Complement reducible graphs

> D. G. Corneil, H. Lerchs, and L. S. Burlingham Discrete Applied Mathematics 3 (1981) 163-174.

Speaker: Joseph, Chuang-Chieh Lin Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory

Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

November 17, 2009

This talk includes the following goals:

■ Briefly introduce coplement reducible graphs (cographs).
■ Main results of the paper by Corneil et al.

- Equivalent definitions for cographs.
- Structure properties and algorithmic properties of cographs.

■ Proofs done by myself.

It'd be better for you to listen to the speaker instead of looking at the slides.

Outline

1 Introduction

2 Terminology

3 Structure properties of cographs

4 Algorithmic properties of cographs

Outline

1 Introduction

2 Terminology

3 Structure properties of cographs

4 Algorithmic properties of cographs

A complement reducible graph (cograph) is defined recursively as follows:

■ A graph with only one vertex is a cograph.
■ If $G_{1}, G_{2}, \ldots, G_{k}$ are cographs, then so is their union $G_{1} \cup G_{2} \cup \ldots \cup G_{k}$.

- If G is a cograph, then so is its complement \bar{G}.
\bullet
-

-

$$
\because X
$$

Another equivalent definition for cographs.

■ A graph with only one vertex is a cograph.
■ If $G_{1}, G_{2}, \ldots, G_{k}$ are cographs, then so is their union $G_{1} \cup G_{2} \cup \ldots \cup G_{k}$.

■ If $G_{1}, G_{2}, \ldots, G_{k}$ are cographs, then so is their join.

Introduction (contd.)

Introduction (contd.)

union of a and an edge (b, c)

A tree representing union and join operations of construction of cographs is called a cotree.

Introduction (contd.)

Outline

1 Introduction

2 Terminology

3 Structure properties of cographs

4 Algorithmic properties of cographs

■ Graph $G=(V, E)$;

- V : the set of vertices of G;
- E : the set of edges of G.

■ $\forall x \in V, N(x)=\{y \in V \mid(x, y) \in E\}$.
$\square x, y$ are twins if $N(x) \backslash\{x, y\}=N(y) \backslash\{x, y\}$;

- true twins if $(x, y) \in E$; false twins if $(x, y) \notin E$.

Terminology (graphs and twins)

- Graph $G=(V, E)$;
- V : the set of vertices of G;
- E : the set of edges of G.

■ $\forall x \in V, N(x)=\{y \in V \mid(x, y) \in E\}$.
$\square x, y$ are twins if $N(x) \backslash\{x, y\}=N(y) \backslash\{x, y\}$;
\square true twins if $(x, y) \in E$; false twins if $(x, y) \notin E$.

false twins x, y

true twins x, y

■ kernel: a maximal independent set of G.

- clique: a maximal complete set of G.

■ $S \subseteq V$ is a kernel in $G \Leftrightarrow S$ is a clique in \bar{G}

- \mathcal{C}_{G} : the set of cliques of G.
- $\mathcal{C}_{G}(x)$: the set of cliques of G containing x;
- $\mathcal{C}_{G}(\bar{x})$: the set of cliques of G NOT containing x.
- \mathcal{K}_{G} : the set of kernels of G.
- $\mathcal{K}_{G}(x)$: the set of kernels of G containing x;
- $\mathcal{C}_{G}(\bar{x})$: the set of kernels of G NOT containing x.

Terminology (kernels and cliques)

■ kernel: a maximal independent set of G.
■ clique: a maximal complete set of G.
■ $S \subseteq V$ is a kernel in $G \Leftrightarrow S$ is a clique in \bar{G}
■ \mathcal{C}_{G} : the set of cliques of G.

- $\mathcal{C}_{G}(x)$: the set of cliques of G containing x;
- $\mathcal{C}_{G}(\bar{x})$: the set of cliques of G NOT containing x.
$\square \mathcal{K}_{G}$: the set of kernels of G.
- $\mathcal{K}_{G}(x)$: the set of kernels of G containing x;
- $\mathcal{C}_{G}(\bar{x})$: the set of kernels of G NOT containing x.

A graph G has the clique-kernel intersection property (CK-property) iff $\forall C \in \mathcal{C}_{G}$ and $\forall K \in \mathcal{K}_{G},|C \cap K|=1$.

Terminology (CK-property contd.)

Terminology (CK-property contd.)

A ha!

Outline

1 Introduction

2 Terminology

3 Structure properties of cographs

4 Algorithmic properties of cographs

■ A standard cotree of a cograph:

- The internal nodes on each root-to-leaf path on the treee alternate between 0 and 1 .
- Each internal node has at least two children (except the trivial cograph).

■ Uniqueness.

Uniqueness

Lowest common ancestors in a cotree

Given a cograph G and its standard cotree T.
$\square(x, y) \in E$ iff their lowest common ancestor in T is a 1 -node (join).

Being a cograph is hereditary

Theorem

Every induced subgraph of a cograph is a cograph.

Proof.

■ In the following we assume that $n \geq 3$.

- Obviously true for $n<3$.
- Fact: Any induced subgraph of a graph can be obtained by removing vertices one by one.

Being a cograph is hereditary (contd.)

Proof (contd.)

\square Let $G=(V, E)$ be a cograph and T be the associated cotree.

- The induced subgraph G^{\prime} on $V \backslash\{y\}$ is a cograph \Leftrightarrow a cotree T^{\prime} can be associated with it.

Being a cograph is hereditary (contd.)

Being a cograph is hereditary (contd.)

Theorem

Given a graph G, the following statements are equivalent:
(1) G is a cograph.
(2) Any nontrivial induced subgraph of G has at least one pair of twins.
(3) Any induced subgraph of G has the CK-property.
(4) G does not contain P_{4} as an induced subgraph.
(5) The complement of any nontrivial connected induced subgraph of G is disconnected.
G is a cograph \Rightarrow any nontrivial induced subgraph of G has at least one pair of twins.

■ It's sufficient to show that any cograph G (for $|V| \geq 2)$ has at least one pair of twins.

■ Obviously true by examining the leaves of the associated cotree T.

Any nontrivial induced subgraph of G has at least one pair of twins \Rightarrow any induced subgraph of G has the CK-property.

■ Let p be the order of the induced subgraph in G.
■ For $p=1$: obviously true. (induction basis)

- Assume that all induced subgraphs of order p in G have the CK-property.
- Goal: Show that any induced subgraph H of order $p+1$ satisfies the CK-property.

Let x, x^{\prime} be a pair of twins in H (existence guaranteed by (2)).
Let $H^{\prime}=H-\left\{x^{\prime}\right\}$ be the induced subgraph of H with x^{\prime} removed.
(i): x, x^{\prime} are true twins.

$$
\begin{aligned}
& ■ \mathcal{C}_{H}(\bar{x})=\mathcal{C}_{H^{\prime}}(\bar{x}), \quad \mathcal{C}_{H}(x)=\mathcal{C}_{H^{\prime}}(x)+\left\{x^{\prime}\right\} . \\
& ■ \mathcal{K}_{H}\left(\overline{x^{\prime}}\right)=\mathcal{K}_{H^{\prime}}, \quad \mathcal{K}_{H}\left(x^{\prime}\right)=\mathcal{K}_{H^{\prime}}(x)-\{x\}+\left\{x^{\prime}\right\} . \\
& \triangleright \forall C \in \mathcal{C}_{H} \text { and } \forall K \in \mathcal{K}_{H}, \text { we have }|C \cap K|=1 .
\end{aligned}
$$

(ii): x, x^{\prime} are false twins.

- Identical to Case (i).

Any induced subgraph of G has the CK-property $\Rightarrow G$ does not contain P_{4} as an induced subgraph.

A ha!
G does not contain P_{4} as an induced subgraph \Rightarrow the complement of any nontrivial connected induced subgraph of G is disconnected.

- Trivially true for $n \leq 3$.

■ Assume that the argument holds when $n<p \nless 4$.
■ Let $|V(G)|=p$ and $G^{\prime}=G-\{x\}$.
(i): x is not adjacent to any vertex in G^{\prime}.

■ All nontrivial connected induced subgraphs of G are in G^{\prime}.
■ By the inductive hypothesis the argument is true.
(ii): x is not isolated in G (proof by contradiction).

- C: a connected component of G such that \bar{C} is still connected;
- x must be in C.
- y : a neighbor of x in G^{\prime};
- $\bar{C}-x=\bar{C}_{1} \cup \bar{C}_{2}$;
- $\bar{C}-x$ is disconnected (by the inductive hypothesis).
\square WLOG assume that $y \in V\left(\bar{C}_{1}\right)$.
$\square z \in V\left(\bar{C}_{1}\right) \backslash\{y\}, w \in V\left(\bar{C}_{2}\right)$.

The complement of any nontrivial connected induced subgraph of G is disconnected $\Rightarrow G$ is a cograph.
G has the CCD property: the complement of any nontrivial connected component of G is disconnected.

- Claim: If G has the CCD property then so does \bar{G}.
- Easy to prove.

■ Proof by induction on n. Assume that the argument holds for $n<p \nless 4$.

- By the CCD property and being a cograph is preserved under complementation, we may examine G or \bar{G}.
- WLOG, say \bar{G} is disconnected.

■ By the inductive hypothesis, each of the connected components of \bar{G} is a cograph, thus \bar{G} is a cograph (establishment by union).

Outline

1 Introduction

2 Terminology

3 Structure properties of cographs

4 Algorithmic properties of cographs

Graph isomorphism

■ Graph isomorphism problem (GI): Given two graphs G and H, determine whether G and H are isomorphic.

- It's easy to see that GI is in NP.
$\square \mathrm{GI}$ is in \mathbf{P} ? GI is in NP-c?
■ If G, H are cographs, Gl can be solved in linear time (by making use of standard cotrees) [Corneil et al. SIAM J. Comput. 1985].
\star Note that the Induced subgraph isomorphism problem is in NP-c, even for cographs.

Generating formula for cliques (kernels)

■ For cliques: $(((a \vee b \vee c) \wedge(d \vee e)) \vee f) \wedge(g \vee h)$.
$\square(((1+1+1) \times(1+1))+1) \times(1+1)=14$.
■ Cliques: adg, adh, aeg, aeh, bdg, bdh, beg, beh, cdg, cdh, ceg, ceh, fg, fh.

- Size of the largest clique:

$$
\max \{(\max \{1,1,1\}+\max \{1,1\}), 1\}+\max \{1,1\}=3 .
$$

■ For kernels: $(((a \wedge b \wedge c) \vee(d \wedge e)) \wedge f) \vee(g \wedge h)$.
■ Kernels: abcf, def, gh.

Thank you!

