Computing the girth of a planar graph in $O(n \log n)$ time

Oren Weimann and Raphael Yuster

ICALP'2009 \&
SIAM Journal on Discrete Mathematics 24 (2010) 609-616.
Speaker: Joseph, Chuang-Chieh Lin Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Department of Computer Science and Information Engineering
National Chung Cheng University, Taiwan
December 7, 2010

Outline

1 Introduction

2 Planar graphs and k-outerplanar graphs
■ The face size \& the girth
■ General ideas of the $O(n \log n)$ algorithm

3 The divide-and-conquer algorithm for k-outerplanar graphs

Outline

1 Introduction

2 Planar graphs and k-outerplanar graphs
■ The face size \& the girth

- General ideas of the $O(n \log n)$ algorithm

3 The divide-and-conquer algorithm for k-outerplanar graphs

Girth

Definition (The girth of a graph G)
The length of the shortest cycle of G.

The girth has tight connections to many graph properties.

- chromatic number;
- minimum or average vertex-degree;
- diameter;
- connectivity;
- genus;

Definition (The girth of a graph G)

The length of the shortest cycle of G.

The girth has tight connections to many graph properties.

- chromatic number;

■ minimum or average vertex-degree;

- diameter;
- connectivity;

■ genus;
■...

The road of computing the girth of a graph

For general graphs $G=(V, E), n=|V|$ and $m=|E|$:

- $O(n m)$ [Itai \& Rodeh, SIAM J. Comput. 1978].
- $O\left(n^{2}\right)$ with an additive error of one.

For computing the shortest even-length cycle:

- $O\left(n^{2} \alpha(n)\right)$ [Monien, Computing 1983].
- $O\left(n^{2}\right)$ [Yuster \& Zwick, SIAM J. Discrete Math. 1997].

The road of computing the girth of a graph (contd.)

For planar graphs:

- $O(n)$ if the girth is bounded by 3 [Papadimitriou \& Yannakakis, Inform. Process. Lett. 1981].
- $O(n)$ if the girth is bounded by a constant [Eppstein, J. Graph Algorithms Appl. 1999].
- $O\left(n^{5 / 4} \log n\right)$ [Djidjev, ICALP'2000]
- $O\left(n \log ^{2} n\right)$ [implicitly by Chalermsook et al., SODA'2004]

■ O($n \log n)$ [Weimann \& Yuster, SIAM J. Discrete Math., 2010]

A planar graph \& its dual plane graph

■ a cut in G (resp., $\left.G^{\prime}\right) \Leftrightarrow$ a cycle in $G^{\prime}($ resp., $G)$

Outline

1 Introduction

2 Planar graphs and k-outerplanar graphs

- The face size \& the girth

■ General ideas of the $O(n \log n)$ algorithm

3 The divide-and-conquer algorithm for k-outerplanar graphs

Planar graphs

- Planar embedding.

- point? curve? face?
- genus?

Genus $=$ minimum number of handles

(k-)outerplanar graphs

■ outerplanar: all the vertices lie on a single face.

- k-outerplanar: deletion of the vertices on the outer face results in a $(k-1)$-outerplanar graph.

Some important bounds on planar graphs

Euler's formula

A graph embedded on an orientable surface of genus g with n vertices, m edges, and f faces satisfies

$$
n-m+f \geq 2-2 g
$$

Fig.: An example of a non-orientable surface.

Theorem

A connected planar graph with $n \geq 3$ vertices, m edges and f faces satisfies $m \leq 3 n-6$ and $n-m+f=2$.

separator

Definition (Separator)

A separator is a set of vertices whose removal leaves connected components of size $\leq 2 n / 3$.

Theorem

- If G is a planar graph, then it has a separator of $O(\sqrt{n})$ vertices.
- If G has genus $g>0$, then it has a separator of $O(\sqrt{g n})$ vertices that can be found in $O(n+g)$ time.
- Every k-outerplanar graph has a separator of size $O(k)$ that can be found in $O(n)$ time.

separator

Definition (Separator)

A separator is a set of vertices whose removal leaves connected components of size $\leq 2 n / 3$.

Theorem

- If G is a planar graph, then it has a separator of $O(\sqrt{n})$ vertices.
- If G has genus $g>0$, then it has a separator of $O(\sqrt{g n})$ vertices that can be found in $O(n+g)$ time.
- Every k-outerplanar graph has a separator of size $O(k)$ that can be found in $O(n)$ time.

Outline

1 Introduction

2 Planar graphs and k-outerplanar graphs

- The face size \& the girth
- General ideas of the $O(n \log n)$ algorithm

3 The divide-and-conquer algorithm for k-outerplanar graphs

An upper bound on the girth of a graph

- Given an embedded planar graph G, the size of each face is clearly an upper bound on G's girth.
- However, the shortest cycle is NOT necessarily a face.

An upper bound on the girth of a graph

- Given an embedded planar graph G, the size of each face is clearly an upper bound on G's girth.

■ However, the shortest cycle is NOT necessarily a face.

An upper bound on the girth of a graph

- Given an embedded planar graph G, the size of each face is clearly an upper bound on G's girth.

■ However, the shortest cycle is NOT necessarily a face.

■ Nevertheless, the minimum face-size helps us to compute the girth.

An upper bound on the girth of a graph

■ Given an embedded planar graph G, the size of each face is clearly an upper bound on G's girth.

■ However, the shortest cycle is NOT necessarily a face.

- Nevertheless, the minimum face-size helps us to compute the girth.

Outline

1 Introduction

2 Planar graphs and k-outerplanar graphs

- The face size \& the girth

■ General ideas of the $O(n \log n)$ algorithm

3 The divide-and-conquer algorithm for k-outerplanar graphs

Stage 1: $G \Rightarrow G^{\prime}$

- Some assumptions on G :
- G is 2 -connected (\Rightarrow no vertex has degree 0 or 1).
- Otherwise we can run the algorithm on each 2 -connected component separately.
- G is not a simple cycle (trivial case).
- Modify G to G^{\prime} such that each edge is incident with a vertex of degree ≥ 3.

Stage 1: $G \Rightarrow G^{\prime}$ (contd.)

$\sqrt{7}$

trivial

- $\operatorname{girth}(G)=$ the length of the shortest cycle of G^{\prime}.
- h : the minimum face-size of any embedding of G.
- the number of edges on a shortest cycle of G^{\prime} is also bounded by h.
- $\operatorname{girth}(G)=$ the length of the shortest cycle of G^{\prime}.
- h : the minimum face-size of any embedding of G.
- the number of edges on a shortest cycle of G^{\prime} is also bounded by h.
girth $(G) \leq h$ and only edge contractions from G to G^{\prime} are performed.
- G^{\prime} has nonnegative edge-lengths.
- $\operatorname{girth}(G)=$ the length of the shortest cycle of G^{\prime}.
- h : the minimum face-size of any embedding of G.
- the number of edges on a shortest cycle of G^{\prime} is also bounded by h.
- $\because \operatorname{girth}(G) \leq h$ and only edge contractions from G to G^{\prime} are performed.
- G^{\prime} has nonnegative edge-lengths.
- $\operatorname{girth}(G)=$ the length of the shortest cycle of G^{\prime}.
- h : the minimum face-size of any embedding of G.
- the number of edges on a shortest cycle of G^{\prime} is also bounded by h.
- $\because \operatorname{girth}(G) \leq h$ and only edge contractions from G to G^{\prime} are performed.
- G^{\prime} has nonnegative edge-lengths.

Lemma 2.1
G^{\prime} has at most $36 n / h$ vertices.

- The proof
- The lemma provides a way to compute an upper bound h for the minimum face-size of any embedding of G.
- We simply construct G^{\prime}, that results in n^{\prime} vertices and set $h=\min \left\{n,\left\lfloor 36 n / n^{\prime}\right\rfloor\right\}$.
* Very elegant and surprising!

Lemma 2.1
G^{\prime} has at most $36 n / h$ vertices.

- The proof
- The lemma provides a way to compute an upper bound h for the minimum face-size of any embedding of G.
- We simply construct G^{\prime}, that results in n^{\prime} vertices and set $h=\min \left\{n,\left\lfloor 36 n / n^{\prime}\right\rfloor\right\}$.
\star Very elegant and surprising!

Stage 2: Cover G^{\prime} by k-outerplanar graphs

- x: an arbitrary vertex in G^{\prime}; let $k=2 h$.
- G_{0}^{\prime} : the graph induced by the vertices with distance from x between 0 and k.

Stage 2: Cover G^{\prime} by k-outerplanar graphs

■ x: an arbitrary vertex in G^{\prime}; let $k=2 h$.

- G_{1}^{\prime} : the graph induced by the vertices with distance from x between $k / 2$ and $3 k / 2$.

Stage 2: Cover G^{\prime} by k-outerplanar graphs

- x: an arbitrary vertex in G^{\prime}; let $k=2 h$.
- G_{2}^{\prime} : the graph induced by the vertices with distance from x between k and $2 k$.

Stage 2: Cover G^{\prime} by k-outerplanar graphs

- x : an arbitrary vertex in G^{\prime}; let $k=2 h$.
- G_{i}^{\prime} : the graph induced by the vertices with distance from x between $i \cdot k / 2$ and $k+i \cdot k / 2$ for $i=0,1, \ldots, \frac{2(n-k)}{k}$.

Some facts about $G_{i}^{\prime \prime}$ s:
■ Every G_{i}^{\prime} is a $(k+1)$-outerplanar graph.
■ Every G_{i}^{\prime} overlaps with at most two other graphs, G_{i-1}^{\prime} and G_{i+1}^{\prime}.

■ The shortest cycle must be entirely contained within a single G_{i}^{\prime}.

Stage 3: Run the k-outerplanar graph algorithm on $G_{i}^{\prime \prime}$ s

■ Run the algorithm for k-outerplanar graphs on every G_{i}^{\prime} separately to find its shortest cycle and return the shortest one among them.

- Each run requires $O\left(k\left|G_{i}^{\prime}\right| \log \left|G_{i}^{\prime}\right|\right)$ time (a divide-and-conquer algorithm).
- The total time complexity is thus

Stage 3: Run the k-outerplanar graph algorithm on $G_{i}^{\prime \prime}$ s

■ Run the algorithm for k-outerplanar graphs on every G_{i}^{\prime} separately to find its shortest cycle and return the shortest one among them.

- Each run requires $O\left(k\left|G_{i}^{\prime}\right| \log \left|G_{i}^{\prime}\right|\right)$ time (a divide-and-conquer algorithm).
- The total time complexity is thus

Stage 3: Run the k-outerplanar graph algorithm on $G_{i}^{\prime \prime}$ s

■ Run the algorithm for k-outerplanar graphs on every G_{i}^{\prime} separately to find its shortest cycle and return the shortest one among them.

- Each run requires $O\left(k\left|G_{i}^{\prime}\right| \log \left|G_{i}^{\prime}\right|\right)$ time (a divide-and-conquer algorithm).
- The total time complexity is thus

$$
\sum_{i} c \cdot k\left|G_{i}^{\prime}\right| \log \left|G_{i}^{\prime}\right| \leq c \cdot 2 h \log n \cdot \sum_{i}\left|G_{i}^{\prime}\right|=O(n \log n)
$$

Stage 3: Run the k-outerplanar graph algorithm on $G_{i}^{\prime \prime}$ s

■ Run the algorithm for k-outerplanar graphs on every G_{i}^{\prime} separately to find its shortest cycle and return the shortest one among them.

- Each run requires $O\left(k\left|G_{i}^{\prime}\right| \log \left|G_{i}^{\prime}\right|\right)$ time (a divide-and-conquer algorithm).
- The total time complexity is thus

$$
\sum_{i} c \cdot k\left|G_{i}^{\prime}\right| \log \left|G_{i}^{\prime}\right| \leq c \cdot 2 h \log n \cdot \sum_{i}\left|G_{i}^{\prime}\right|=O(n \log n) .
$$

- Notice that every vertex in G_{i}^{\prime} appears in at most three $G_{i}^{\prime \prime}$ s $\Rightarrow \sum_{i}\left|G_{i}^{\prime}\right|=O\left(\left|G^{\prime}\right|\right)=O(n / h)$.

Outline

1 Introduction

2 Planar graphs and k-outerplanar graphs

- The face size \& the girth
- General ideas of the $O(n \log n)$ algorithm

3 The divide-and-conquer algorithm for k-outerplanar graphs

Where are the shortest cycles?

An efficient single-source shortest path algorithm for planar graphs

Theorem (Henzinger et al., J. Comput. Sys. Sci. 1997)

There is an $O(n)$ algorithm for a planar graph G with nonnegative edge-lengths to compute the distances from a given source v to all vertices of G.

- It takes $O(k n)$ time to construct the shortest-path tree from every separator vertex of a k-outerplanar graph.

A shortest-path tree from v_{1}

Lemma 3.1

Let G be a connected graph with nonnegative edge-lengths. If

- a vertex v lies on a shortest cycle, and
- T is a shortest-path tree from v,
then there is a shortest cycle that passes through v and has exactly one edge not in T.

■ C : the shortest cycle passing through v with the fewest number (say $\ell \geq 2$) of edges not in T.

Lemma 3.1

Let G be a connected graph with nonnegative edge-lengths. If

- a vertex v lies on a shortest cycle, and
- T is a shortest-path tree from v, then there is a shortest cycle that passes through v and has exactly one edge not in T.
- It suggests an $O(n)$-time procedure to find the shortest cycle passing a given vertex v.
- For each edge (x, y) not in T whose length is $\ell(x, y)$, we look at $\operatorname{dist}_{v}(x)+\operatorname{dist}_{v}(y)+\ell(x, y)$.
- Take the minimum of this sum over all edges (x, y) not in T.

$$
\begin{aligned}
& 0000= \\
& \text { cosis }
\end{aligned}
$$

Assume that the removal of the separator results in $t \geq 2$ connected components.

$$
T(n)=T\left(n_{1}\right)+T\left(n_{2}\right)+\ldots T\left(n_{t}\right)+O(k n)
$$

where $\sum_{i=1}^{t} n_{i} \leq n$ and every $n_{i} \leq 2 n / 3$.

- $T(n)=O(k n \log n)$.

Assume that the removal of the separator results in $t \geq 2$ connected components.

$$
T(n)=T\left(n_{1}\right)+T\left(n_{2}\right)+\ldots T\left(n_{t}\right)+O(k n)
$$

where $\sum_{i=1}^{t} n_{i} \leq n$ and every $n_{i} \leq 2 n / 3$.

- $T(n)=O(k n \log n)$.

Thank you.

Fix an embedding of G with minimum face size h. Say:
G has n vertices, m edges, and f faces, and G^{\prime} has n^{\prime} vertices, m^{\prime} edges, and f^{\prime} faces.
F : denote the set of faces in G;
$|x|$: the size of a face $x \in F$.

- It is easy to see that $f=f^{\prime}$

$$
\triangleright f^{\prime}=f \leq 2 m / h \leq 6 n / h(\because m \leq 3 n-6 \text { for planar } G) .
$$

Fix an embedding of G with minimum face size h. Say:
G has n vertices, m edges, and f faces, and G^{\prime} has n^{\prime} vertices, m^{\prime} edges, and f^{\prime} faces.
F : denote the set of faces in G;
$|x|$: the size of a face $x \in F$.

- It is easy to see that $f=f^{\prime}$.
- $2 m=\sum_{x \in F}|x| \geq \sum_{x \in F} h=f h$.
$\triangleright f^{\prime}=f \leq 2 m / h \leq 6 n / h(\because m \leq 3 n-6$ for planar $G)$.

Let $S:=\left\{v \in V(G) \mid \operatorname{deg}_{G}(v) \geq 3\right\}$ and $s=|S|$.

* $m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v)$.
$\star 2\left(n^{\prime}-s\right)+\sum_{v \in S} \operatorname{deg}_{G}(v)=2 m^{\prime}$.

■ By Euler's formula, we have $m^{\prime}=n^{\prime}+f-2 \leq n^{\prime}+6 n / h$.

- Thus,

Let $S:=\left\{v \in V(G) \mid \operatorname{deg}_{G}(v) \geq 3\right\}$ and $s=|S|$.
$\star m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v)$.
$\star 2\left(n^{\prime}-s\right)+\sum_{v \in S} \operatorname{deg}_{G}(v)=2 m^{\prime}$.

■ By Euler's formula, we have $m^{\prime}=n^{\prime}+f-2 \leq n^{\prime}+6 n / h$.

- Thus, $\left(\operatorname{deg}_{G}(v) \geq 3\right.$ for $\left.v \in S\right)$

$$
m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v)
$$

Let $S:=\left\{v \in V(G) \mid \operatorname{deg}_{G}(v) \geq 3\right\}$ and $s=|S|$.

* $m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v)$.
$\star 2\left(n^{\prime}-s\right)+\sum_{v \in S} \operatorname{deg}_{G}(v)=2 m^{\prime}$.

■ By Euler's formula, we have $m^{\prime}=n^{\prime}+f-2 \leq n^{\prime}+6 n / h$.

- Thus, $\left(\operatorname{deg}_{G}(v) \geq 3\right.$ for $\left.v \in S\right)$

$$
\begin{equation*}
m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v) \tag{deg}
\end{equation*}
$$

Let $S:=\left\{v \in V(G) \mid \operatorname{deg}_{G}(v) \geq 3\right\}$ and $s=|S|$.

* $m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v)$.
$\star 2\left(n^{\prime}-s\right)+\sum_{v \in S} \operatorname{deg}_{G}(v)=2 m^{\prime}$.

■ By Euler's formula, we have $m^{\prime}=n^{\prime}+f-2 \leq n^{\prime}+6 n / h$.

- Thus, $\left(\operatorname{deg}_{G}(v) \geq 3\right.$ for $\left.v \in S\right)$

$$
m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v) \leq 3 \sum_{v \in S}\left(\operatorname{deg}_{G}(v)-2\right)
$$

Let $S:=\left\{v \in V(G) \mid \operatorname{deg}_{G}(v) \geq 3\right\}$ and $s=|S|$.

$$
\begin{aligned}
& \star m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v) . \\
& \star 2\left(n^{\prime}-s\right)+\sum_{v \in S} \operatorname{deg}_{G}(v)=2 m^{\prime} . \\
& \quad \triangleright \sum_{v \in S} \operatorname{deg}_{G}(v)=2\left(m^{\prime}-n^{\prime}+s\right) .
\end{aligned}
$$

■ By Euler's formula, we have $m^{\prime}=n^{\prime}+f-2 \leq n^{\prime}+6 n / h$.

- Thus, $\left(\operatorname{deg}_{G}(v) \geq 3\right.$ for $\left.v \in S\right)$

$$
m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v) \leq 3 \sum_{v \in S}\left(\operatorname{deg}_{G}(v)-2\right)
$$

Let $S:=\left\{v \in V(G) \mid \operatorname{deg}_{G}(v) \geq 3\right\}$ and $s=|S|$.

$$
\begin{aligned}
& \star m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v) . \\
& \star 2\left(n^{\prime}-s\right)+\sum_{v \in S} \operatorname{deg}_{G}(v)=2 m^{\prime} . \\
& \quad \triangleright \sum_{v \in S} \operatorname{deg}_{G}(v)=2\left(m^{\prime}-n^{\prime}+s\right) .
\end{aligned}
$$

■ By Euler's formula, we have $m^{\prime}=n^{\prime}+f-2 \leq n^{\prime}+6 n / h$.

- Thus, $\left(\operatorname{deg}_{G}(v) \geq 3\right.$ for $\left.v \in S\right)$

$$
m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v) \leq 3 \sum_{v \in S}\left(\operatorname{deg}_{G}(v)-2\right)=6\left(m^{\prime}-n^{\prime}\right)
$$

Let $S:=\left\{v \in V(G) \mid \operatorname{deg}_{G}(v) \geq 3\right\}$ and $s=|S|$.

$$
\begin{aligned}
& \star m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v) . \\
& \star 2\left(n^{\prime}-s\right)+\sum_{v \in S} \operatorname{deg}_{G}(v)=2 m^{\prime} . \\
& \quad \triangleright \sum_{v \in S} \operatorname{deg}_{G}(v)=2\left(m^{\prime}-n^{\prime}+s\right) .
\end{aligned}
$$

■ By Euler's formula, we have $m^{\prime}=n^{\prime}+f-2 \leq n^{\prime}+6 n / h$.

$$
\triangleright m^{\prime}-n^{\prime} \leq 6 n / h .
$$

- Thus, $\left(\operatorname{deg}_{G}(v) \geq 3\right.$ for $\left.v \in S\right)$

$$
m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v) \leq 3 \sum_{v \in S}\left(\operatorname{deg}_{G}(v)-2\right)=6\left(m^{\prime}-n^{\prime}\right)
$$

Let $S:=\left\{v \in V(G) \mid \operatorname{deg}_{G}(v) \geq 3\right\}$ and $s=|S|$.

$$
\begin{aligned}
& \star m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v) . \\
& \star 2\left(n^{\prime}-s\right)+\sum_{v \in S} \operatorname{deg}_{G}(v)=2 m^{\prime} . \\
& \quad \triangleright \sum_{v \in S} \operatorname{deg}_{G}(v)=2\left(m^{\prime}-n^{\prime}+s\right) .
\end{aligned}
$$

■ By Euler's formula, we have $m^{\prime}=n^{\prime}+f-2 \leq n^{\prime}+6 n / h$.

$$
\triangleright m^{\prime}-n^{\prime} \leq 6 n / h .
$$

- Thus, $\left(\operatorname{deg}_{G}(v) \geq 3\right.$ for $\left.v \in S\right)$

$$
m^{\prime} \leq \sum_{v \in S} \operatorname{deg}_{G}(v) \leq 3 \sum_{v \in S}\left(\operatorname{deg}_{G}(v)-2\right)=6\left(m^{\prime}-n^{\prime}\right) \leq 36 n / h
$$

