Competing Bandits: Learning under Competition

Yishay Mansour, Aleksandrs Slivkins, Zhiwei Steven Wu manuscript on arXiv (2017)

Speaker: Joseph Chuang-Chieh Lin
Institute of Information Science
Academia Sinica
Taiwan
21 July 2017

Steven Wu

Email：
steven7woo［at］gmail．com
Computer and Information Science
University of Pennsylvania

About Me

My name is Zhiwei Steven Wu（吴志威）．I am a fifth－year PhD student in the CIS Department at Penn，where I am fortunate to be co－advised by Michael Kearns and Aaron Roth．

I am broadly interested in algorithms and machine learning，especially in the areas of differential privacy， fairness in machine learning，and algorithmic economics．

My CV can be found here．

News

－June， 2017 －Starting in fall 2018，I will be joining the University of Minnesota as an Assistant Professor in the Computer Science \＆Engineering Department．Before that，I will be a Postdoctoral Researcher at Microsoft Research－New York City（MSR－NYC）．
－June， 2017 －I defended my thesis and received the 2017 Morris and Dorothy Rubinoff Dissertation Award！

"Microsoft Research New York City investigates computational social science, algorithmic economics and prediction markets, machine learning, and information retrieval. The researchers in our lab interact deeply with the vibrant academic and tech communities in the New York metropolitan area. Our primary goal is to advance the state of the art in interdisciplinary research, and our research also enhances Microsoft products and services, through direct transfer of technology and through impact on Microsoft strategy."

- Jennifer Chayes, Managing Director, Microsoft Research New England and Microsoft Research New York City

Outline

(1) Introduction
(2) The model and preliminaries
(3) Full rationality (HardMax)
4. Relaxed rationality (HardMax \& Random)
(5) SoftMax response function
(6) Concluding remarks

Introduction

- Modern systems strive to learn from interactions with users, and many engage in exploration.
- product recommendations, web search, spam detection, ...
- Interplay b/w exploration and competition.
- To balance the exploration for learning and the competition for users.
- Users' roles:
- customers: generate revenue.
- sources of data: for learning
- self-interested agents: choosing among the competing systems.
- Actually, here "systems" \Rightarrow MAB algorithms.

Introduction

- Modern systems strive to learn from interactions with users, and many engage in exploration.
- product recommendations, web search, spam detection, ...
- Interplay b/w exploration and competition.
- To balance the exploration for learning and the competition for users.
- Users' roles:
- customers: generate revenue.
- sources of data: for learning
- self-interested agents: choosing among the competing systems.
- Actually, here "systems" \Rightarrow MAB algorithms.

Introduction

- Modern systems strive to learn from interactions with users, and many engage in exploration.
- product recommendations, web search, spam detection, ...
- Interplay b/w exploration and competition.
- To balance the exploration for learning and the competition for users.
- Users' roles:
- customers: generate revenue.
- sources of data: for learning
- self-interested agents: choosing among the competing systems.
- Actually, here "systems" \Rightarrow MAB algorithms.

Multi-armed bandits (MAB)

Introduction (contribution)

- Question: Whether and to which extent competition incentivizes innovation.
- Innovation: adoption of better algorithm.
- Competition vs. innovation relationship.
- Well-studied in economics.
- Users' "decision rule" for choosing among the firms:
- relates to users' rationality;
- controls the severity of competition.

Principles \& agents

- Two firms (principals) simultaneously engage in exploration and compete for T users (agents).
- In each round, a new agent arrives and chooses one of the two principals.
- The principle chooses a recommendation: an action $a_{t} \in A=[K]$, where A is a fixed set of actions (same for both principals and all rounds).
- The agent follows this recommendation, receives a reward $r_{t} \in[0,1]$, and reports it back to the principal.

Principals simultaneously announce their learning algorithms before the agents start arriving, and cannot change them afterwards. Principals' utility: the number of agents choosing it.

Principles \& agents

- Two firms (principals) simultaneously engage in exploration and compete for T users (agents).
- In each round, a new agent arrives and chooses one of the two principals.
- The principle chooses a recommendation: an action $a_{t} \in A=[K]$, where A is a fixed set of actions (same for both principals and all rounds).
- The agent follows this recommendation, receives a reward $r_{t} \in[0,1]$, and reports it back to the principal.
* Principals simultaneously announce their learning algorithms before the agents start arriving, and cannot change them afterwards.
* Principals' utility: the number of agents choosing it.

Principles \& agents (the common prior)

- For each action $a \in A$, there is a parametric family $\psi_{a}(\cdot)$ of reward distributions, parameterized by the mean reward μ_{a}.
- The mean reward vector $\mu=\left(\mu_{a}: a \in A\right)$ is drawn from prior distribution $\mathcal{P}_{\text {mean }}$ before round 1 .
- Whenever $a \in A$ is chosen, the reward is drawn independently from $\psi_{a}\left(\mu_{a}\right)$.
* The Bayesian prior on rewards \mathcal{P} is comprised of:
- the prior $\mathcal{P}_{\text {mean }} \&$ the distributions $\left(\psi_{a}(\cdot): a \in A\right)$.

Principles \& agents (the information structure)

- The prior \mathcal{P} is known to everyone.
- The mean rewards $\left\{\mu_{a}\right\}_{a \in A}$ are not revealed to anybody.
- Each principal is completely unaware of the rounds when the other is chosen.

Bayesian-expected rewards

- alg $_{i}$, the algorithm of principal $i, i \in\{1,2\}$.
- $n_{i}(t)$: the number of rounds before t in which this principal is chosen.
- $\operatorname{rew}_{i}(n):$ alg $_{i}$'s Bayesian-expected reward for the n-th step.
- Without competition, just as a bandit algorithm.
- $\mathbf{E}\left[r_{t} \mid\right.$ principal i is chosen in round t and $\left.n_{i}(t)=n\right]=\operatorname{rew}_{i}(n+1)$.

Agents' response

- Each agent t chooses principal i_{t} :
- It chooses a distribution over the principals (p_{t} : prob. of choosing principal 1);
- then draws independently from this distribution.
- \mathcal{I}_{t} : the information available to agent t before the round
- For each principal i, its posterior mean reward:

- Assumption: The same for all agents, and known to all agents.

Agents' response

- Each agent t chooses principal i_{t} :
- It chooses a distribution over the principals (p_{t} : prob. of choosing principal 1);
- then draws independently from this distribution.
- \mathcal{I}_{t} : the information available to agent t before the round.
- For each principal i, its posterior mean reward:
$\operatorname{PMR}_{i}(t):=\mathbf{E}\left[r_{t} \mid \mathcal{I}_{t}\right.$ and $\left.i_{t}=i\right]=\mathbf{E}\left[\operatorname{rew}_{i}\left(n_{i}(t)+1\right) \mid \mathcal{I}_{t}\right]=\mathbf{E}_{n \sim \mathcal{N}_{i, t}}\left[\operatorname{rew}_{i}(n+1)\right]$.
$\mathcal{N}_{i, t}$: the posterior for $n_{i, t}$.
- Response function $p_{t}=f_{\text {resp }}\left(\mathrm{PMR}_{1}(t)-\mathrm{PMR}_{2}(t)\right)$
- Assumption: The same for all agents, and known to all agents.

Agents' response

- Each agent t chooses principal i_{t} :
- It chooses a distribution over the principals (p_{t} : prob. of choosing principal 1);
- then draws independently from this distribution.
- \mathcal{I}_{t} : the information available to agent t before the round.
- For each principal i, its posterior mean reward:
$\operatorname{PMR}_{i}(t):=\mathbf{E}\left[r_{t} \mid \mathcal{I}_{t}\right.$ and $\left.i_{t}=i\right]=\mathbf{E}\left[\operatorname{rew}_{i}\left(n_{i}(t)+1\right) \mid \mathcal{I}_{t}\right]=\mathbf{E}_{n \sim \mathcal{N}_{i, t}}\left[\operatorname{rew}_{i}(n+1)\right]$.
$\mathcal{N}_{i, t}$: the posterior for $n_{i, t}$.
- Response function $p_{t}=f_{\text {resp }}\left(\operatorname{PMR}_{1}(t)-\operatorname{PMR}_{2}(t)\right)$.
- $f_{\text {resp }}(\cdot):[-1,1] \mapsto[0,1]$.
- Assumption: The same for all agents, and known to all agents.

Response functions

$p_{t}=$ prob. of choosing principal 1

- HardMax.
- HardMax\&Random
- SoftMax.

The Bayesian Instataneous Regret

Bayesian Instataneous Regret (BIR)

$$
\operatorname{BIR}_{i}(n):=\mathbf{E}_{\mu \sim \mathcal{P}_{\text {mean }}}\left[\max _{a \in A} \mu_{\mathrm{a}}\right]-\operatorname{rew}_{i}(n) .
$$

Quality of MAB algorithms in terms of BIR

- Smart MAB algorithms, such as UCB1 [Auer et al. 2002], Successive Elimination [Even-Dar et al. 2006], ...
- $\operatorname{BIR}(n)=\tilde{O}\left(n^{-1 / 2}\right)$.
- Naïve MAB algorithms that separate exploration and exploitation, such as Explore-then-Exploit, ϵ-Greedy, ...
- $\operatorname{BIR}(n)=\tilde{O}\left(n^{-1 / 3}\right)$.
- DynamicGreedy: at each step, recommends the currently best posterior action (i.e., $\arg _{\max _{a}}\left\{\mathbf{E}\left[\mu_{a} \mid \mathcal{I}\right]\right\}, \mathcal{I}$: the information available so far).
- $\operatorname{BIR}(n)=\Omega(1)$.
- StaticGreedy: always recommends the prior best action (i.e., $\left.\arg \max _{a}\left\{\mathbf{E}_{\mu \sim \mathcal{P}_{\text {mean }}}\left[\mu_{\mathrm{a}}\right]\right\}\right)$.
- $\operatorname{BIR}(n)=\Omega(1)$.

Assumptions

- We focus on monotone MAB algorithms ($\operatorname{BIR}(n)$ is non-increasing).
* DynamicGreedy is monotone (proof ignored).
- Each action has a chance to be the best: $\forall a \in A, \operatorname{Pr}_{\mu \sim \mathcal{P}_{\text {mean }}}\left[\mu_{a}>\mu_{a^{\prime}}, \forall a^{\prime} \in A \backslash\{a\}\right]>0$.
- Posterior mean rewards of actions are pairwise distinct.
- Prior mean rewards of actions are also pairwise distinct.

Deviation of two algorithms

Two MAB algorithms deviate at a step n if

- $\exists a \in A$ and a realization h of step- n history, such that h is feasible for both algorithms;
- under h the two algoirthms choose a with different probability.

On full rationality

Theorem 4.1

Assume

- HardMax response function with fair tie-breaking (i.e., $f_{\text {resp }}(0)=1 / 2$);
- alg_{1} is DynamicGreedy and alg2 deviates from DynamicGreedy starting from some step $n_{0}<T$.

Then all agents in rounds $t \geq n_{0}$ select principal 1 .

Corollary 4.2

The competition game b/w principals has a unique Nash equilibrium:
\triangleright both principals choose DynamicGreedy.

Proof of Theorem 4.1

Lemma 4.4

With algorithms as in Theorem 4.1, we have $\operatorname{rew}_{1}\left(n_{0}\right)>\operatorname{rew}_{2}\left(n_{0}\right)$.

Lemma 4.5

Suppose alg is monotone, and $\operatorname{PMR}_{1}\left(t_{0}\right)>\operatorname{PMR}_{2}\left(t_{0}\right)$ for some round t_{0}. Then, $\operatorname{PMR}_{1}(t)>\operatorname{PMR}_{2}(t)$ for all subsequent rounds t.

Sketch of the proof of Lemma 4.4

Lemma 4.4
With algorithms as in Theorem 4.1, we have $\operatorname{rew}_{1}\left(n_{0}\right)>\operatorname{rew}_{2}\left(n_{0}\right)$.

- $H_{1, n_{0}}$ and $H_{2, n_{0}}$ have the same distribution.
- Using coupling, WLOG assume that $H_{1, n_{0}}=H_{2, n_{0}}=H$.
- At local step n_{0}, DynamicGreedy chooses an action $a_{1, n_{0}}$ such that for any realization $h \in \operatorname{support}(H)$ and any action $a \in A \backslash\left\{a_{1, n_{0}}\right\}$

$$
\operatorname{PMR}\left(a_{1, n_{0}} \mid H=h\right)>\operatorname{PMR}(a \mid H=h) \quad(*) .
$$

- Since two algoirthms deviate at step n_{0}, there is $h \in \operatorname{support}(H)$ and an action
\square
$\operatorname{Pr}\left[a=a_{2, n_{0}} \neq a_{1, n_{0}} \mid H=h\right]>0$

Sketch of the proof of Lemma 4.4

Lemma 4.4

With algorithms as in Theorem 4.1, we have $\operatorname{rew}_{1}\left(n_{0}\right)>\operatorname{rew}_{2}\left(n_{0}\right)$.

- $H_{1, n_{0}}$ and $H_{2, n_{0}}$ have the same distribution.
- Using coupling, WLOG assume that $H_{1, n_{0}}=H_{2, n_{0}}=H$.
- At local step n_{0}, DynamicGreedy chooses an action $a_{1, n_{0}}$ such that for any realization $h \in \operatorname{support}(H)$ and any action $a \in A \backslash\left\{a_{1, n_{0}}\right\}$,

$$
\operatorname{PMR}\left(a_{1, n_{0}} \mid H=h\right)>\operatorname{PMR}(a \mid H=h) \quad(*) .
$$

- Since two algoirthms deviate at step n_{0}, there is $h \in \operatorname{support}(H)$ and an action $a \in A$ such that
$\operatorname{Pr}\left[a=a_{2, n_{0}} \neq a_{1, n_{0}} \mid H=h\right]>0$

Sketch of the proof of Lemma 4.4

Lemma 4.4

With algorithms as in Theorem 4.1, we have $\operatorname{rew}_{1}\left(n_{0}\right)>\operatorname{rew}_{2}\left(n_{0}\right)$.

- $H_{1, n_{0}}$ and $H_{2, n_{0}}$ have the same distribution.
- Using coupling, WLOG assume that $H_{1, n_{0}}=H_{2, n_{0}}=H$.
- At local step n_{0}, DynamicGreedy chooses an action $a_{1, n_{0}}$ such that for any realization $h \in \operatorname{support}(H)$ and any action $a \in A \backslash\left\{a_{1, n_{0}}\right\}$,

$$
\operatorname{PMR}\left(a_{1, n_{0}} \mid H=h\right)>\operatorname{PMR}(a \mid H=h) \quad(*) .
$$

- Since two algoirthms deviate at step n_{0}, there is $h \in \operatorname{support}(H)$ and an action $a \in A$ such that

$$
\operatorname{Pr}\left[a=a_{2, n_{0}} \neq a_{1, n_{0}} \mid H=h\right]>0 .
$$

- Integrating $\left(^{*}\right)$ over $a \sim\left(a_{2, n_{0}} \mid H=h\right)$ and $h \sim H$, we obtain $\operatorname{rew}_{1}\left(n_{0}\right)>\operatorname{rew}_{2}\left(n_{0}\right)$.

Sketch of the proof of Lemma 4.4

Lemma 4.4

With algorithms as in Theorem 4.1, we have $\operatorname{rew}_{1}\left(n_{0}\right)>\operatorname{rew}_{2}\left(n_{0}\right)$.

- $H_{1, n_{0}}$ and $H_{2, n_{0}}$ have the same distribution.
- Using coupling, WLOG assume that $H_{1, n_{0}}=H_{2, n_{0}}=H$.
- At local step n_{0}, DynamicGreedy chooses an action $a_{1, n_{0}}$ such that for any realization $h \in \operatorname{support}(H)$ and any action $a \in A \backslash\left\{a_{1, n_{0}}\right\}$,

$$
\operatorname{PMR}\left(a_{1, n_{0}} \mid H=h\right)>\operatorname{PMR}(a \mid H=h) \quad(*) .
$$

- Since two algoirthms deviate at step n_{0}, there is $h \in \operatorname{support}(H)$ and an action $a \in A$ such that

$$
\operatorname{Pr}\left[a=a_{2, n_{0}} \neq a_{1, n_{0}} \mid H=h\right]>0 .
$$

- Integrating $\left(^{*}\right)$ over $a \sim\left(a_{2, n_{0}} \mid H=h\right)$ and $h \sim H$, we obtain $\operatorname{rew}_{1}\left(n_{0}\right)>\operatorname{rew}_{2}\left(n_{0}\right)$.

틀

Sketch of the proof of Lemma 4.5

Lemma 4.5

Suppose alg is monotone, and $\operatorname{PMR}_{1}\left(t_{0}\right)>\operatorname{PMR}_{2}\left(t_{0}\right)$ for some round t_{0}. Then, $\operatorname{PMR}_{1}(t)>\operatorname{PMR}_{2}(t)$ for all subsequent rounds t.

- Induction on t, with base case $t=t_{0}$.
- $\mathcal{N}:=\mathcal{N}_{1, t_{0}}$: agents' posterior distribution for $n_{1, t_{0}}$.
- By induction, all agents from t_{0} to $t-1$ chose principal 1 .
- $\operatorname{PMR}_{1}(t)=\mathbf{E}_{n \sim \mathcal{N}}\left[\operatorname{rew}_{1}\left(n+1+t-t_{0}\right)\right] \geq \mathbf{E}_{n \sim \mathcal{N}}\left[\operatorname{rew}_{1}(n+1)\right]=\operatorname{PMR}_{1}\left(t_{0}\right)>$ $\operatorname{PMR}_{2}\left(t_{0}\right)=\operatorname{PMR}_{2}(t)$.

Sketch of the proof of Lemma 4.5

Lemma 4.5

Suppose alg is monotone, and $\operatorname{PMR}_{1}\left(t_{0}\right)>\operatorname{PMR}_{2}\left(t_{0}\right)$ for some round t_{0}. Then, $\operatorname{PMR}_{1}(t)>\operatorname{PMR}_{2}(t)$ for all subsequent rounds t.

- Induction on t, with base case $t=t_{0}$.
- $\mathcal{N}:=\mathcal{N}_{1, t_{0}}$: agents' posterior distribution for $n_{1, t_{0}}$.
- By induction, all agents from t_{0} to $t-1$ chose principal 1 .
- $\operatorname{PMR}_{1}(t)=\mathbf{E}_{n \sim \mathcal{N}}\left[\operatorname{rew}_{1}\left(n+1+t-t_{0}\right)\right] \geq \mathbf{E}_{n \sim \mathcal{N}}\left[\operatorname{rew}_{1}(n+1)\right]=\operatorname{PMR}_{1}\left(t_{0}\right)>$ $\operatorname{PMR}_{2}\left(t_{0}\right)=\operatorname{PMR}_{2}(t)$.

Proof of Theorem 4.1

- Since the two algorithms coincide on the first $n_{0}-1$ steps, we have
- $\operatorname{rew}_{1}(n)=\operatorname{rew}_{2}(n)$ for any $n<n_{0}$.
- $\mathcal{N}_{1, n_{0}}=\mathcal{N}_{2, n_{0}} \triangleq \mathcal{N}$.
- By Lemma 4.4, $\operatorname{rew}_{1}\left(n_{0}\right)>\operatorname{rew}_{2}\left(n_{0}\right)$.
- Therefore,

$$
\begin{aligned}
\operatorname{PMR}_{1}\left(n_{0}\right) & =\mathbf{E}_{n \sim \mathcal{N}}\left[\operatorname{rew}_{1}(n+1)\right]=\sum_{n=0}^{n_{0}-1} \mathcal{N}(n) \cdot \operatorname{rew}_{1}(n+1) \\
& >\mathcal{N}\left(n_{0}-1\right) \cdot \operatorname{rew}_{2}\left(n_{0}\right)+\sum_{n=0}^{n_{0}-2} \mathcal{N}(n) \cdot \operatorname{rew}_{2}(n+1) \\
& =\mathbf{E}_{n \sim \mathcal{N}}\left[\operatorname{rew}_{1}(n+1)\right]=\operatorname{PMR}_{2}\left(n_{0}\right) .
\end{aligned}
$$

- By Lemma 4.5, all subsequent agents choose principal 1, too.

Relaxed rationality: HardMax \& Random

On the relaxed rationality

- Each principal is always chosen with some positive baseline probability.
- A principal with asymptotically better BIR wins by a large margin:
- After a "learning phase" of constant duration, all agents choose this principal with maximal possible probability $f_{\text {resp }}(1)$.

Well-defined for an infinite time horizon

- Denoting $\epsilon_{0}=\frac{1}{2} f_{\text {resp }}(-1)$, for some constant n_{0}, we have

$$
\forall n \geq n_{0}, \quad \operatorname{BIR}_{1}(\epsilon n) / \operatorname{BIR}_{2}(n)<\frac{1}{2}
$$

alg $_{1}$ BIR-dominates alg2

- $\forall n \geq n_{0}, \operatorname{BIR}_{2}(n)>2 e^{-\epsilon_{0} n / 6}$.
- Assumption on the "bad" algorithm.

A version of the competition game b / w the two principals

- Principals can only choose from a finite set \mathcal{A} of monotone MAB algorithms.
- One of these algorithms is "better" than all others.
- We call it special.
- It BIR-dominates all other algorithms in \mathcal{A}.
- We call this game the restricted competition game.

On relaxed rationality: HardMax \& Random

Theorem 5.1

Assume

- HardMax\&Random response function;
- both algorithms are well-defined for an infinite time horizon.

Then, each agent $t \geq n_{0}$ chooses principal 1 with maximal possible probability $f_{\text {resp }}(1)$.

Corollary 5.3

Assume HardMax\&Random response function. Consider the restricted competition game with special algorithm alg. Then, for any sufficiently large time horizon T, this game has a unique Nash equilibrium:
\triangleright both principals choose alg.

Proof of Theorem 5.1

Theorem 5.1

Assume

- HardMax\&Random response function;
- both algorithms are well-defined for an infinite time horizon.

Then, each agent $t \geq n_{0}$ chooses principal 1 with maximal possible probability $f_{\text {resp }}(1)$.

- Consider round $t \geq n_{0}$.
- Each agent choose principal 1 with prob. $\geq f_{\text {resp }}(-1)>0$.
- $\epsilon_{0}:=f_{\text {resp }}(-1) / 2$.
- $\mathbf{E}\left[n_{1}(t+1)\right] \geq 2 \epsilon_{0} t$.
- By Chernoff bounds, we have $n_{1}(t+1) \geq \epsilon_{0} t$ with prob. $\geq 1-e^{-\epsilon_{0} t / 6}$.

\star We need to prove that $\mathrm{PMR}_{1}(t)-\mathrm{PMR}_{2}(t)$

Proof of Theorem 5.1

Theorem 5.1

Assume

- HardMax\&Random response function;
- both algorithms are well-defined for an infinite time horizon.

Then, each agent $t \geq n_{0}$ chooses principal 1 with maximal possible probability $f_{\text {resp }}(1)$.

- Consider round $t \geq n_{0}$.
- Each agent choose principal 1 with prob. $\geq f_{\text {resp }}(-1)>0$.
- $\epsilon_{0}:=f_{\text {resp }}(-1) / 2$.
- $\mathbf{E}\left[n_{1}(t+1)\right] \geq 2 \epsilon_{0} t$.
- By Chernoff bounds, we have $n_{1}(t+1) \geq \epsilon_{0} t$ with prob. $\geq 1-e^{-\epsilon_{0} t / 6}$.
\star We need to prove that $\mathrm{PMR}_{1}(t)-\mathrm{PMR}_{2}(t)>0$.

Proof of Theorem 5.1 (contd.)

- For any m_{1}, m_{2}, consider the quantity:

$$
\Delta\left(m_{1}, m_{2}\right):=\operatorname{BIR}_{2}\left(m_{2}+1\right)-\operatorname{BIR}_{1}\left(m_{1}+1\right) .
$$

- Whenever $m_{1} \geq \epsilon_{0} t-1$ and $m_{2}<t$,

$$
\Delta\left(m_{1}, m_{2}\right) \geq \Delta\left(\epsilon_{0} t, t\right) \geq \operatorname{BIR}_{2}(t) / 2 .
$$

- Therefore,
$\operatorname{PMR}_{1}(t)-\operatorname{PMR}_{2}(t)=\mathrm{E}_{m_{1} \sim N_{1}, t}\left[\Delta\left(m_{1}, m_{2}\right)\right]$

Proof of Theorem 5.1 (contd.)

- For any m_{1}, m_{2}, consider the quantity:

$$
\Delta\left(m_{1}, m_{2}\right):=\operatorname{BIR}_{2}\left(m_{2}+1\right)-\operatorname{BIR}_{1}\left(m_{1}+1\right) .
$$

- Whenever $m_{1} \geq \epsilon_{0} t-1$ and $m_{2}<t$,

$$
\Delta\left(m_{1}, m_{2}\right) \geq \Delta\left(\epsilon_{0} t, t\right) \geq \mathrm{BIR}_{2}(t) / 2
$$

- Therefore,

$$
\begin{aligned}
\operatorname{PMR}_{1}(t)-\operatorname{PMR}_{2}(t) & =\mathbf{E}_{\substack{m_{1} \sim \mathcal{N}_{1}, t \\
m_{2} \sim \mathcal{N}_{2}, t}}\left[\Delta\left(m_{1}, m_{2}\right)\right] \\
& \geq-e^{-\epsilon_{0} t / 6}+\mathbf{E}_{\substack{m_{1} \sim \mathcal{N}_{1, t}, t \\
m_{2} \sim \mathcal{N}_{2}, t}}\left[\Delta\left(m_{1}, m_{2}\right) \mid m_{1} \geq \epsilon_{0} t-1\right] \\
& \geq \operatorname{BIR}_{2}(t) / 2-e^{-\epsilon_{0} t / 6} \\
& >0
\end{aligned}
$$

SoftMax Response Function

A even more relaxed rationality

SoftMax response function

$f_{\text {resp }}$ is SoftMax if the following conditions hold:

- $f_{\text {resp }}(\cdot) \in[\epsilon, 1-\epsilon]$ for some $\epsilon \in(0,1 / 2) \quad$ (bounded away from 0 and 1).
- $\exists \delta_{0}, c_{0}, c_{0}^{\prime}>0$, such that $\forall x \in\left[-\delta_{0}, \delta_{0}\right], c_{0} \leq f_{\text {resp }}(x) \leq c_{0}^{\prime} \quad$ (smooth around 0).
- $f_{\text {resp }}(0)=\frac{1}{2}$ (fair tie-breaking).

Results on SoftMax response functions

Theorem 6.2

Assume

- SoftMax response function;
- alg $_{1}$ BIR-dominates alg $_{2}$.

Then, each agent $t \geq n_{0}$ chooses principal 1 with probability $\geq \frac{1}{2}+\frac{c_{0}}{4} \operatorname{BIR}_{2}(t)$.

Corollary 6.3

- Assume SoftMax\&Random response function.
- Consider the restricted competition game with special algorithm alg.
- Assume that all other algorithms satisfy $\operatorname{BReg}(n) \rightarrow \infty$.

Then, for any sufficiently large T, this game has a unique Nash equilibrium:
\triangleright both principals choose alg.

```
BReg}(n):=\mp@subsup{\sum}{\mp@subsup{n}{}{\prime}=1}{n}BIR(\mp@subsup{n}{}{\prime}
```


Results on SoftMax response functions

Theorem 6.2

Assume

- SoftMax response function;
- alg $_{1}$ BIR-dominates alg $_{2}$.

Then, each agent $t \geq n_{0}$ chooses principal 1 with probability $\geq \frac{1}{2}+\frac{c_{0}}{4} \operatorname{BIR}_{2}(t)$.

Corollary 6.3

- Assume SoftMax\&Random response function.
- Consider the restricted competition game with special algorithm alg.
- Assume that all other algorithms satisfy $\operatorname{BReg}(n) \rightarrow \infty$.

Then, for any sufficiently large T, this game has a unique Nash equilibrium:
\triangleright both principals choose alg.

$$
\operatorname{BReg}(n):=\sum_{n^{\prime}=1}^{n} B \operatorname{BIR}\left(n^{\prime}\right)
$$

Weakly BIR-domination

alg $_{1}$ weakly-BIR-dominates alg $_{2}$

For some $n_{0}(T) \in$ poly $\log (T)$ and constants $\beta_{0}, \alpha_{0} \in(0,1 / 2)$,

$$
\forall n \geq n_{0}(T), \quad \frac{\operatorname{BIR}_{1}\left(\left(1-\beta_{0}\right) n\right)}{\operatorname{BIR}_{2}(n)}<1-\alpha_{0}
$$

Results on SoftMax response functions (contd.)

Theorem 6.4

Assume

- SoftMax response function;
- alg $_{1}$ weakly-BIR-dominates alg $_{2}$;
- $\exists n(\epsilon)$ such that $\operatorname{BIR}_{2}(n)>e^{-\epsilon n}$ for each $n \geq n(\epsilon)$.

Then, each agent $t \geq n_{0}$ chooses principal 1 with probability $\geq \frac{1}{2}+\frac{c_{0} \alpha_{0}}{4} \mathrm{BIR}_{2}(t)$.

Corollary 6.5

- Assume SoftMax\&Random response function.
- Consider the restricted competition game with special algorithm alg (weakly).
- All other algorithms satisfy $\operatorname{BReg}(n) \rightarrow \infty$.

Then, for any sufficiently large T, this game has a unique Nash equilibrium:
\triangleright both principals choose alg.

Concluding remarks

- $f_{\text {resp }}$ controls directly "the extent" to which agents make rational decisions.
- We measure innovation in terms of whether and when alg is chosen in an equilibrium.
- HardMax: no innovation; DynamicGreedy is chosen over alg.
- HardMax\&Random: some innovation; alg is chosen as long as it BIR-dominates.
- SoftMax: more innovation; alg is chosen as long as it weakly-BIR-dominates.

Thank you.

