Finding and counting given length cycles

> N. Alon, R. Yuster, and U. Zwick Algorithmica 17 (1997) 209-223.

Speaker: Joseph, Chuang-Chieh Lin Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

$$
\text { January 5, } 2010
$$

Outline

1 Introduction

2 General results

3 Finding cycles in graphs with low degeneracy
■ Finding C_{6} using color-coding

Outline

1 Introduction

2 General results

3 Finding cycles in graphs with low degeneracy
■ Finding C_{6} using color-coding

Introduction

Problem

Given a graph and an integer k, decide whether a given graph $G=(V, E)$ contains a simple cycle of length k.

- This problem is NP-complete.
- However, for every fixed k, it can be solved in either $O(|V||E|)$ time or $O\left(|V|^{\omega} \log |V|\right)$ time $(\omega<2.376)$ - Monien. Annuals of Discret. Math., 1985. - Alon, Yuster, Zwick. J. ACM, 1995.

Introduction

Problem

Given a graph and an integer k, decide whether a given graph $G=(V, E)$ contains a simple cycle of length k.

■ This problem is NP-complete.
■ However, for every fixed k, it can be solved in either $O(|V||E|)$ time or $O\left(|V|^{\omega} \log |V|\right)$ time $(\omega<2.376)$

- Monien. Annuals of Discret. Math., 1985.

■ Alon, Yuster, Zwick. J. ACM, 1995.

The contributions of this paper

■ An assortment of methods for finding and counting simple cycles of a given length in directed/undirected graphs.

- Most of the bounds depends solely on the number of edges of the input graph.

■ These bounds are of the form $O\left(|E|^{\alpha_{k}}\right)$ or $O\left(|E|^{\beta_{k}} \cdot d(G)^{\gamma_{k}}\right)$, where $\alpha_{k}, \beta_{k}, \gamma_{k}$ are some constants depending on k and $d(G)$ is the degeneracy of a graph (we will talk about it later).

■ An application of color-coding.
■ Omitted in this talk due to insufficient time.

The contributions of this paper (contd.)

C_{k} : a simple cycle of length $k ; d(G) \leq 2|E|^{1 / 2}$.
\triangleright In directed or undirected graphs:
■ A C_{k} in a directed or undirected graph $G=(V, E)$, if one exists, can be found in

- $O\left(|E|^{2-2 / k}\right)$ time if k is even;
- $O\left(|E|^{2-2 /(k+1)}\right)$ time if k is odd.
* A C_{3} (triangle) can be found in $O\left(|E|^{2 \omega /(\omega+1)}\right)=O\left(|E|^{1.41}\right)$ time.
\triangleright In directed or undirected graphs (with the parameter $d(G)$):
- A $C_{4 k-2}$ can be found in $O\left(|E|^{2-(1 / 2 k)} \cdot d(G)^{1-1 / k}\right)$ time.
- A $C_{4 k-1}$ and a $C_{4 k}$ can be found in $O\left(|E|^{2-1 / k} \cdot d(G)\right)$ time;
- A $C_{4 k+1}$ can be found in $O\left(|E|^{2-1 / k} \cdot d(G)^{1+1 / k}\right)$ time;
\triangleright In an undirected graph, finding even cycles is even faster:
- A $C_{4 k-2}$ (if one exists) can be found in $O\left(|E|^{2-(1 / 2 k)(1+1 / k)}\right)$ time.
- A $C_{4 k}$ can be found in $O\left(|E|^{2-(1 / k-1 /(2 k+1))}\right)$ time;
* A C_{4} can be found in $O\left(|E|^{4 / 3}\right)$ time; and a C_{6} can be found in $O\left(|E|^{13 / 8}\right)$ time.

The contributions of this paper (contd.)

Cycle	Complexity	Cycle	Complexity
C_{3}	$\|E\|^{1.41},\|E\| \cdot d(G)$	C_{7}	$\|E\|^{1.75},\|E\|^{3 / 2} \cdot d(G)$
C_{4}	$\|E\|^{1.5},\|E\| \cdot d(G)$	C_{8}	$\|E\|^{1.75},\|E\|^{3 / 2} \cdot d(G)$
C_{5}	$\|E\|^{1.67},\|E\| \cdot d(G)^{2}$	C_{9}	$\|E\|^{1.8},\|E\|^{3 / 2} \cdot d(G)^{3 / 2}$
C_{6}	$\|E\|^{1.67},\|E\|^{3 / 2} \cdot d(G)^{1 / 2}$	C_{10}	$\|E\|^{1.8},\|E\|^{5 / 3} \cdot d(G)^{2 / 3}$

Table: Finding small cycles in directed graphs - some of the new results in this paper.

Cycle	Complexity	Cycle	Complexity
C_{4}	$\|E\|^{1.34}$	C_{8}	$\|E\|^{1.7}$
C_{6}	$\|E\|^{1.63}$	C_{10}	$\|E\|^{1.78}$

Table: Finding small cycles in undirected graphs - some of the new results in this paper.

Outline

1 Introduction

2 General results

3 Finding cycles in graphs with low degeneracy

- Finding C_{6} using color-coding

q-representative

■ A p-set is a set of size p.

Definition

Let \mathcal{F} be a collection of p-sets. A subcollection $\hat{\mathcal{F}} \subseteq \mathcal{F}$ is q-representative for \mathcal{F} if:

■ for every q-set B, there exists a set $A \in \mathcal{F}$ such that $A \cap B=\emptyset$ if and only if there exists a set $A^{\prime} \in \hat{\mathcal{F}}$ such that $A^{\prime} \cap B=\emptyset$.

q-representative (contd.)

For example, let

$$
\mathcal{F}=\{\{1,2,3\},\{2,3,4\},\{1,3,6\},\{4,5,6\},\{4,5,7\}\}
$$

be a collection of 3-sets.

■ Choose $\hat{\mathcal{F}}=\{\{1,2,3\},\{4,5,7\}\}$.
■ $\hat{\mathcal{F}}$ is NOT 3-representative (conider $\{2,4,7\}$).

- $\hat{\mathcal{F}}$ is NOT 2-representative (consider $\{1,5\}$).
- Choose $\hat{\mathcal{F}}^{\prime}=\{\{1,2,3\},\{1,3,6\},\{4,5,7\}\}$ - $\hat{\mathcal{F}}^{\prime}$ is NOT 3-representative (consider $\{1,5,8\}$)
\square
n $\hat{\mathcal{F}}^{\prime \prime}$ is still NOT 3-representative (consider $\{1,3,7\}$)

q-representative (contd.)

For example, let

$$
\mathcal{F}=\{\{1,2,3\},\{2,3,4\},\{1,3,6\},\{4,5,6\},\{4,5,7\}\}
$$

be a collection of 3-sets.

■ Choose $\hat{\mathcal{F}}=\{\{1,2,3\},\{4,5,7\}\}$.

- $\hat{\mathcal{F}}$ is NOT 3-representative (conider $\{2,4,7\}$).
- $\hat{\mathcal{F}}$ is NOT 2 -representative (consider $\{1,5\}$).

■ Choose $\hat{\mathcal{F}}^{\prime}=\{\{1,2,3\},\{1,3,6\},\{4,5,7\}\}$.
■ $\hat{\mathcal{F}}^{\prime}$ is NOT 3 -representative (consider $\{1,5,8\}$).

- Choose $\hat{\mathcal{F}}^{\prime \prime}=\{\{1,2,3\},\{2,3,4\},\{1,3,6\},\{4,5,7\}\}$
- $\hat{\mathcal{F}}^{\prime \prime}$ is still NOT 3-representative (consider $\{1,3,7\}$)

q-representative (contd.)

For example, let

$$
\mathcal{F}=\{\{1,2,3\},\{2,3,4\},\{1,3,6\},\{4,5,6\},\{4,5,7\}\}
$$

be a collection of 3-sets.

■ Choose $\hat{\mathcal{F}}=\{\{1,2,3\},\{4,5,7\}\}$.
$\square \hat{\mathcal{F}}$ is NOT 3-representative (conider $\{2,4,7\}$).

- $\hat{\mathcal{F}}$ is NOT 2-representative (consider $\{1,5\}$).

■ Choose $\hat{\mathcal{F}}^{\prime}=\{\{1,2,3\},\{1,3,6\},\{4,5,7\}\}$.
■ $\hat{\mathcal{F}}^{\prime}$ is NOT 3-representative (consider $\{1,5,8\}$).
■ Choose $\hat{\mathcal{F}}^{\prime \prime}=\{\{1,2,3\},\{2,3,4\},\{1,3,6\},\{4,5,7\}\}$.

- $\hat{\mathcal{F}}^{\prime \prime}$ is still NOT 3-representative (consider $\{1,3,7\}$).

Consider another example. Let

$$
\mathcal{F}=\{\{a, b, c\},\{b, c, d\},\{c, d, e\},\{d, e, f\},\{e, f, a\},\{f, a, b\}\}
$$

be a collection of 3-sets.
■ Choose $\hat{\mathcal{F}}=\{\{a, b, c\},\{d, e, f\}\}$.
■ $\hat{\mathcal{F}}$ is r-representative for any integer $r \geq 1$.

Lemma 2.1 (Bollobás. 1965)

Any collection \mathcal{F} of p-sets, no matter how large it is, has a q-representative subcollection of size at most $\binom{p+q}{p}$.

Theorem 2.2 (Monien. 1985)

Given a collection \mathcal{F} of p-sets. There is an $O\left(p q \cdot \sum_{i=0}^{q} p^{i} \cdot|\mathcal{F}|\right)$ time algorithm to find a q-representative subcollection $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ where $\left|\mathcal{F}^{\prime}\right| \leq \sum_{i=0}^{q} p^{i}$.

Lemma 2.3
\mathcal{F} : a collection of p-sets; \mathcal{G} : a collection of q-sets (p, q are fixed). We can either (1) find $A \in \mathcal{F}, B \in \mathcal{G}$ s.t. $A \cap B=\emptyset$ or (2) decide that no such two sets exist in $O(|\mathcal{F}|+|\mathcal{G}|)$ time.

Proof

- Use Monien's algorithm to find (in $O(|\mathcal{F}|+|\mathcal{G}|)$ time)

- Claim: If $\exists A \in \mathcal{F}, \exists B \in \mathcal{G}$ such that $A \cap B=\emptyset$, then $\exists A^{\prime} \in \hat{\mathcal{F}}, \exists B^{\prime} \in \hat{\mathcal{G}}$ such that $A^{\prime} \cap B^{\prime}=\emptyset$ * if $A \cap B=\emptyset$, by the definition, $\exists A^{\prime} \in \hat{\mathcal{F}}$ such that $A^{\prime} \cap B=\emptyset$
(similarly, $\exists B^{\prime} \in \hat{\mathcal{G}}$ such that $A^{\prime} \cap B^{\prime}=\emptyset$).
- After finding $\hat{\mathcal{F}}$ and $\hat{\mathcal{G}}$, it is enough to check whether they contain two disjoint sets in constant time

Lemma 2.3

\mathcal{F} : a collection of p-sets; \mathcal{G} : a collection of q-sets (p, q are fixed). We can either (1) find $A \in \mathcal{F}, B \in \mathcal{G}$ s.t. $A \cap B=\emptyset$ or (2) decide that no such two sets exist in $O(|\mathcal{F}|+|\mathcal{G}|)$ time.

Proof.

■ Use Monien's algorithm to find (in $O(|\mathcal{F}|+|\mathcal{G}|)$ time):
■ a q-representative $\hat{\mathcal{F}} \subseteq \mathcal{F}$ s.t. $|\hat{\mathcal{F}}| \leq \sum_{i=0}^{q} p^{i}$,
■ a p-representative $\hat{\mathcal{G}} \subseteq \mathcal{G}$ s.t. $|\hat{\mathcal{G}}| \leq \sum_{i=0}^{p} q^{i}$.

The key lemma

Lemma 2.3

\mathcal{F} : a collection of p-sets; \mathcal{G} : a collection of q-sets (p, q are fixed). We can either (1) find $A \in \mathcal{F}, B \in \mathcal{G}$ s.t. $A \cap B=\emptyset$ or (2) decide that no such two sets exist in $O(|\mathcal{F}|+|\mathcal{G}|)$ time.

Proof.

■ Use Monien's algorithm to find (in $O(|\mathcal{F}|+|\mathcal{G}|)$ time):

- a q-representative $\hat{\mathcal{F}} \subseteq \mathcal{F}$ s.t. $|\hat{\mathcal{F}}| \leq \sum_{i=0}^{q} p^{i}$,
- a p-representative $\hat{\mathcal{G}} \subseteq \mathcal{G}$ s.t. $|\hat{\mathcal{G}}| \leq \sum_{i=0}^{p} q^{i}$.
- Claim: If $\exists A \in \mathcal{F}, \exists B \in \mathcal{G}$ such that $A \cap B=\emptyset$, then $\exists A^{\prime} \in \hat{\mathcal{F}}, \exists B^{\prime} \in \hat{\mathcal{G}}$ such that $A^{\prime} \cap B^{\prime}=\emptyset$.
\star if $A \cap B=\emptyset$, by the definition, $\exists A^{\prime} \in \hat{\mathcal{F}}$ such that $A^{\prime} \cap B=\emptyset$ (similarly, $\exists B^{\prime} \in \hat{\mathcal{G}}$ such that $A^{\prime} \cap B^{\prime}=\emptyset$).

The key lemma

Lemma 2.3

\mathcal{F} : a collection of p-sets; \mathcal{G} : a collection of q-sets (p, q are fixed). We can either (1) find $A \in \mathcal{F}, B \in \mathcal{G}$ s.t. $A \cap B=\emptyset$ or (2) decide that no such two sets exist in $O(|\mathcal{F}|+|\mathcal{G}|)$ time.

Proof.

■ Use Monien's algorithm to find (in $O(|\mathcal{F}|+|\mathcal{G}|)$ time):

- a q-representative $\hat{\mathcal{F}} \subseteq \mathcal{F}$ s.t. $|\hat{\mathcal{F}}| \leq \sum_{i=0}^{q} p^{i}$,
- a p-representative $\hat{\mathcal{G}} \subseteq \mathcal{G}$ s.t. $|\hat{\mathcal{G}}| \leq \sum_{i=0}^{p} q^{i}$.
- Claim: If $\exists A \in \mathcal{F}, \exists B \in \mathcal{G}$ such that $A \cap B=\emptyset$, then $\exists A^{\prime} \in \hat{\mathcal{F}}, \exists B^{\prime} \in \hat{\mathcal{G}}$ such that $A^{\prime} \cap B^{\prime}=\emptyset$.
\star if $A \cap B=\emptyset$, by the definition, $\exists A^{\prime} \in \hat{\mathcal{F}}$ such that $A^{\prime} \cap B=\emptyset$ (similarly, $\exists B^{\prime} \in \hat{\mathcal{G}}$ such that $A^{\prime} \cap B^{\prime}=\emptyset$).
- After finding $\hat{\mathcal{F}}$ and $\hat{\mathcal{G}}$, it is enough to check whether they contain two disjoint sets in constant time.

Lemma 2.4 (Monien. 1985)
Let $G=(V, E)$ be a directed/undirected graph, let $v \in V$, and let $k \geq 3$. A C_{k} passing through v, if one exists, can be found in $O(|E|)$ time.

Theorem 2.5

Deciding whether a directed/undirected graph $G=(V, E)$ contains simple cycles of length exactly $2 k-1$ and of length exactly $2 k$, and finding such cycles if it does, can be done in $O\left(|E|^{2-1 / k}\right)$ time.

Proof of Theorem 2.5

■ Let $\Delta=|E|^{1 / k}$.
$\square v \in V$ is of high degree: $\operatorname{deg}(v) \geq \Delta$.
$\star G$ contains $\leq 2|E| / \Delta=O\left(|E|^{1-1 / k}\right)$ high-degree vertices.
∇ We describe an $O\left(|E|^{2-1 / k}\right)$ time algorithm for finding a $C_{2 k}$ in a directed graph $G=(V, E)$.

* The other cases are similar.

Sketch of the proof (algorithm):

Proof of Theorem 2.5

■ Let $\Delta=|E|^{1 / k}$.
$\square v \in V$ is of high degree: $\operatorname{deg}(v) \geq \Delta$.
$\star G$ contains $\leq 2|E| / \Delta=O\left(|E|^{1-1 / k}\right)$ high-degree vertices.
∇ We describe an $O\left(|E|^{2-1 / k}\right)$ time algorithm for finding a $C_{2 k}$ in a directed graph $G=(V, E)$.

* The other cases are similar.

Sketch of the proof (algorithm):

■ Let $\Delta=|E|^{1 / k}$.
$\square v \in V$ is of high degree: $\operatorname{deg}(v) \geq \Delta$.
$\star G$ contains $\leq 2|E| / \Delta=O\left(|E|^{1-1 / k}\right)$ high-degree vertices.
∇ We describe an $O\left(|E|^{2-1 / k}\right)$ time algorithm for finding a $C_{2 k}$ in a directed graph $G=(V, E)$.

* The other cases are similar.

Sketch of the proof (algorithm):
I. Preprocessing (data reduction).
II. Find a $C_{2 k}$ containing u, v
\Rightarrow Finding two paths: $u \xrightarrow{k} v \& v \xrightarrow{k} u$.
III. Make use of representative collections.

Actions similar to data reductions.

Check any of these high-degree vertices lies on a $C_{2 k}$.

- If one of these vertices does lie on a $C_{2 k}$ then we are done.
* Total time cost: $O(|E| \cdot|E| / \Delta)=O\left(|E|^{2-1 / k}\right)$.

Otherwise, remove all the high-degree vertices and all edges
incident to them, and then obtain a graph G^{\prime}
$\star G^{\prime}$ contains a $C_{2 k} \Leftrightarrow G$ contains a $C_{2 k}$.

Actions similar to data reductions.

Check any of these high-degree vertices lies on a $C_{2 k}$.

- If one of these vertices does lie on a $C_{2 k}$ then we are done.
* Total time cost: $O(|E| \cdot|E| / \Delta)=O\left(|E|^{2-1 / k}\right)$.

Otherwise, remove all the high-degree vertices and all edges incident to them, and then obtain a graph G^{\prime}.
$\star G^{\prime}$ contains a $C_{2 k} \Leftrightarrow G$ contains a $C_{2 k}$.
simple directed k-paths in G^{\prime} (finding all of them: $O\left(|E|^{2-1 / k}\right)$ time $)$.

Actions similar to data reductions.

Check any of these high-degree vertices lies on a $C_{2 k}$.

- If one of these vertices does lie on a $C_{2 k}$ then we are done.
* Total time cost: $O(|E| \cdot|E| / \Delta)=O\left(|E|^{2-1 / k}\right)$.

Otherwise, remove all the high-degree vertices and all edges incident to them, and then obtain a graph G^{\prime}.
$\star G^{\prime}$ contains a $C_{2 k} \Leftrightarrow G$ contains a $C_{2 k}$.
$\star \max \left\{\operatorname{deg}_{G^{\prime}}(v) \mid v \in V\right\} \leq \Delta=|E|^{1 / k}$.
$\Rightarrow \leq|E| \cdot \Delta^{k-1}=|E|^{2-1 / k}$ simple directed k-paths in G^{\prime} (finding all of them: $O\left(|E|^{2-1 / k}\right)$ time $)$.

Proof of Theorem 2.5 (contd.)

$\sqrt{ }$ Divide these paths into groups according to their endpoints.
$\star O\left(|E|^{2-1 / k}\right)$ time \& space by radix sort.

- We get a list $L=\left\{(u, v) \mid u \xrightarrow{k} v\right.$ in $\left.G^{\prime}\right\}$.

For each pair $(u, v) \in L$, get a collection $\mathcal{F}_{u, v}$ of $(k-1)$-sets.
■ Each $(k-1)$-set in $\mathcal{F}_{u, v}$ corresponds to the $k-1$ intermediate
vertices on some directed path $u \xrightarrow{k} v$.
For each $(u, v) \in L$, check whether there exist two directed
paths $u \xrightarrow{k} v$ and $v \xrightarrow{k} u$ that

- Such two paths exist if $\exists A \in \mathcal{F} u, v, B \in \mathcal{F}_{v, u}$ s.t. A

Divide these paths into groups according to their endpoints.
$\star O\left(|E|^{2-1 / k}\right)$ time \& space by radix sort.

- We get a list $L=\left\{(u, v) \mid u \xrightarrow{k} v\right.$ in $\left.G^{\prime}\right\}$.

For each pair $(u, v) \in L$, get a collection $\mathcal{F}_{u, v}$ of $(k-1)$-sets.
■ Each $(k-1)$-set in $\mathcal{F}_{u, v}$ corresponds to the $k-1$ intermediate vertices on some directed path $u \xrightarrow{k} v$.

For each $(u, v) \in L$, check whether there exist two directed paths $u \xrightarrow{k} v$ and $v \xrightarrow{k} u$ that

Divide these paths into groups according to their endpoints.
$\star O\left(|E|^{2-1 / k}\right)$ time \& space by radix sort.

- We get a list $L=\left\{(u, v) \mid u \xrightarrow{k} v\right.$ in $\left.G^{\prime}\right\}$.

For each pair $(u, v) \in L$, get a collection $\mathcal{F}_{u, v}$ of $(k-1)$-sets.
■ Each $(k-1)$-set in $\mathcal{F}_{u, v}$ corresponds to the $k-1$ intermediate vertices on some directed path $u \xrightarrow{k} v$.

For each $(u, v) \in L$, check whether there exist two directed paths $u \xrightarrow{k} v$ and $v \xrightarrow{k} u$ that meet only at u, v.

■ Such two paths exist if $\exists A \in \mathcal{F}_{u, v}, B \in \mathcal{F}_{v, u}$ s.t. $A \cap B=\emptyset$.
\star Time cost: $O\left(\left|\mathcal{F}_{u, v}\right|+\left|\mathcal{F}_{v, u}\right|\right)$ (by the key lemma).
A. The total time cost: $O\left(|E|^{2-1 / k}\right)$.

* Note that $\sum_{(u, v) \in L}\left|\mathcal{F}_{u, v}\right|=O\left(|E|^{2-1 / k}\right)$

Divide these paths into groups according to their endpoints.

* $O\left(|E|^{2-1 / k}\right)$ time \& space by radix sort.
- We get a list $L=\left\{(u, v) \mid u \xrightarrow{k} v\right.$ in $\left.G^{\prime}\right\}$.

For each pair $(u, v) \in L$, get a collection $\mathcal{F}_{u, v}$ of $(k-1)$-sets.
■ Each $(k-1)$-set in $\mathcal{F}_{u, v}$ corresponds to the $k-1$ intermediate vertices on some directed path $u \xrightarrow{k} v$.
$\sqrt{ }$ For each $(u, v) \in L$, check whether there exist two directed paths $u \xrightarrow{k} v$ and $v \xrightarrow{k} u$ that meet only at u, v.

■ Such two paths exist if $\exists A \in \mathcal{F}_{u, v}, B \in \mathcal{F}_{v, u}$ s.t. $A \cap B=\emptyset$.
\star Time cost: $O\left(\left|\mathcal{F}_{u, v}\right|+\left|\mathcal{F}_{v, u}\right|\right)$ (by the key lemma).
A The total time cost: $O\left(|E|^{2-1 / k}\right)$.
\star Note that $\sum_{(u, v) \in L}\left|\mathcal{F}_{u, v}\right|=O\left(|E|^{2-1 / k}\right)$.

A better result for triangles

Theorem 2.6

Deciding whether a directed/undirected graph $G=(V, E)$ contains a triangle, and finding one if it does, can be done in $O\left(E^{2 \omega /(\omega+1)}\right)=O\left(E^{1.41}\right)$ time.

Proof:

- Let $\Delta=|E|^{(\omega-1) /(\omega+1)}$.

■ v is of high-degree: $\operatorname{deg}_{G}(v)>\Delta$ (low: otherwise).
\star The number of high-degree vertices: $\leq 2|E| / \Delta$.

■ Consider all directed paths of length 2 in G whose intermediate vertex is of low degree.
$\star \leq|E| \cdot \Delta$ such paths and can be found in $O(|E| \cdot \Delta)$ time.
■ For each such 2-path $\{(u, v),(v, w)\}$, check whether u, v are connected by an edge (w, u).

■ No such a triangle is found \Rightarrow triangles in G must be composed of three high-degree vertices.

- Check whether there exists such a triangle using matrix multiplication $\left(O\left((|E| / \Delta)^{\omega}\right)\right.$ time $)$.
- Thus the total time cost is

$$
O\left(|E| \cdot \Delta+\left(\frac{|E|}{\Delta}\right)^{\omega}\right)=O\left(|E|^{2 \omega /(\omega+1)}\right)
$$

Outline

1 Introduction

2 General results

3 Finding cycles in graphs with low degeneracy

- Finding C_{6} using color-coding

Degeneracy (two equivalent definitions)

The degeneracy $d(G)$ of an undirected graph $G=(V, E)$ is:
\triangleright the smallest number d for which there exists an acyclic orientation of G where all the out-degrees are at most d.

* G is called d-degenerate.
\triangleright the maximum of the minimum degrees taken over all the subgraphs of G.

It's linearly related to arboricity of the graph.
$\triangleright a(G)$ is the minimum number of forests needed to cover all the edges of G.
■ $a(G) \leq d(G) \leq 2 \cdot a(G)-1$.
■ It is easy to see that $a(G) \geq\lceil|E| /(|V|-1)\rceil$.

Degeneracy (contd.)

Degeneracy (contd.)

Some examples.

- The degeneracy of any tree is 1 .
- The degeneracy of any cycle is 2 .
- The degeneracy of any planar graph is at most 5.

■ For any graph $G=(V, E)$, we have $d(G) \leq 2|E|^{1 / 2}$ (when $\left.|E|=\binom{|V|}{2}, \quad V \approx(2|E|)^{1 / 2}<2|E|^{1 / 2}\right)$.

■ If G is d-degenerate, then $|E| \leq d \cdot|V|$.

A folklore from Matula \& Beck

Lemma 3.1 (Matula \& Beck. J. ACM, 1983)
Let $G=(V, E)$ be a connected undirected graph. An acyclic orientation of G s.t. $\forall v \in V, d_{\text {out }} \leq d(G)$ can be found in $O(|E|)$ time.

The other main result

Theorem 3.2

Let $G=(V, E)$ be a directed/undirected graph.
(i) Deciding whether G contains a $C_{4 k-2}$, and finding such a cycle if it does, can be done in $O\left(|E|^{2-1 / k} \cdot d(G)^{1-1 / k}\right)$ time.
(ii) Deciding whether G contains a $C_{4 k-1}$ and a $C_{4 k}$, and finding such cycles if it does, can be done in $O\left(|E|^{2-1 / k} \cdot d(G)\right)$ time.
(iii) Deciding whether G contains a $C_{4 k+1}$, and finding such a cycle if it does, can be done in $O\left(|E|^{2-1 / k} \cdot d(G)^{1+1 / k}\right)$ time.

If $d(G) \geq|E|^{1 /(2 k+1)}$, we can use the previous general algorithm.

Hence we assume that $d(G) \leq|E|^{1 /(2 k+1)}$

The other main result

Theorem 3.2

Let $G=(V, E)$ be a directed/undirected graph.
(i) Deciding whether G contains a $C_{4 k-2}$, and finding such a cycle if it does, can be done in $O\left(|E|^{2-1 / k} \cdot d(G)^{1-1 / k}\right)$ time.
(ii) Deciding whether G contains a $C_{4 k-1}$ and a $C_{4 k}$, and finding such cycles if it does, can be done in $O\left(|E|^{2-1 / k} \cdot d(G)\right)$ time.
(iii) Deciding whether G contains a $C_{4 k+1}$, and finding such a cycle if it does, can be done in $O\left(|E|^{2-1 / k} \cdot d(G)^{1+1 / k}\right)$ time.

* If $d(G) \geq|E|^{1 /(2 k+1)}$, we can use the previous general algorithm.

$$
\star O\left(|E|^{2-1 /(2 k+1)}\right) \leq O\left(|E|^{2-1 / k} \cdot d(G)^{1+1 / k}\right) .
$$

* Hence we assume that $d(G) \leq|E|^{1 /(2 k+1)}$.

■ Let $\Delta=|E|^{1 / k} / d(G)^{1+1 / k}$.

- $d(G) \leq|E|^{1 /(2 k+1)}=|E|^{\frac{1}{k}-\left(\frac{1}{2 k+1}\right)\left(\frac{k+1}{k}\right)} \leq \Delta$.

■ v has high-degree: $\operatorname{deg}(v)>\Delta$ (low-degree: otherwise).
Check whether \exists a high-degree vertex lies on a $C_{4 k+1}$. $\star O\left(|E|^{2} / \Delta\right)$ time.
$\sqrt{ }$ If none of them lies on a $C_{4 k+1}$, remove all the high-degree vertices from G, then obtain a graph \tilde{G} with maximum degree $\leq \Delta$.

- $d(\tilde{G}) \leq d(G)$.
* The degeneracy of a graph can only decrease when removing vertices and edges.
$\sqrt{ }$ Get an acyclically oriented version G^{\prime} of \tilde{G} where each vertex has out-degree $\leq d(\tilde{G}) \leq d(G)$ (in $O(|E|)$ time).
- Consider the orientations, in G^{\prime}, of the edges on a $(2 k+1)$-path in G.
* In at least one direction, $\exists \leq k$ counterdirected edges.

Fig.: Orientations of edges on paths.

- The number of paths, not necessarily directed, of length $2 k+1$ in \tilde{G}, is at most

$$
\begin{aligned}
& 2 \cdot 2|E| \cdot \sum_{i=0}^{k}\binom{2 k}{i} \Delta^{i} d(G)^{2 k-i} \\
= & O\left(|E| \cdot k\binom{2 k}{k} \cdot \sum_{i=0}^{k} \Delta^{i} d(G)^{2 k-i}\right) \\
= & O\left(|E| \cdot d(G)^{2 k} \cdot\left(1+\frac{\Delta}{d(G)}+\left(\frac{\Delta}{d(G)}\right)^{2}+\ldots+\left(\frac{\Delta}{d(G)}\right)^{k}\right)\right) \\
= & O\left(|E| \cdot d(G)^{2 k} \cdot \frac{(\Delta / d(G))^{k+1}-1}{\Delta / d(G)-1}\right) \\
= & O\left(|E| \Delta^{k} d(G)^{k}\right) .
\end{aligned}
$$

■ Similarly, the number of $2 k$-paths in G is $O\left(|E| \Delta^{k} d(G)^{k-1}\right)$.

■ By some further observations, we can lower the number of $2 k+1$-paths and $2 k$-paths a little bit.

* They are both $O\left(|E| \Delta^{k-1} d(G)^{k+1}\right)$.
- All the properly directed paths in G can be found in $O\left(|E| \Delta^{k-1} d(G)^{k+1}\right)$ time.

Find a directed $(2 k+1)$-path and a directed $2 k$-path that close a directed simple cycle.

$$
\star O\left(|E| \Delta^{k-1} d(G)^{k+1}\right) \text { time. }
$$

■ The overall complexity:

$$
O\left(\frac{|E|^{2}}{\Delta}+|E| \Delta^{k-1} d(G)^{k+1}\right)=O\left(|E|^{2-1 / k} d(G)^{1+1 / k}\right)
$$

An application

Corollary 3.3

If a directed/undirected planar graph $G=(V, E)$ contains a C_{5}, then such a C_{5} can be found in $O(|V|)$ time.

* $k=1$ in this case.
$*|E| \leq d(G) \cdot|V|$ and $d(G) \leq 5(\because G$ is planar $)$.
$\star O\left(|E|^{2-1 / k} \cdot d(G)^{1+1 / k}\right)=O\left(|E| \cdot d(G)^{2}\right)=O(|V|)$.

Outline

1 Introduction

2 General results

3 Finding cycles in graphs with low degeneracy
■ Finding C_{6} using color-coding

Finding C_{6} using color-coding

The following theorem follows by

- combining the previous ideas,

■ using the $O\left(|E|^{2 \omega /(\omega+1)}\right)$ algorithm for finding triangles, and
■ the color-coding method (Alon, Yuster, Zwick. J. ACM, 1995).

Theorem 3.4

Let $G=(V, E)$ be a directed/undirected graph. A C_{6} in G, if one exists, can be found in either

- $O\left((|E| \cdot d(G))^{2 \omega /(\omega+1)}\right)=O\left((|E| \cdot d(G))^{1.41}\right)$ expected time, or
■ $O\left((|E| \cdot d(G))^{1.41} \cdot \log |V|\right)$ worst-case time.

■ Get an acyclically oriented G^{\prime} of G with out-degree bounded by $d(G)$ (in $O(|E|)$ time).

■ Suppose that G contains a C_{6}.

Fig.: Six possible orientations of a C_{6} in G^{\prime}

Color vertices of G^{\prime} by six colors uniformly at random

$■$ Let A be a copy of A_{1} in $G^{\prime} . A$ is well-colored if its vertices are consecutiely colored by 1 through 6 .
$\star \operatorname{Pr}[A$ is well-colored $]=6 / 6^{6}=1 / 6^{5}$.

- Assume that color 1 is assigned to a vertex having only out-going edges.

Create another undirected graph $G^{*}=\left(V^{*}, E^{*}\right)$ from G^{\prime}

$c(v)$: the color number of v.

$$
\begin{aligned}
V^{*} & =\{v \in V \mid c(v) \in\{2,4,6\}\} . \\
E^{*} & =\left\{(u, v) \mid c(u)=6, c(v)=2,(\exists w \in V)\left(c(w)=1,(w, u),(w, v) \in E^{\prime}\right)\right\} \\
& \cup\left\{(u, v) \mid c(u)=2, c(v)=4,(\exists w \in V)\left(c(w)=3,(w, u),(w, v) \in E^{\prime}\right)\right\} \\
& \cup\left\{(u, v) \mid c(u)=4, c(v)=6,(\exists w \in V)\left(c(w)=5,(w, u),(w, v) \in E^{\prime}\right)\right\} . \\
& \star\left|E^{*}\right|<|E| \cdot d(G) .
\end{aligned}
$$

Create another undirected graph $G^{*}=\left(V^{*}, E^{*}\right)$ from G^{\prime}

$c(v)$: the color number of v.

$$
\begin{aligned}
V^{*} & =\{v \in V \mid c(v) \in\{2,4,6\}\} . \\
E^{*} & =\left\{(u, v) \mid c(u)=6, c(v)=2,(\exists w \in V)\left(c(w)=1,(w, u),(w, v) \in E^{\prime}\right)\right\} \\
& \cup\left\{(u, v) \mid c(u)=2, c(v)=4,(\exists w \in V)\left(c(w)=3,(w, u),(w, v) \in E^{\prime}\right)\right\} \\
& \cup\left\{(u, v) \mid c(u)=4, c(v)=6,(\exists w \in V)\left(c(w)=5,(w, u),(w, v) \in E^{\prime}\right)\right\} . \\
\star & \left|E^{*}\right|<|E| \cdot d(G) .
\end{aligned}
$$

Create another undirected graph $G^{*}=\left(V^{*}, E^{*}\right)$ from G^{\prime}

$c(v)$: the color number of v.

$$
\begin{aligned}
V^{*} & =\{v \in V \mid c(v) \in\{2,4,6\}\} . \\
E^{*} & =\left\{(u, v) \mid c(u)=6, c(v)=2,(\exists w \in V)\left(c(w)=1,(w, u),(w, v) \in E^{\prime}\right)\right\} \\
& \cup\left\{(u, v) \mid c(u)=2, c(v)=4,(\exists w \in V)\left(c(w)=3,(w, u),(w, v) \in E^{\prime}\right)\right\} \\
& \cup\left\{(u, v) \mid c(u)=4, c(v)=6,(\exists w \in V)\left(c(w)=5,(w, u),(w, v) \in E^{\prime}\right)\right\} . \\
\star & \left|E^{*}\right|<|E| \cdot d(G) .
\end{aligned}
$$

■ \exists an undirected triangle in $G^{*} \Longleftrightarrow \exists$ a well-colored A_{1} in G^{\prime}.
■ Detecting triangles in G^{*} :
$O\left(\left|E^{*}\right|^{2 \omega /(\omega+1)}\right)=O\left((|E| \cdot d(G))^{2 \omega /(\omega+1)}\right)$.
■ Expected number of repetitions of the randomized coloring: $6^{5}=7776$.

■ The price for derandomization: $O(\log |V|)$.

Thank you!

