ Q.
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Q is tree-like:

∃ an evolutionary tree T whose set of induced quartet topologies is exactly
Q.
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Quartet topologies and tree-likeness

Proposition 2

Q is tree-like ⇔ every quintet over S is consistent.

Assume that Q = {[AB |CD], [AB |CE ], [AB |CF ], [AB |DE ], [AB |DF ],
[AB |EF ], [AE |CD], [AF |CD], [AE |CF ], [AD|EF ], [BC |DE ], [BF |CD],
[BE |CF ], [BE |DF ], [CD|EF ]}.
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Proof of Proposition 2

The if-part is clearly true.

We construct abstract clusters w.r.t. Q as follows.
◮ Construct clusters {A} and their complementary clusters S \ {A} for

each A ∈ S . (Trivial clusters)

◮ Construct a cluster Y w.r.t. Q when 1 < |Y| < n − 1 and
[AB|CD] ∈ Q for all A, B ∈ Y and C , D ∈ Ȳ.

◮ Y is a cluster ⇔ Ȳ is a cluster.

Any two clusters X ,Y w.r.t. Q are compatible.
◮ Assume A ∈ X ∩ Y, B ∈ X ∩ Ȳ, C ∈ X̄ ∩ Y, D ∈ X̄ ∩ Ȳ . We have

[AB|CD], [AC |BD] ∈ Q (⇒⇐)
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Any two clusters X ,Y w.r.t. Q are compatible.
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Proof of Proposition 2 (contd.)

Construct the corresponding clusters and show that they coincide with Q.

Assume that [AB |CD] ∈ Q and let
Y = {E | [AE |CD] ∈ Q or [BE |CD] ∈ Q}.

◮ [AE |CD] ∈ Q ⇔ [BE |CD] ∈ Q (transitivity).

A,B ∈ Y and C ,D ∈ Ȳ .

If E ∈ Y,F ∈ Ȳ, then [AE |CF ] ∈ Q (by the substitution property &
[AF |CD] /∈ Q since F /∈ Y).

Hence for taxa M1,M2 ∈ Y and N1,N2 ∈ Ȳ we have [AMi |CNj ] ∈ Q
for i , j = 1, 2.

By transitivity, [M1M2|CNj ] ∈ Q for j = 1, 2, and further
[M1M2|N1N2] ∈ Q.
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An improved result...

Proposition 3

Given any fixed taxon F , then:
Q is tree-like ⇔ every quintet containing F is consistent.
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Proof of Proposition 3

Assume that [AB |CD] ∈ Q and let E be any taxon
in S \ {A,B ,C ,D}.

Wish to show: either [AE |CD] ∈ Q or [AB |CE ] ∈ Q.
◮ By the assumption, either [AB|CF ] ∈ Q or [AF |CD] ∈ Q is true.

◮ ⇒ [AB|DF ] ∈ Q.

◮ ⇒ either [AB|EF ] ∈ Q or [AE |DF ] ∈ Q.

⋆ If [AB|EF ] ∈ Q, so does [AB|CE ] ∈ Q (transitivity & [AB|CF ] ∈ Q).

⋆ Otherwise, (i.e., [AE |DF ] ∈ Q).
∵ [AB|CE ] ∈ Q or [AE |CF ] ∈ Q (∵ [AB|CF ] ∈ Q).

The latter with [AE |DF ] ∈ Q gives [AE |CD] ∈ Q.
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Wish to show: either [AE |CD] ∈ Q or [AB |CE ] ∈ Q.
◮ By the assumption, either [AB|CF ] ∈ Q or [AF |CD] ∈ Q is true.

◮ ⇒ [AB|DF ] ∈ Q.

◮ ⇒ either [AB|EF ] ∈ Q or [AE |DF ] ∈ Q.

⋆ If [AB|EF ] ∈ Q, so does [AB|CE ] ∈ Q (transitivity & [AB|CF ] ∈ Q).

⋆ Otherwise, (i.e., [AE |DF ] ∈ Q).
∵ [AB|CE ] ∈ Q or [AE |CF ] ∈ Q (∵ [AB|CF ] ∈ Q).

The latter with [AE |DF ] ∈ Q gives [AE |CD] ∈ Q.
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Conclusions

The arguments in the paper are very unclear.

I felt painful when reading this paper.
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Thank you!
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