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Introduction

Introduction

Modern systems strive to learn from interactions with users, and
many engage in exploration.

product recommendations, web search, spam detection, . . .

Interplay b/w exploration and competition.

To balance the exploration for learning and the competition for users.

Users’ roles:

customers: generate revenue.
sources of data: for learning
self-interested agents: choosing among the competing systems.

Actually, here “systems” ⇒ MAB algorithms.
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Introduction

Multi-armed bandits (MAB)
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Introduction

Introduction (contribution)

Question: Whether and to which extent competition incentivizes
innovation.

Innovation: adoption of better algorithm.

Competition vs. innovation relationship.

Well-studied in economics.

Users’ “decision rule” for choosing among the firms:

relates to users’ rationality;
controls the severity of competition.
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The model and preliminaries

Principles & agents

Two firms (principals) simultaneously engage in exploration and compete for
T users (agents).

In each round, a new agent arrives and chooses one of the two principals.

The principle chooses a recommendation: an action at ∈ A = [K ], where A

is a fixed set of actions (same for both principals and all rounds).

The agent follows this recommendation, receives a reward rt ∈ [0, 1], and
reports it back to the principal.

⋆ Principals simultaneously announce their learning algorithms before the
agents start arriving, and cannot change them afterwards.

⋆ Principals’ utility: the number of agents choosing it.
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The model and preliminaries

Principles & agents (the common prior)

For each action a ∈ A, there is a parametric family ψa(·) of reward
distributions, parameterized by the mean reward µa.

The mean reward vector µ = (µa : a ∈ A) is drawn from prior distribution
Pmean before round 1.

Whenever a ∈ A is chosen, the reward is drawn independently from ψa(µa).

⋆ The Bayesian prior on rewards P is comprised of:

the prior Pmean & the distributions (ψa(·) : a ∈ A).
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The model and preliminaries

Principles & agents (the information structure)

The prior P is known to everyone.

The mean rewards {µa}a∈A are not revealed to anybody.

Each principal is completely unaware of the rounds when the other is
chosen.
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The model and preliminaries

Bayesian-expected rewards

algi , the algorithm of principal i , i ∈ {1, 2}.

ni(t): the number of rounds before t in which this principal is chosen.

rewi (n): algi ’s Bayesian-expected reward for the n-th step.

Without competition, just as a bandit algorithm.

E[rt | principal i is chosen in round t and ni(t) = n] = rewi (n + 1).
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The model and preliminaries

Agents’ response

Each agent t chooses principal it :

It chooses a distribution over the principals (pt : prob. of choosing
principal 1);

then draws independently from this distribution.

It : the information available to agent t before the round.

For each principal i , its posterior mean reward:

PMRi (t) := E[rt | It and it = i ] = E[rewi (ni(t) + 1) | It ] = En∼Ni,t
[rewi(n + 1)].

Ni,t : the posterior for ni,t .

Response function pt = fresp(PMR1(t)− PMR2(t)).

fresp(·) : [−1, 1] 7→ [0, 1].

Assumption: The same for all agents, and known to all agents.
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The model and preliminaries

Response functions

HardMax.

HardMax&Random

SoftMax.
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The model and preliminaries

The Bayesian Instataneous Regret

Bayesian Instataneous Regret (BIR)

BIRi (n) := Eµ∼Pmean

[

max
a∈A

µa

]

− rewi (n).
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The model and preliminaries

Quality of MAB algorithms in terms of BIR

Smart MAB algorithms, such as UCB1 [Auer et al. 2002], Successive
Elimination [Even-Dar et al. 2006], . . .

BIR(n) = Õ(n−1/2).

Näıve MAB algorithms that separate exploration and exploitation, such as
Explore-then-Exploit, ǫ-Greedy, . . .

BIR(n) = Õ(n−1/3).

DynamicGreedy: at each step, recommends the currently best posterior
action (i.e., arg maxa{E[µa | I]}, I: the information available so far).

BIR(n) = Ω(1).

StaticGreedy: always recommends the prior best action (i.e.,
argmaxa{Eµ∼Pmean

[µa]}).

BIR(n) = Ω(1).
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The model and preliminaries

Assumptions

We focus on monotone MAB algorithms (BIR(n) is non-increasing).

⋆ DynamicGreedy is monotone (proof ignored).

Each action has a chance to be the best:
∀a ∈ A, Prµ∼Pmean

[µa > µa′ , ∀a
′ ∈ A \ {a}] > 0.

Posterior mean rewards of actions are pairwise distinct.

Prior mean rewards of actions are also pairwise distinct.
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The model and preliminaries

Deviation of two algorithms

Two MAB algorithms deviate at a step n if

∃a ∈ A and a realization h of step-n history, such that h is feasible for both
algorithms;

under h the two algoirthms choose a with different probability.
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Full rationality (HardMax)

On full rationality

Theorem 4.1

Assume

HardMax response function with fair tie-breaking (i.e., fresp(0) = 1/2);

alg1 is DynamicGreedy and alg2 deviates from DynamicGreedy starting from some

step n0 < T .

Then all agents in rounds t ≥ n0 select principal 1.

Corollary 4.2

The competition game b/w principals has a unique Nash equilibrium:

✄ both principals choose DynamicGreedy.
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Full rationality (HardMax)

Proof of Theorem 4.1

Lemma 4.4

With algorithms as in Theorem 4.1, we have rew1(n0) > rew2(n0).

Lemma 4.5

Suppose alg1 is monotone, and PMR1(t0) > PMR2(t0) for some round t0. Then,

PMR1(t) > PMR2(t) for all subsequent rounds t.
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Full rationality (HardMax)

Sketch of the proof of Lemma 4.4

Lemma 4.4

With algorithms as in Theorem 4.1, we have rew1(n0) > rew2(n0).

H1,n0 and H2,n0 have the same distribution.

Using coupling, WLOG assume that H1,n0 = H2,n0 = H.

At local step n0, DynamicGreedy chooses an action a1,n0 such that for any
realization h ∈ support(H) and any action a ∈ A \ {a1,n0},

PMR(a1,n0 | H = h) > PMR(a | H = h) (∗).

Since two algoirthms deviate at step n0, there is h ∈ support(H) and an action
a ∈ A such that

Pr[a = a2,n0 6= a1,n0 | H = h] > 0.

Integrating (*) over a ∼ (a2,n0 | H = h) and h ∼ H, we obtain

rew1(n0) > rew2(n0).
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Full rationality (HardMax)

Sketch of the proof of Lemma 4.5

Lemma 4.5

Suppose alg1 is monotone, and PMR1(t0) > PMR2(t0) for some round t0. Then,

PMR1(t) > PMR2(t) for all subsequent rounds t.

Induction on t, with base case t = t0.

N := N1,t0 : agents’ posterior distribution for n1,t0 .

By induction, all agents from t0 to t − 1 chose principal 1.

PMR1(t) = En∼N [rew1(n + 1 + t − t0)] ≥ En∼N [rew1(n + 1)] = PMR1(t0) >

PMR2(t0) = PMR2(t).
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Full rationality (HardMax)

Proof of Theorem 4.1

Since the two algorithms coincide on the first n0 − 1 steps, we have

rew1(n) = rew2(n) for any n < n0.

N1,n0 = N2,n0 , N .

By Lemma 4.4, rew1(n0) > rew2(n0).

Therefore,
PMR1(n0) = En∼N [rew1(n + 1)] =

n0−1∑

n=0

N (n) · rew1(n + 1)

> N (n0 − 1) · rew2(n0) +

n0−2∑

n=0

N (n) · rew2(n + 1)

= En∼N [rew1(n + 1)] = PMR2(n0).

By Lemma 4.5, all subsequent agents choose principal 1, too.
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Relaxed rationality (HardMax & Random)

Relaxed rationality: HardMax & Random
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Relaxed rationality (HardMax & Random)

On the relaxed rationality

Each principal is always chosen with some positive baseline
probability.

A principal with asymptotically better BIR wins by a large margin:

After a “learning phase” of constant duration, all agents choose this
principal with maximal possible probability fresp(1).
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Relaxed rationality (HardMax & Random)

Well-defined for an infinite time horizon

Denoting ǫ0 =
1
2 fresp(−1), for some constant n0, we have

∀n ≥ n0, BIR1(ǫn)/BIR2(n) <
1

2
.

alg1 BIR-dominates alg2

∀n ≥ n0, BIR2(n) > 2e−ǫ0n/6.

Assumption on the “bad” algorithm.
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Relaxed rationality (HardMax & Random)

A version of the competition game b/w the two principals

Principals can only choose from a finite set A of monotone MAB
algorithms.

One of these algorithms is “better” than all others.

We call it special.
It BIR-dominates all other algorithms in A.

We call this game the restricted competition game.
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Relaxed rationality (HardMax & Random)

On relaxed rationality: HardMax & Random

Theorem 5.1

Assume

HardMax&Random response function;

both algorithms are well-defined for an infinite time horizon.

Then, each agent t ≥ n0 chooses principal 1 with maximal possible probability

fresp(1).

Corollary 5.3

Assume HardMax&Random response function. Consider the restricted

competition game with special algorithm alg. Then, for any sufficiently large

time horizon T , this game has a unique Nash equilibrium:

✄ both principals choose alg.
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Relaxed rationality (HardMax & Random)

Proof of Theorem 5.1

Theorem 5.1

Assume

HardMax&Random response function;

both algorithms are well-defined for an infinite time horizon.

Then, each agent t ≥ n0 chooses principal 1 with maximal possible probability fresp(1).

Consider round t ≥ n0.

Each agent choose principal 1 with prob. ≥ fresp(−1) > 0.

ǫ0 := fresp(−1)/2.

E[n1(t + 1)] ≥ 2ǫ0t.

By Chernoff bounds, we have n1(t + 1) ≥ ǫ0t with prob. ≥ 1− e−ǫ0t/6.

⋆ We need to prove that PMR1(t)− PMR2(t) > 0.
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Relaxed rationality (HardMax & Random)

Proof of Theorem 5.1 (contd.)

For any m1,m2, consider the quantity:

∆(m1,m2) := BIR2(m2 + 1)− BIR1(m1 + 1).

Whenever m1 ≥ ǫ0t − 1 and m2 < t,

∆(m1,m2) ≥ ∆(ǫ0t, t) ≥ BIR2(t)/2.

Therefore,

PMR1(t)− PMR2(t) = Em1∼N1,t ,

m2∼N2,t

[∆(m1,m2)]

≥ −e
−ǫ0t/6 + Em1∼N1,t ,

m2∼N2,t

[∆(m1,m2) | m1 ≥ ǫ0t − 1]

≥ BIR2(t)/2− e
−ǫ0t/6

> 0
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SoftMax response function

SoftMax Response Function
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SoftMax response function

A even more relaxed rationality

SoftMax response function

fresp is SoftMax if the following conditions hold:

fresp(·) ∈ [ǫ, 1− ǫ] for some ǫ ∈ (0, 1/2) (bounded away from 0 and 1).

∃δ0, c0, c
′
0 > 0, such that ∀x ∈ [−δ0, δ0], c0 ≤ fresp(x) ≤ c ′0 (smooth around 0).

fresp(0) =
1
2

(fair tie-breaking).
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SoftMax response function

Results on SoftMax response functions

Theorem 6.2

Assume

SoftMax response function;

alg1 BIR-dominates alg2.

Then, each agent t ≥ n0 chooses principal 1 with probability ≥ 1
2
+ c0

4
BIR2(t).

Corollary 6.3

Assume SoftMax&Random response function.

Consider the restricted competition game with special algorithm alg.

Assume that all other algorithms satisfy BReg(n) → ∞.

Then, for any sufficiently large T , this game has a unique Nash equilibrium:

✄ both principals choose alg. BReg(n) :=
∑

n

n′=1 BIR(n
′).
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SoftMax response function

Weakly BIR-domination

alg1 weakly-BIR-dominates alg2

For some n0(T ) ∈ poly log(T ) and constants β0, α0 ∈ (0, 1/2),

∀n ≥ n0(T ),
BIR1((1− β0)n)

BIR2(n)
< 1− α0.
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SoftMax response function

Results on SoftMax response functions (contd.)

Theorem 6.4

Assume

SoftMax response function;

alg1 weakly-BIR-dominates alg2;

∃n(ǫ) such that BIR2(n) > e−ǫn for each n ≥ n(ǫ).

Then, each agent t ≥ n0 chooses principal 1 with probability ≥ 1
2
+ c0α0

4
BIR2(t).

Corollary 6.5

Assume SoftMax&Random response function.

Consider the restricted competition game with special algorithm alg (weakly).

All other algorithms satisfy BReg(n) → ∞.

Then, for any sufficiently large T , this game has a unique Nash equilibrium:

✄ both principals choose alg.
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Concluding remarks

Concluding remarks

fresp controls directly “the extent” to which agents make rational decisions.

We measure innovation in terms of whether and when alg is chosen in an
equilibrium.

HardMax: no innovation; DynamicGreedy is chosen over alg.

HardMax&Random: some innovation; alg is chosen as long as it
BIR-dominates.

SoftMax: more innovation; alg is chosen as long as it

weakly-BIR-dominates.
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Thank you.
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