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Introduction

Problem

Given a graph and an integer k, decide whether a given graph
G = (V ,E ) contains a simple cycle of length k.

This problem is NP-complete.

However, for every fixed k, it can be solved in either
O(|V ||E |) time or O(|V |ω log |V |) time (ω < 2.376)

Monien. Annuals of Discret. Math., 1985.
Alon, Yuster, Zwick. J. ACM, 1995.
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The contributions of this paper

An assortment of methods for finding and counting simple
cycles of a given length in directed/undirected graphs.

Most of the bounds depends solely on the number of edges of
the input graph.

These bounds are of the form O(|E |αk ) or O(|E |βk · d(G)γk ),
where αk , βk , γk are some constants depending on k and d(G)
is the degeneracy of a graph (we will talk about it later).

An application of color-coding.

Omitted in this talk due to insufficient time.
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The contributions of this paper (contd.)

Ck : a simple cycle of length k; d(G ) ≤ 2|E |1/2.

� In directed or undirected graphs:
A Ck in a directed or undirected graph G = (V , E ), if one
exists, can be found in

O(|E |2−2/k) time if k is even;
O(|E |2−2/(k+1)) time if k is odd.

∗ A C3 (triangle) can be found in O(|E |2ω/(ω+1)) = O(|E |1.41)
time.

� In directed or undirected graphs (with the parameter d(G )):

A C4k−2 can be found in O(|E |2−(1/2k) · d(G)1−1/k ) time.

A C4k−1 and a C4k can be found in O(|E |2−1/k · d(G)) time;

A C4k+1 can be found in O(|E |2−1/k · d(G)1+1/k ) time;
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The contributions of this paper (contd.)

� In an undirected graph, finding even cycles is even faster:

A C4k−2 (if one exists) can be found in O(|E |2−(1/2k)(1+1/k))
time.

A C4k can be found in O(|E |2−(1/k−1/(2k+1))) time;

∗ A C4 can be found in O(|E |4/3) time; and a C6 can be found
in O(|E |13/8) time.
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The contributions of this paper (contd.)

Cycle Complexity Cycle Complexity

C3 |E |1.41, |E | · d(G ) C7 |E |1.75, |E |3/2 · d(G )

C4 |E |1.5, |E | · d(G ) C8 |E |1.75, |E |3/2 · d(G )

C5 |E |1.67, |E | · d(G )2 C9 |E |1.8, |E |3/2 · d(G )3/2

C6 |E |1.67, |E |3/2 · d(G )1/2 C10 |E |1.8, |E |5/3 · d(G )2/3

Table: Finding small cycles in directed graphs – some of the new results
in this paper.

Cycle Complexity Cycle Complexity

C4 |E |1.34 C8 |E |1.7

C6 |E |1.63 C10 |E |1.78

Table: Finding small cycles in undirected graphs – some of the new
results in this paper.

8 / 40



Outline

1 Introduction

2 General results

3 Finding cycles in graphs with low degeneracy
Finding C6 using color-coding

9 / 40



q-representative

A p-set is a set of size p.

Definition

Let F be a collection of p-sets. A subcollection F̂ ⊆ F is
q-representative for F if:

for every q-set B, there exists a set A ∈ F such that
A ∩ B = ∅ if and only if there exists a set A′ ∈ F̂ such that
A′ ∩ B = ∅.
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q-representative (contd.)

For example, let

F = {{1, 2, 3}, {2, 3, 4}, {1, 3, 6}, {4, 5, 6}, {4, 5, 7}}

be a collection of 3-sets.

Choose F̂ = {{1, 2, 3}, {4, 5, 7}}.
F̂ is NOT 3-representative (conider {2, 4, 7}).
F̂ is NOT 2-representative (consider {1, 5}).

Choose F̂ ′ = {{1, 2, 3}, {1, 3, 6}, {4, 5, 7}}.
F̂ ′ is NOT 3-representative (consider {1, 5, 8}).

Choose F̂ ′′ = {{1, 2, 3}, {2, 3, 4}, {1, 3, 6}, {4, 5, 7}}.
F̂ ′′ is still NOT 3-representative (consider {1, 3, 7}).
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q-representative (contd.)

Consider another example. Let

F = {{a, b, c}, {b, c , d}, {c , d , e}, {d , e, f }, {e, f , a}, {f , a, b}}

be a collection of 3-sets.

Choose F̂ = {{a, b, c}, {d , e, f }}.
F̂ is r -representative for any integer r ≥ 1.
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Two important results

Lemma 2.1 (Bollobás. 1965)

Any collection F of p-sets, no matter how large it is, has a
q-representative subcollection of size at most

(

p+q
p

)

.

Theorem 2.2 (Monien. 1985)

Given a collection F of p-sets. There is an O(pq ·∑q
i=0 pi · |F|)

time algorithm to find a q-representative subcollection F ′ ⊆ F
where |F ′| ≤∑q

i=0 pi .
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The key lemma

Lemma 2.3

F : a collection of p-sets; G: a collection of q-sets (p, q are fixed).
We can either (1) find A ∈ F ,B ∈ G s.t. A ∩ B = ∅ or (2) decide
that no such two sets exist in O(|F| + |G|) time.

Proof.

Use Monien’s algorithm to find (in O(|F| + |G|) time):

a q-representative F̂ ⊆ F s.t. |F̂ | ≤∑q

i=0 pi ,

a p-representative Ĝ ⊆ G s.t. |Ĝ| ≤∑p
i=0 qi .

Claim: If ∃A ∈ F , ∃B ∈ G such that A ∩ B = ∅, then
∃A′ ∈ F̂ , ∃B ′ ∈ Ĝ such that A′ ∩ B ′ = ∅.

⋆ if A ∩ B = ∅, by the definition, ∃A′ ∈ F̂ such that A′ ∩ B = ∅
(similarly, ∃B ′ ∈ Ĝ such that A′ ∩ B ′ = ∅).

After finding F̂ and Ĝ, it is enough to check whether they
contain two disjoint sets in constant time.
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After finding F̂ and Ĝ, it is enough to check whether they
contain two disjoint sets in constant time.

14 / 40



A useful lemma from Monien

Lemma 2.4 (Monien. 1985)

Let G = (V ,E ) be a directed/undirected graph, let v ∈ V , and let
k ≥ 3. A Ck passing through v, if one exists, can be found in
O(|E |) time.
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The algorithm of finding C2k and C2k−1

Theorem 2.5

Deciding whether a directed/undirected graph G = (V ,E ) contains
simple cycles of length exactly 2k − 1 and of length exactly 2k, and
finding such cycles if it does, can be done in O(|E |2−1/k ) time.
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Proof of Theorem 2.5

Let ∆ = |E |1/k .

v ∈ V is of high degree: deg(v) ≥ ∆.

⋆ G contains ≤ 2|E |/∆ = O(|E |1−1/k ) high-degree vertices.

▽ We describe an O(|E |2−1/k) time algorithm for finding a C2k

in a directed graph G = (V ,E ).

∗ The other cases are similar.

Sketch of the proof (algorithm):

I. Preprocessing (data reduction).

II. Find a C2k containing u, v

⇒ Finding two paths: u
k−→ v & v

k−→ u.

III. Make use of representative collections.
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Proof of Theorem 2.5 (contd.)

Actions similar to data reductions.

√
Check any of these high-degree vertices lies on a C2k .

If one of these vertices does lie on a C2k then we are done.
⋆ Total time cost: O(|E | · |E |/∆) = O(|E |2−1/k ).

√
Otherwise, remove all the high-degree vertices and all edges
incident to them, and then obtain a graph G ′.

⋆ G ′ contains a C2k ⇔ G contains a C2k .

⋆ max{degG ′(v) | v ∈ V } ≤ ∆ = |E |1/k .

⇒ ≤ |E | · ∆k−1 = |E |2−1/k simple directed k-paths in G
′ (finding

all of them: O(|E |2−1/k ) time).
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Proof of Theorem 2.5 (contd.)

√
Divide these paths into groups according to their endpoints.

⋆ O(|E |2−1/k) time & space by radix sort.

We get a list L = {(u, v) | u
k−→ v in G ′}.

√
For each pair (u, v) ∈ L, get a collection Fu,v of (k − 1)-sets.

Each (k − 1)-set in Fu,v corresponds to the k − 1 intermediate

vertices on some directed path u
k−→ v .

√
For each (u, v) ∈ L, check whether there exist two directed

paths u
k−→ v and v

k−→ u that meet only at u, v .

Such two paths exist if ∃A ∈ Fu,v , B ∈ Fv,u s.t. A ∩ B = ∅.
⋆ Time cost: O(|Fu,v | + |Fv,u|) (by the key lemma).

♠ The total time cost: O(|E |2−1/k ).

⋆ Note that
∑

(u,v)∈L |Fu,v | = O(|E |2−1/k).
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A better result for triangles

Theorem 2.6

Deciding whether a directed/undirected graph G = (V ,E )
contains a triangle, and finding one if it does, can be done
in O(E 2ω/(ω+1)) = O(E 1.41) time.

Proof:

Let ∆ = |E |(ω−1)/(ω+1) .

v is of high-degree: degG (v) > ∆ (low: otherwise).

⋆ The number of high-degree vertices: ≤ 2|E |/∆.
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Proof of Theorem 2.6 (contd.)

Consider all directed paths of length 2 in G whose
intermediate vertex is of low degree.

⋆ ≤ |E | · ∆ such paths and can be found in O(|E | · ∆) time.

For each such 2-path {(u, v), (v ,w)}, check whether u, v are
connected by an edge (w , u).

No such a triangle is found ⇒ triangles in G must be
composed of three high-degree vertices.

Check whether there exists such a triangle using matrix
multiplication (O((|E |/∆)ω) time).

Thus the total time cost is

O

(

|E | · ∆ +

( |E |
∆

)ω)

= O(|E |2ω/(ω+1)).
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Degeneracy (two equivalent definitions)

The degeneracy d(G ) of an undirected graph G = (V ,E ) is:

� the smallest number d for which there exists an acyclic
orientation of G where all the out-degrees are at most d .

∗ G is called d-degenerate.

� the maximum of the minimum degrees taken over all the
subgraphs of G .

It’s linearly related to arboricity of the graph.

� a(G ) is the minimum number of forests needed to cover all
the edges of G .

a(G ) ≤ d(G ) ≤ 2 · a(G ) − 1.

It is easy to see that a(G ) ≥ ⌈|E |/(|V | − 1)⌉.
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Degeneracy (contd.)
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Degeneracy (contd.)

Some examples.

The degeneracy of any tree is 1.

The degeneracy of any cycle is 2.

The degeneracy of any planar graph is at most 5.

For any graph G = (V ,E ), we have d(G ) ≤ 2|E |1/2 (when
|E | =

(

|V |
2

)

, V ≈ (2|E |)1/2 < 2|E |1/2).

If G is d-degenerate, then |E | ≤ d · |V |.
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A folklore from Matula & Beck

Lemma 3.1 (Matula & Beck. J. ACM, 1983)

Let G = (V ,E ) be a connected undirected graph. An acyclic
orientation of G s.t. ∀v ∈ V , dout ≤ d(G ) can be found in O(|E |)
time.
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The other main result

Theorem 3.2

Let G = (V ,E ) be a directed/undirected graph.

(i) Deciding whether G contains a C4k−2, and finding such a
cycle if it does, can be done in O(|E |2−1/k · d(G )1−1/k) time.

(ii) Deciding whether G contains a C4k−1 and a C4k , and finding
such cycles if it does, can be done in O(|E |2−1/k · d(G )) time.

(iii) Deciding whether G contains a C4k+1, and finding such a
cycle if it does, can be done in O(|E |2−1/k · d(G )1+1/k) time.

∗ If d(G ) ≥ |E |1/(2k+1) , we can use the previous general
algorithm.

⋆ O(|E |2−1/(2k+1)) ≤ O(|E |2−1/k · d(G)1+1/k).

∗ Hence we assume that d(G ) ≤ |E |1/(2k+1) .
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Proof of Theorem 3.2

Let ∆ = |E |1/k/d(G )1+1/k .

d(G ) ≤ |E |1/(2k+1) = |E | 1
k
−( 1

2k+1
)( k+1

k
) ≤ ∆.

v has high-degree: deg(v) > ∆ (low-degree: otherwise).
√

Check whether ∃ a high-degree vertex lies on a C4k+1.

⋆ O(|E |2/∆) time.

√
If none of them lies on a C4k+1, remove all the high-degree
vertices from G , then obtain a graph G̃ with maximum degree
≤ ∆.
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Proof of Theorem 3.2 (contd.)

d(G̃) ≤ d(G ).

∗ The degeneracy of a graph can only decrease when removing
vertices and edges.

√
Get an acyclically oriented version G ′ of G̃ where each vertex
has out-degree ≤ d(G̃ ) ≤ d(G ) (in O(|E |) time).

Consider the orientations, in G ′, of the edges on a
(2k + 1)-path in G .

∗ In at least one direction, ∃ ≤ k counterdirected edges.
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Proof of Theorem 3.2 (contd.)

Fig.: Orientations of edges on paths.
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Proof of Theorem 3.2 (contd.)

The number of paths, not necessarily directed, of length
2k + 1 in G̃ , is at most

2 · 2|E | ·
k
∑

i=0

(

2k

i

)

∆id(G)2k−i

= O

(

|E | · k
(

2k

k

)

·
k
∑

i=0

∆id(G)2k−i

)

= O

(

|E | · d(G)2k ·
(

1 +
∆

d(G)
+

(

∆

d(G)

)2

+ . . . +

(

∆

d(G)

)k
))

= O

(

|E | · d(G)2k · (∆/d(G))k+1 − 1

∆/d(G) − 1

)

= O(|E |∆kd(G)k ).

Similarly, the number of 2k-paths in G is O(|E |∆kd(G )k−1).
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Proof of Theorem 3.2 (contd.)

By some further observations, we can lower the number of
2k + 1-paths and 2k-paths a little bit.

⋆ They are both O(|E |∆k−1d(G)k+1).
All the properly directed paths in G can be found
in O(|E |∆k−1d(G)k+1) time.

√
Find a directed (2k + 1)-path and a directed 2k-path that
close a directed simple cycle.

⋆ O(|E |∆k−1d(G)k+1) time.

The overall complexity:

O

( |E |2
∆

+ |E |∆k−1d(G )k+1

)

= O(|E |2−1/kd(G )1+1/k).
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An application

Corollary 3.3

If a directed/undirected planar graph G = (V ,E ) contains a C5,
then such a C5 can be found in O(|V |) time.

∗ k = 1 in this case.

∗ |E | ≤ d(G ) · |V | and d(G ) ≤ 5 (∵ G is planar).

⋆ O(|E |2−1/k · d(G )1+1/k) = O(|E | · d(G )2) = O(|V |).
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Finding C6 using color-coding

The following theorem follows by

combining the previous ideas,

using the O(|E |2ω/(ω+1)) algorithm for finding triangles, and

the color-coding method (Alon, Yuster, Zwick. J. ACM,
1995).

Theorem 3.4

Let G = (V ,E ) be a directed/undirected graph. A C6 in G , if one
exists, can be found in either

O((|E | · d(G ))2ω/(ω+1)) = O((|E | · d(G ))1.41) expected time,
or

O((|E | · d(G ))1.41 · log |V |) worst-case time.
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Get an acyclically oriented G ′ of G with out-degree bounded
by d(G ) (in O(|E |) time).

Suppose that G contains a C6.

Fig.: Six possible orientations of a C6 in G ′
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Color vertices of G ′ by six colors uniformly at random

Let A be a copy of A1 in G ′. A is well-colored if its vertices
are consecutiely colored by 1 through 6.

⋆ Pr[A is well-colored] = 6/66 = 1/65.

Assume that color 1 is assigned to a vertex having only
out-going edges.
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Create another undirected graph G ∗ = (V ∗
, E ∗) from G ′

c(v): the color number of v .

V ∗ = {v ∈ V | c(v) ∈ {2, 4, 6}}.
E ∗ = {(u, v) | c(u) = 6, c(v) = 2, (∃w ∈ V )(c(w) = 1, (w , u), (w , v) ∈ E ′)}

∪ {(u, v) | c(u) = 2, c(v) = 4, (∃w ∈ V )(c(w) = 3, (w , u), (w , v) ∈ E ′)}
∪ {(u, v) | c(u) = 4, c(v) = 6, (∃w ∈ V )(c(w) = 5, (w , u), (w , v) ∈ E ′)}.

⋆ |E ∗| < |E | · d(G ).
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∃ an undirected triangle in G ∗ ⇐⇒ ∃ a well-colored A1 in G ′.

Detecting triangles in G ∗:
O(|E ∗|2ω/(ω+1)) = O((|E | · d(G ))2ω/(ω+1)).

Expected number of repetitions of the randomized coloring:
65 = 7776.

The price for derandomization: O(log |V |).
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Thank you!
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