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Girth

Definition (The girth of a graph G )

The length of the shortest cycle of G.

The girth has tight connections to many graph properties.

chromatic number;

minimum or average vertex-degree;

diameter;

connectivity;

genus;

. . .
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The road of computing the girth of a graph

For general graphs G = (V , E ), n = |V | and m = |E |:

O(nm) [Itai & Rodeh, SIAM J. Comput. 1978].

O(n2) with an additive error of one.

For computing the shortest even-length cycle:

O(n2α(n)) [Monien, Computing 1983].

O(n2) [Yuster & Zwick, SIAM J. Discrete Math. 1997].
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The road of computing the girth of a graph (contd.)

For planar graphs:

O(n) if the girth is bounded by 3 [Papadimitriou &
Yannakakis, Inform. Process. Lett. 1981].

O(n) if the girth is bounded by a constant [Eppstein, J.

Graph Algorithms Appl. 1999].

O(n5/4 log n) [Djidjev, ICALP’2000]

O(n log2 n) [implicitly by Chalermsook et al., SODA’2004]

O(n log n) [Weimann & Yuster, SIAM J. Discrete Math., 2010]
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A planar graph & its dual plane graph

a cut in G (resp., G ′) ⇔ a cycle in G ′ (resp., G )
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Planar graphs

Planar embedding.

point? curve? face?

genus?
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Genus = minimum number of handles
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(k-)outerplanar graphs

outerplanar: all the vertices lie on a single face.

k-outerplanar: deletion of the vertices on the outer face
results in a (k − 1)-outerplanar graph.
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Some important bounds on planar graphs

Euler’s formula

A graph embedded on an orientable surface of genus g with n

vertices, m edges, and f faces satisfies

n − m + f ≥ 2 − 2g .

Fig.: An example of a non-orientable surface.

Theorem

A connected planar graph with n ≥ 3 vertices, m edges and f faces

satisfies m ≤ 3n − 6 and n − m + f = 2.
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separator

Definition (Separator)

A separator is a set of vertices whose removal leaves connected

components of size ≤ 2n/3.

Theorem

If G is a planar graph, then it has a separator of O(
√

n)
vertices.

If G has genus g > 0, then it has a separator of O(
√

gn)
vertices that can be found in O(n + g) time.

Every k-outerplanar graph has a separator of size O(k) that

can be found in O(n) time.
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An upper bound on the girth of a graph

Given an embedded planar graph G , the size of each face is
clearly an upper bound on G ’s girth.

However, the shortest cycle is NOT necessarily a face.

Nevertheless, the minimum face-size helps us to compute the
girth.
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Stage 1: G ⇒ G ′

Some assumptions on G :
G is 2-connected (⇒ no vertex has degree 0 or 1).

Otherwise we can run the algorithm on each 2-connected
component separately.

G is not a simple cycle (trivial case).

Modify G to G ′ such that each edge is incident with a vertex
of degree ≥ 3.
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Stage 1: G ⇒ G ′ (contd.)
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Stage 1: G ⇒ G ′ (contd.)

girth(G ) = the length of the shortest cycle of G ′.

h: the minimum face-size of any embedding of G .
the number of edges on a shortest cycle of G ′ is also bounded
by h.

∵ girth(G ) ≤ h and only edge contractions from G to G
′ are

performed.

G ′ has nonnegative edge-lengths.
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Stage 1: G ⇒ G ′ (contd.)

Lemma 2.1

G ′ has at most 36n/h vertices.

The proof

The lemma provides a way to compute an upper bound h for
the minimum face-size of any embedding of G .

We simply construct G ′, that results in n′ vertices and set
h = min{n, ⌊36n/n′⌋}.

⋆ Very elegant and surprising!
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Stage 2: Cover G ′ by k-outerplanar graphs

x : an arbitrary vertex in G ′; let k = 2h.

G ′

0: the graph induced by the vertices with distance from x

between 0 and k .
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Stage 2: Cover G ′ by k-outerplanar graphs

x : an arbitrary vertex in G ′; let k = 2h.

G ′

1: the graph induced by the vertices with distance from x

between k/2 and 3k/2.
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Stage 2: Cover G ′ by k-outerplanar graphs

x : an arbitrary vertex in G ′; let k = 2h.

G ′

2: the graph induced by the vertices with distance from x

between k and 2k .
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Stage 2: Cover G ′ by k-outerplanar graphs

x : an arbitrary vertex in G ′; let k = 2h.

G ′

i
: the graph induced by the vertices with distance from x

between i · k/2 and k + i · k/2 for i = 0, 1, . . . , 2(n−k)
k

.
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Stage 2: Cover G ′ by k-outerplanar graphs (contd.)

Some facts about G ′

i
’s:

Every G ′

i
is a (k + 1)-outerplanar graph.

Every G ′

i
overlaps with at most two other graphs, G ′

i−1 and
G ′

i+1.

The shortest cycle must be entirely contained within a single
G ′

i
.
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Stage 3: Run the k-outerplanar graph algorithm on G ′
i ’s

Run the algorithm for k-outerplanar graphs on every G ′

i

separately to find its shortest cycle and return the shortest one
among them.

Each run requires O(k|G ′

i
| log |G ′

i
|) time (a divide-and-conquer

algorithm).

The total time complexity is thus

∑

i

c · k |G ′

i | log |G ′

i | ≤ c · 2h log n ·
∑

i

|G ′

i | = O(n log n).

Notice that every vertex in G ′

i
appears in at most three G ′

i
’s

⇒
∑

i
|G ′

i
| = O(|G ′|) = O(n/h).
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Where are the shortest cycles?
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An efficient single-source shortest path algorithm for planar graphs

Theorem (Henzinger et al., J. Comput. Sys. Sci. 1997)

There is an O(n) algorithm for a planar graph G with nonnegative

edge-lengths to compute the distances from a given source v to all

vertices of G.

It takes O(kn) time to construct the shortest-path tree from
every separator vertex of a k-outerplanar graph.
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A shortest-path tree from v1
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Computing the shortest cycle passing a designated vertex

Lemma 3.1

Let G be a connected graph with nonnegative edge-lengths. If

a vertex v lies on a shortest cycle, and

T is a shortest-path tree from v,

then there is a shortest cycle that passes through v and has

exactly one edge not in T .
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C : the shortest cycle passing through v with the fewest
number (say ℓ ≥ 2) of edges not in T .
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Lemma 3.1

Let G be a connected graph with nonnegative edge-lengths. If

a vertex v lies on a shortest cycle, and

T is a shortest-path tree from v ,

then there is a shortest cycle that passes through v and has
exactly one edge not in T .

It suggests an O(n)-time procedure to find the shortest cycle
passing a given vertex v .

For each edge (x , y) not in T whose length is ℓ(x , y), we look
at distv (x) + distv (y) + ℓ(x , y).

Take the minimum of this sum over all edges (x , y) not in T .
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The O(kn log n) algorithm for k-outerplanar graphs

Assume that the removal of the separator results in t ≥ 2
connected components.

T (n) = T (n1) + T (n2) + . . .T (nt) + O(kn),

where
t∑

i=1

ni ≤ n and every ni ≤ 2n/3.

T (n) = O(kn log n).
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Thank you.
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Proof of Lemma 2.1

Fix an embedding of G with minimum face size h. Say:

G has n vertices, m edges, and f faces, and

G ′ has n′ vertices, m′ edges, and f ′ faces.

F : denote the set of faces in G ;
|x |: the size of a face x ∈ F .

It is easy to see that f = f ′.

2m =
∑
x∈F

|x | ≥ ∑
x∈F

h = fh.

� f ′ = f ≤ 2m/h ≤ 6n/h (∵ m ≤ 3n − 6 for planar G ).
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Proof of Lemma 2.1 (contd.)

Let S := {v ∈ V (G ) | degG (v) ≥ 3} and s = |S |.

⋆ m′ ≤ ∑
v∈S

degG (v).

⋆ 2(n′ − s) +
∑
v∈S

degG (v) = 2m′.

�

∑
v∈S

degG (v) = 2(m′ − n′ + s).

By Euler’s formula, we have m′ = n′ + f − 2 ≤ n′ + 6n/h.

� m′ − n′ ≤ 6n/h.

Thus, (degG (v) ≥ 3 for v ∈ S)

m′ ≤
∑

v∈S

degG (v) ≤ 3
∑

v∈S

(degG (v)−2) = 6(m′−n′) ≤ 36n/h.

Back
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