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Goals of this talk

This talk includes the following goals:

Briefly introduce coplement reducible graphs (cographs).

Main results of the paper by Corneil et al.

Equivalent definitions for cographs.
Structure properties and algorithmic properties of cographs.

Proofs done by myself.

It’d be better for you to listen to the speaker instead of looking at
the slides.
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Introduction

A complement reducible graph (cograph) is defined recursively as
follows:

A graph with only one vertex is a cograph.

If G1,G2, . . . ,Gk are cographs, then so is their union
G1 ∪ G2 ∪ . . . ∪ Gk .

If G is a cograph, then so is its complement Ḡ .
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Introduction (contd.)

Another equivalent definition for cographs.

A graph with only one vertex is a cograph.

If G1,G2, . . . ,Gk are cographs, then so is their union
G1 ∪ G2 ∪ . . . ∪ Gk .

If G1,G2, . . . ,Gk are cographs, then so is their join.
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Introduction (contd.)
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Introduction (contd.)
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Introduction (contd.)

A tree representing union and join operations of construction
of cographs is called a cotree.
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Introduction (contd.)
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Terminology (graphs and twins)

Graph G = (V ,E );

V : the set of vertices of G ;
E : the set of edges of G .

∀x ∈ V , N(x) = {y ∈ V | (x , y) ∈ E}.

x , y are twins if N(x) \ {x , y} = N(y) \ {x , y};

true twins if (x , y) ∈ E ; false twins if (x , y) /∈ E .
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Terminology (kernels and cliques)

kernel: a maximal independent set of G .

clique: a maximal complete set of G .

S ⊆ V is a kernel in G ⇔ S is a clique in Ḡ

CG : the set of cliques of G .

CG (x): the set of cliques of G containing x ;
CG (x̄): the set of cliques of G NOT containing x .

KG : the set of kernels of G .

KG (x): the set of kernels of G containing x ;
CG (x̄): the set of kernels of G NOT containing x .
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Terminology (CK-property)

A graph G has the clique-kernel intersection property
(CK-property) iff ∀C ∈ CG and ∀K ∈ KG , |C ∩ K | = 1.
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Terminology (CK-property contd.)
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Terminology (CK-property contd.)
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Go back to cotrees

A standard cotree of a cograph:
The internal nodes on each root-to-leaf path on the treee
alternate between 0 and 1.

Each internal node has at least two children (except the trivial
cograph).

Uniqueness.
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Root-to-leaf paths with alternating 0’s and 1’s
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Root-to-leaf paths with alternating 0’s and 1’s
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Uniqueness

22 / 39



Lowest common ancestors in a cotree

Given a cograph G and its standard cotree T .

(x , y) ∈ E iff their lowest common ancestor in T is a 1-node
(join).
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Being a cograph is hereditary

Theorem

Every induced subgraph of a cograph is a cograph.

Proof.

In the following we assume that n ≥ 3.

Obviously true for n < 3.

Fact: Any induced subgraph of a graph can be obtained by
removing vertices one by one.
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Being a cograph is hereditary (contd.)

Proof (contd.)

Let G = (V ,E ) be a cograph and T be the associated cotree.

The induced subgraph G ′ on V \ {y} is a cograph ⇔ a cotree
T ′ can be associated with it.
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Being a cograph is hereditary (contd.)
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Being a cograph is hereditary (contd.)
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Main theorem

Theorem

Given a graph G, the following statements are equivalent:

(1) G is a cograph.

(2) Any nontrivial induced subgraph of G has at least one pair of

twins.

(3) Any induced subgraph of G has the CK-property.

(4) G does not contain P4 as an induced subgraph.

(5) The complement of any nontrivial connected induced

subgraph of G is disconnected.

27 / 39



Proof of the main theorem: (1) ⇒ (2)

G is a cograph ⇒ any nontrivial induced subgraph of G has at
least one pair of twins.

It’s sufficient to show that any cograph G (for |V | ≥ 2) has at
least one pair of twins.

Obviously true by examining the leaves of the associated
cotree T .
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Proof of the main theorem: (2) ⇒ (3)

Any nontrivial induced subgraph of G has at least one pair of twins
⇒ any induced subgraph of G has the CK-property.

Let p be the order of the induced subgraph in G .

For p = 1: obviously true. (induction basis)

Assume that all induced subgraphs of order p in G have the
CK-property.

Goal: Show that any induced subgraph H of order p + 1
satisfies the CK-property.
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Proof of the main theorem: (2) ⇒ (3) (contd.)

Let x , x ′ be a pair of twins in H (existence guaranteed by (2)).
Let H ′ = H −{x ′} be the induced subgraph of H with x ′ removed.

(i): x , x ′ are true twins.

CH(x̄) = CH′(x̄), CH(x) = CH′(x) + {x ′}.

KH(x̄ ′) = KH′ , KH(x ′) = KH′(x) − {x} + {x ′}.

� ∀C ∈ CH and ∀K ∈ KH , we have |C ∩ K | = 1.

(ii): x , x ′ are false twins.

Identical to Case (i).
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Proof of the main theorem: (3) ⇒ (4)

Any induced subgraph of G has the CK-property ⇒ G does not
contain P4 as an induced subgraph.
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Proof of the main theorem: (4) ⇒ (5)

G does not contain P4 as an induced subgraph ⇒ the complement
of any nontrivial connected induced subgraph of G is disconnected.

Trivially true for n ≤ 3.

Assume that the argument holds when n < p ≮ 4.

Let |V (G )| = p and G ′ = G − {x}.

(i): x is not adjacent to any vertex in G ′.

All nontrivial connected induced subgraphs of G are in G ′.

By the inductive hypothesis the argument is true.
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Proof of the main theorem: (4) ⇒ (5)

(ii): x is not isolated in G (proof by contradiction).
C : a connected component of G such that C̄ is still
connected;

x must be in C .

y : a neighbor of x in G ′;

C̄ − x = C̄1 ∪ C̄2;

C̄ − x is disconnected (by the inductive hypothesis).
WLOG assume that y ∈ V (C̄1).

z ∈ V (C̄1) \ {y}, w ∈ V (C̄2).
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Proof of the main theorem: (5) ⇒ (1)

The complement of any nontrivial connected induced subgraph of
G is disconnected ⇒ G is a cograph.

G has the CCD property: the complement of any nontrivial
connected component of G is disconnected.

Claim: If G has the CCD property then so does Ḡ .

Easy to prove.
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Proof of the main theorem: (5) ⇒ (1)

Proof by induction on n. Assume that the argument holds for
n < p ≮ 4.

By the CCD property and being a cograph is preserved under
complementation, we may examine G or Ḡ .

WLOG, say Ḡ is disconnected.

By the inductive hypothesis, each of the connected
components of Ḡ is a cograph, thus Ḡ is a cograph
(establishment by union).
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Graph isomorphism

Graph isomorphism problem (GI): Given two graphs G and H,
determine whether G and H are isomorphic.

It’s easy to see that GI is in NP.

GI is in P? GI is in NP-c?

If G ,H are cographs, GI can be solved in linear time (by
making use of standard cotrees) [Corneil et al. SIAM J.
Comput. 1985].

⋆ Note that the Induced subgraph isomorphism problem is in
NP-c, even for cographs.
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Generating formula for cliques (kernels)

For cliques: (((a ∨ b ∨ c) ∧ (d ∨ e)) ∨ f ) ∧ (g ∨ h).
(((1 + 1 + 1) × (1 + 1)) + 1) × (1 + 1) = 14.
Cliques: adg , adh, aeg , aeh, bdg , bdh, beg , beh, cdg , cdh,
ceg , ceh, fg , fh.
Size of the largest clique:
max{(max{1, 1, 1}+ max{1, 1}), 1}+ max{1, 1} = 3.

For kernels: (((a ∧ b ∧ c) ∨ (d ∧ e)) ∧ f ) ∨ (g ∧ h).
Kernels: abcf , def , gh.
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Thank you!
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