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Girth

Definition (The girth of a graph G)
The length of the shortest cycle of G.




Girth

Definition (The girth of a graph G)
The length of the shortest cycle of G.

The girth has tight connections to many graph properties.

m chromatic number;

minimum or average vertex-degree;
diameter;
connectivity;

genus;



The road of computing the girth of a graph

For general graphs G = (V,E), n=|V| and m = |E|:
m O(nm) [ltai & Rodeh, SIAM J. Comput. 1978].
m O(n?) with an additive error of one.
For computing the shortest even-length cycle:

m O(n?a(n)) [Monien, Computing 1983].
m O(n?) [Yuster & Zwick, SIAM J. Discrete Math. 1997].



The road of computing the girth of a graph (contd.)

For planar graphs:
m O(n) if the girth is bounded by 3 [Papadimitriou &
Yannakakis, Inform. Process. Lett. 1981].

O(n) if the girth is bounded by a constant [Eppstein, J.
Graph Algorithms Appl. 1999].

O(n°/*log n) [Djidjev, ICALP’2000]
O(nlog? n) [implicitly by Chalermsook et al., SODA’2004]
O(nlog n) [Weimann & Yuster, SIAM J. Discrete Math., 2010]



A planar graph & its dual plane graph

m acutin G (resp., G') < a cycle in G’ (resp., G)



Planar graphs and k-outerplanar graphs



Planar graphs
m Planar embedding.

m point? curve? face?
m genus?



Genus = minimum number of handles

fae
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(k-)outerplanar graphs

m outerplanar: all the vertices lie on a single face.

m k-outerplanar: deletion of the vertices on the outer face
results in a (k — 1)-outerplanar graph.
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Some important bounds on planar graphs

Euler's formula

A graph embedded on an orientable surface of genus g with n
vertices, m edges, and f faces satisfies

n—m+f >2—2g.

Fig.: An example of a non-orientable surface.

A connected planar graph with n > 3 vertices, m edges and f faces
satisfies m<3n—6andn—m-+f = 2.
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separator

Definition (Separator)

A separator is a set of vertices whose removal leaves connected
components of size < 2n/3.

V.
Theorem

m If G is a planar graph, then it has a separator of O(+/n)
vertices.

m If G has genus g > 0, then it has a separator of O(,/gn)
vertices that can be found in O(n+ g) time.

m Every k-outerplanar graph has a separator of size O(k) that
can be found in O(n) time.
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Planar graphs and k-outerplanar graphs
m The face size & the girth
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An upper bound on the girth of a graph

m Given an embedded planar graph G, the size of each face is
clearly an upper bound on G's girth.
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An upper bound on the girth of a graph

m Given an embedded planar graph G, the size of each face is
clearly an upper bound on G's girth.

m However, the shortest cycle is NOT necessarily a face.

m Nevertheless, the minimum face-size helps us to compute the
girth.
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Planar graphs and k-outerplanar graphs

m General ideas of the O(nlog n) algorithm
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Stage 1: G = G’

m Some assumptions on G:
m G is 2-connected (= no vertex has degree 0 or 1).

m Otherwise we can run the algorithm on each 2-connected
component separately.

m G is not a simple cycle (trivial case).

m Modify G to G’ such that each edge is incident with a vertex
of degree > 3.
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Stage 1: G = G’ (contd.)
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Stage 1: G = G’ (contd.)

m girth(G) = the length of the shortest cycle of G'.

m h: the minimum face-size of any embedding of G.

19/38



Stage 1: G = G’ (contd.)

m girth(G) = the length of the shortest cycle of G'.
m h: the minimum face-size of any embedding of G.

m the number of edges on a shortest cycle of G’ is also bounded
by h.

19/38



Stage 1: G = G’ (contd.)

m girth(G) = the length of the shortest cycle of G'.

m h: the minimum face-size of any embedding of G.
m the number of edges on a shortest cycle of G’ is also bounded
by h.
m - girth(G) < h and only edge contractions from G to G’ are
performed.

19/38



Stage 1: G = G’ (contd.)

m girth(G) = the length of the shortest cycle of G'.

m h: the minimum face-size of any embedding of G.
m the number of edges on a shortest cycle of G’ is also bounded
by h.
m - girth(G) < h and only edge contractions from G to G’ are
performed.

m G’ has nonnegative edge-lengths.
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Stage 1: G = G’ (contd.)

G’ has at most 36n/h vertices.

m The lemma provides a way to compute an upper bound h for
the minimum face-size of any embedding of G.

m We simply construct G’, that results in n’ vertices and set
h = min{n, |36n/n'|}.
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Stage 1: G = G’ (contd.)

G’ has at most 36n/h vertices.

m The lemma provides a way to compute an upper bound h for
the minimum face-size of any embedding of G.

m We simply construct G’, that results in n’ vertices and set
h = min{n, |36n/n'|}.

* Very elegant and surprising!
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Stage 2: Cover G’ by k-outerplanar graphs

......
e LN
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m x: an arbitrary vertex in G’; let k = 2h.

m Gj: the graph induced by the vertices with distance from x
between 0 and k.
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Stage 2: Cover G’ by k-outerplanar graphs
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m x: an arbitrary vertex in G’; let k = 2h.

m Gj: the graph induced by the vertices with distance from x
between k/2 and 3k/2.

22/38



Stage 2: Cover G’ by k-outerplanar graphs

m x: an arbitrary vertex in G’; let k = 2h.

m G}: the graph induced by the vertices with distance from x
between k and 2k.
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Stage 2: Cover G’ by k-outerplanar graphs

m x: an arbitrary vertex in G’; let k = 2h.

m G/: the graph induced by the vertices with distance from x
between i - k/2 and k + i - k/2 for i = 0’1’“‘,2(nk—k).
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Stage 2: Cover G’ by k-outerplanar graphs (contd.)

Some facts about G!'s:
m Every G/ is a (k + 1)-outerplanar graph.
m Every G/ overlaps with at most two other graphs, G/_; and
Gi/—i-l‘

m The shortest cycle must be entirely contained within a single
G!.
1
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Stage 3: Run the k-outerplanar graph algorithm on G/'s

m Run the algorithm for k-outerplanar graphs on every G/
separately to find its shortest cycle and return the shortest one
among them.
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Stage 3: Run the k-outerplanar graph algorithm on G/'s

m Run the algorithm for k-outerplanar graphs on every G/
separately to find its shortest cycle and return the shortest one
among them.

m Each run requires O(k|G/|log|G/|) time (a divide-and-conquer
algorithm).

m The total time complexity is thus

Zc-k|G,-’||og|G,-'| < c~2h|ogn-Z\G,-’| = O(nlog n).

m Notice that every vertex in G/ appears in at most three G/'s

= 2216/l = O([G']) = O(n/h).
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The divide-and-conquer algorithm for k-outerplanar graphs
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Where are the shortest cycles?
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An efficient single-source shortest path algorithm for planar graphs

Theorem (Henzinger et al., J. Comput. Sys. Sci. 1997)

There is an O(n) algorithm for a planar graph G with nonnegative

edge-lengths to compute the distances from a given source v to all
vertices of G.

m It takes O(kn) time to construct the shortest-path tree from
every separator vertex of a k-outerplanar graph.
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A shortest-path tree from v,
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Computing the shortest cycle passing a designated vertex

Lemma 3.1

Let G be a connected graph with nonnegative edge-lengths. If
m a vertex v lies on a shortest cycle, and
m T is a shortest-path tree from v,

then there is a shortest cycle that passes through v and has
exactly one edge not in T.
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m C: the shortest cycle passing through v with the fewest
number (say ¢ > 2) of edges not in T.
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Lemma 3.1
Let G be a connected graph with nonnegative edge-lengths. If

m a vertex v lies on a shortest cycle, and
m T is a shortest-path tree from v,
then there is a shortest cycle that passes through v and has

exactly one edge not in T.

m It suggests an O(n)-time procedure to find the shortest cycle
passing a given vertex v.
m For each edge (x,y) not in T whose length is ¢(x, y), we look
at dist, (x) + dist, (y) + ¢(x, y).

m Take the minimum of this sum over all edges (x,y) notin T.
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The O(knlog n) algorithm for k-outerplanar graphs

Assume that the removal of the separator results in t > 2
connected components.

T(n)=T(n)+ T(n2)+ ... T(n)+ O(kn),

where >~ n; < n and every n; < 2n/3.
i=1
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The O(knlog n) algorithm for k-outerplanar graphs

Assume that the removal of the separator results in t > 2
connected components.

T(n)=T(n)+ T(n2)+ ... T(n)+ O(kn),

t
where >~ n; < n and every n; < 2n/3.
i=1

m T(n) = O(knlogn).
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Thank you.



Proof of Lemma 2.1

Fix an embedding of G with minimum face size h. Say:

G has n vertices, m edges, and f faces, and
G’ has n' vertices, m" edges, and f' faces.

F: denote the set of faces in G;
|x|: the size of a face x € F.
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Proof of Lemma 2.1

Fix an embedding of G with minimum face size h. Say:
G has n vertices, m edges, and f faces, and
G’ has n' vertices, m" edges, and f' faces.

F: denote the set of faces in G;
|x|: the size of a face x € F.

m It is easy to see that f = f'.

m2m= > |x| > > h=fh
xeF xeF

> f'=f<2m/h<6n/h (- m<3n—6 for planar G).
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Proof of Lemma 2.1 (contd.)

Let S:={v € V(G) | degs(v) > 3} and s = |S|.

«m <Y degg(v).
ves

* 2(n" —s)+ > degg(v) =2m'.
ves

m By Euler's formula, we have m’ = n’ +f —2 < n’ 4 6n/h.

m Thus,
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« ol <Y degg(v).

vesS
* 2(n" —s)+ > degg(v) =2m'.
ves
> Y degg(v) =2(m —n' +5).
veS

m By Euler's formula, we have m’ = n’ +f —2 < n’ 4 6n/h.

m Thus, (degg(v) >3 for v € S)

m' < degg(v) <3 (degg(v)—2)

veS veSs

38/38



Proof of Lemma 2.1 (contd.)

Let S:={v € V(G) | degs(v) > 3} and s = |S|.

« ol <Y degg(v).

vesS
* 2(n" —s)+ > degg(v) =2m'.
ves
> Y degg(v) =2(m —n' +5).
veS

m By Euler's formula, we have m’ = n’ +f —2 < n’ 4 6n/h.

m Thus, (degg(v) >3 for v € S)

m <3 deg(v) <33 (degg(v)—2) = 6(m/—n)

veS veSs

38/38



Proof of Lemma 2.1 (contd.)

Let S:={v € V(G) | degs(v) > 3} and s = |S|.

« ol <Y degg(v).

vesS
* 2(n" —s)+ > degg(v) =2m'.
ves
> Y degg(v) =2(m —n' +5).
veS

m By Euler's formula, we have m’ = n’ +f —2 < n’ 4 6n/h.
> m' —n <6n/h.

m Thus, (degg(v) >3 for v € S)

m <3 deg(v) <33 (degg(v)—2) = 6(m/—n)

veS veSs

38/38



Proof of Lemma 2.1 (contd.)

Let S:={v € V(G) | degs(v) > 3} and s = |S|.

« ol <Y degg(v).

vesS
* 2(n" —s)+ > degg(v) =2m'.
ves
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veS

m By Euler's formula, we have m’ = n’ +f —2 < n’ 4 6n/h.
> m' —n <6n/h.

m Thus, (degg(v) >3 for v € S)
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