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Introduction

Problem

Given a graph and an integer k, decide whether a given graph
G = (V, E) contains a simple cycle of length k.

m This problem is NP-complete.

m However, for every fixed k, it can be solved in either
O(|V||E]) time or O(|V|¥log|V]) time (w < 2.376)
m Monien. Annuals of Discret. Math., 1985.
m Alon, Yuster, Zwick. J. ACM, 1995.



The contributions of this paper

m An assortment of methods for finding and counting simple
cycles of a given length in directed/undirected graphs.

m Most of the bounds depends solely on the number of edges of
the input graph.
m These bounds are of the form O(|E|*) or O(|E|% - d(G)),
where ak, Bk, vk are some constants depending on k and d(G)
is the degeneracy of a graph (we will talk about it later).

m An application of color-coding.
m Omitted in this talk due to insufficient time.



The contributions of this paper (contd.)

Cy: a simple cycle of length k; d(G) < 2|E|'/2.

> In directed or undirected graphs:

m A Ci in a directed or undirected graph G = (V, E), if one
exists, can be found in
m O(|E|*%/%) time if k is even;
m O(|E|*%/(+D) time if k is odd.

* A G (triangle) can be found in O(|E[2*/(w+1)) = O(|E|**)
time.

> In directed or undirected graphs (with the parameter d(G)):
m A G2 can be found in O(|E[>~(1/2K) . d(G) /) time.
m A Cy—1 and a Cyi can be found in O(|E[>~Y/* . d(G)) time;
m A Cyi1 can be found in O(|E|2~ YK - d(G) /¥ time;



The contributions of this paper (contd.)

> In an undirected graph, finding even cycles is even faster:
m A Cyi_> (if one exists) can be found in O(|E[>~(1/2K)(+1/k))
time.
m A Gy can be found in O(|E[>~(/k=1/(k+1)) time;
% A G4 can be found in O(|E|*/3) time; and a G can be found
in O(|E|'*/®) time.



The contributions of this paper (contd.)

Cycle Complexity Cycle Complexity
G |E[**, |E]-d(G) G |EIMP, [EP?-d(6)
G |EI™, |E|-d(G) G [E|"™, |E[>?-d(G)
G |E[*7, |E|-d(G)? G |EI*%, |EPP?-d(G)*?
Go ‘E‘1.67, ‘E‘3/2 . d(G)1/2 Cio |E|1'8, |E|5/3 . d(G)2/3
Table: Finding small cycles in directed graphs — some of the new results
in this paper.
Cycle Complexity | Cycle Complexity
C4 ‘E‘1'34 C8 |E|1.7
Cﬁ ‘E‘1'63 C10 |E|1.78

Table: Finding small cycles in undirected graphs — some of the new

results in this paper.



General results



g-representative

m A p-set is a set of size p.

Let F be a collection of p-sets. A subcollection F CFis
g-representative for F if:

m for every g-set B, there exists a set A € F such that
AN B =0 if and only if there exists a set A' € F such that
ANB=10.

10 /40



g-representative (contd.)

For example, let
F= {{17 2, 3}7 {27 3, 4}7 {17 3, 6}7 {47 5, 6}7 {47 5, 7}}
be a collection of 3-sets.

m Choose F = {{1,2,3},{4,5,7}}.
] .73' is NOT 3-representative (conider {2,4,7}).
m F is NOT 2-representative (consider {1,5}).
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g-representative (contd.)

For example, let
F= {{17 2, 3}7 {27 3, 4}7 {17 3, 6}7 {47 5, 6}7 {47 5, 7}}
be a collection of 3-sets.

m Choose F = {{1,2,3},{4,5,7}}.
] .73' is NOT 3-representative (conider {2,4,7}).
m F is NOT 2-representative (consider {1,5}).

m Choose ' = {{1,2,3},{1,3,6},{4,5,7}}.
m F’is NOT 3-representative (consider {1,5,8}).

m Choose F” = {{1,2,3},{2,3,4},{1,3,6},{4,5,7} .
m " is still NOT 3-representative (consider {1,3,7}).
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g-representative (contd.)

Consider another example. Let

F={{a,b,c},{b,c,d},{c,d,e},{d,e f},{e f,a},{f, a b}}

be a collection of 3-sets.

m Choose F = {{a,b,c},{d, e, f}}.

m F is r-representative for any integer r > 1.

12 /40



Two important results

Lemma 2.1 (Bollobas. 1965)

Any collection F of p-sets, no matter how large it is, has a
q-representative subcollection of size at most (”ng).

Theorem 2.2 (Monien. 1985)

Given a collection F of p-sets. There is an O(pq-> 7o p" - |F])
time algorithm to find a g-representative subcollection ' C F
where |F'| <37 p'.

13 /40



The key lemma

F: a collection of p-sets; G: a collection of g-sets (p, q are fixed).
We can either (1) find Ac F,B € G s.t. ANB =0 or (2) decide
that no such two sets exist in O(|F| + |G|) time.
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m Claim: If 3A € F, 3B € G such that AN B = 0, then
JA € F,3B' € G such that AN B’ = (.
* if AN B =10, by the definition, 34" € F such that A'N B =
(similarly, 3B" € G such that A’ N B’ = ().

414 /40




The key lemma

Lemma 2.3

F: a collection of p-sets; G: a collection of g-sets (p, q are fixed).
We can either (1) find Ac F,B € G s.t. ANB =0 or (2) decide
that no such two sets exist in O(|F| + |G|) time.

Proof.
m Use Monien’s algorithm to find (in O(|F| + |g|) time):

m a g-representative £ C F s.t. |.7t"| <37 .p,
= a p-representative G C G s.t. |G| <3P ¢,

|

m Claim: If 3A € F, 3B € G such that AN B = 0, then
JA € F,3B' € G such that AN B’ = (.
* if AN B =10, by the definition, 34" € F such that A'N B =
(similarly, 3B" € G such that A’ N B’ = ().

m After finding Fand g, itis enough to check whether they
contain two disjoint sets in constant time.
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A useful lemma from Monien

Lemma 2.4 (Monien. 1985)

Let G = (V,E) be a directed/undirected graph, let v € V, and let
k > 3. A Cy passing through v, if one exists, can be found in
O(|E|) time.

15 /40



The algorithm of finding Gy, and Goi_q

Deciding whether a directed/undirected graph G = (V, E) contains
simple cycles of length exactly 2k — 1 and of length exactly 2k, and
finding such cycles if it does, can be done in O(|E|>~/k) time.

16 / 40



Proof of Theorem 2.5

m Let A = |E|V/k.
m v € Vis of high degree: deg(v) > A.
* G contains < 2|E|/A = O(|E|*~'/¥) high-degree vertices.
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Proof of Theorem 2.5

m Let A = |E|V/k.
m v € Vis of high degree: deg(v) > A.
* G contains < 2|E|/A = O(|E|*~'/¥) high-degree vertices.

7 We describe an O(|E|?~/¥) time algorithm for finding a Gy
in a directed graph G = (V, E).

* The other cases are similar.

Sketch of the proof (algorithm):
|. Preprocessing (data reduction).

[I. Find a Cyk containing u, v
= Finding two paths: u KveavEu

[1l. Make use of representative collections.
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Proof of Theorem 2.5 (contd.)

Actions similar to data reductions.

\/ Check any of these high-degree vertices lies on a Cyy.

m If one of these vertices does lie on a Gy, then we are done.
* Total time cost: O(|E| - |E|/A) = O(|E|2—1/k)_
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Proof of Theorem 2.5 (contd.)

Actions similar to data reductions.

\/ Check any of these high-degree vertices lies on a Cyy.

m If one of these vertices does lie on a Gy, then we are done.
* Total time cost: O(|E| - |E|/A) = O(|E|2—1/k)_

/ Otherwise, remove all the high-degree vertices and all edges
incident to them, and then obtain a graph G’.

* G’ contains a Gox < G contains a Coy.
* max{deg¢/(v)| v eV} <A=I|EYK
= < |E|- At = |E[*7Y* simple directed k-paths in G’ (finding
all of them: O(|E|*"/¥) time).
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Proof of Theorem 2.5 (contd.)

\/ Divide these paths into groups according to their endpoints.
* O(|E[>~Y/¥) time & space by radix sort.
m Wegetalist L={(u,v)|u 5 vin G'}.
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. . k
vertices on some directed path u — v.
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Proof of Theorem 2.5 (contd.)

\/ Divide these paths into groups according to their endpoints.
* O(|E[>~Y/¥) time & space by radix sort.
m We get a list L = {(u, v) | uL vin G'}.

\/ For each pair (u,v) € L, get a collection F, , of (k — 1)-sets.
m Each (k — 1)-set in F,, . corresponds to the k — 1 intermediate

. . k
vertices on some directed path u — v.

\/ For each (u,v) € L, check whether there exist two directed

k k
paths u — v and v — u that meet only at u, v.

m Such two paths exist if 3JA € F,,,,B € F, , st. ANB =0.
* Time cost: O(|Fy,v| + |Fv,ul) (by the key lemma).

# The total time cost: O(|E[>~1/%).
* Note that 35, ¢, |Fuv| = O(JEP7/5).
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A better result for triangles

Theorem 2.6

Deciding whether a directed/undirected graph G = (V, E)

contains a triangle, and finding one if it does, can be done
in O(E?*/(“+1)) = O(E™*) time.

Proof:
m Let A = |E|(w—D/(w+1),
m v is of high-degree: degc(v) > A (low: otherwise).
* The number of high-degree vertices: < 2|E|/A.

20/40



Proof of Theorem 2.6 (contd.)

m Consider all directed paths of length 2 in G whose
intermediate vertex is of low degree.

* < |E|- A such paths and can be found in O(|E| - A) time.

m For each such 2-path {(u,v),(v,w)}, check whether u, v are
connected by an edge (w, u).

m No such a triangle is found = triangles in G must be
composed of three high-degree vertices.

m Check whether there exists such a triangle using matrix
multiplication (O((|E|/A)*) time).

m Thus the total time cost is

0 <\E\ A+ <%>w> = O(|E[P/( 1)),

21/40



Finding cycles in graphs with low degeneracy
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Degeneracy (two equivalent definitions)

The degeneracy d(G) of an undirected graph G = (V, E) is:

> the smallest number d for which there exists an acyclic
orientation of G where all the out-degrees are at most d.

x G is called d-degenerate.

> the maximum of the minimum degrees taken over all the
subgraphs of G.

It's linearly related to arboricity of the graph.

> a(G) is the minimum number of forests needed to cover all
the edges of G.

m a(G) <d(G)<2-a(G)—-1.
m It is easy to see that a(G) > [|E|/(|V|—1)].

23 /40



Degeneracy (contd.)

A3 A
9




Degeneracy (contd.)

Some examples.
m The degeneracy of any treeis 1.
m The degeneracy of any cycle is 2.
m The degeneracy of any planar graph is at most 5.

m For any graph G = (V, E), we have d(G) < 2|E|'/? (when
1= (). v~ (IENY? < 2E2).

m If G is d-degenerate, then |[E| < d-|V|.

25 /40



A folklore from Matula & Beck

Lemma 3.1 (Matula & Beck. J. ACM, 1983)

Let G = (V, E) be a connected undirected graph. An acyclic
orientation of G s.t. Vv € V, doyy < d(G) can be found in O(|E|)
time.

26 /40



The other main result

Theorem 3.2

Let G = (V,E) be a directed/undirected graph.

(i) Deciding whether G contains a C4x_», and finding such a
cycle if it does, can be done in O(|E|?~Y/k . d(G)1~1/¥) time.

(i) Deciding whether G contains a Cqx—1 and a Cyu, and finding
such cycles if it does, can be done in O(|E|>~Y/* . d(G)) time.

(iii) Deciding whether G contains a Cay+1, and finding such a
cycle if it does, can be done in O(|E|?~Y/k . d(G)'*1/¥) time.
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The other main result

Theorem 3.2
Let G = (V,E) be a directed/undirected graph.

(i) Deciding whether G contains a C4x_», and finding such a
cycle if it does, can be done in O(|E|?~Y/k . d(G)1~1/¥) time.

(i) Deciding whether G contains a Cqx—1 and a Cyu, and finding
such cycles if it does, can be done in O(|E|>~Y/* . d(G)) time.

(iii) Deciding whether G contains a Cy+1, and finding such a
cycle if it does, can be done in O(|E[>~Y/k . d(G)+1/k) time.

« If d(G) > |E|*(**1) | we can use the previous general
algorithm.

* O(|E|2—1/(2k+1)) < O(|E]P~V/k. d(G)1+1/’<)_
« Hence we assume that d(G) < \E\l/(2k+1)_
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Proof of Theorem 3.2

m Let A = |E|VK/d(G) Yk,
m d(G) < |E|Y/CkY) = |E[x— @)% < A
m v has high-degree: deg(v) > A (low-degree: otherwise).

/ Check whether 3 a high-degree vertex lies on a Cyyy1.
* O(|E|?/A) time.

\/ If none of them lies on a Cyxy1, remove all the high-degree

vertices from G, then obtain a graph G with maximum degree
< A.

28 /40



Proof of Theorem 3.2 (contd.)

= d(G) < d(G).
« The degeneracy of a graph can only decrease when removing
vertices and edges.

v/ Get an acyclically oriented version G’ of G where each vertex
has out-degree < d(G) < d(G) (in O(|E]) time).

m Consider the orientations, in G’, of the edges on a
(2k 4 1)-path in G.

+ In at least one direction, 3 < k counterdirected edges.

29 /40



Proof of Theorem 3.2 (contd.)

Fig.: Orientations of edges on paths.
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Proof of Theorem 3.2 (contd.)

m The number of paths, not necessarily directed, of length
2k +1in G, is at most

2-2|E|- Ek: (2;‘) Ald(G)*

i=0

-0 <|E| . k<2:> S A"d(c)2k">

i=0

= 0 <|E|-d(G)2"- <1+%+ (%):...jt (%)k»

v (B/d(G)) 1
- O('E""(G)k' AJd(G) 1 )

= O(|E|Akd(G)¥).
m Similarly, the number of 2k-paths in G is O(|E|AKd(G)<1).

31/40



Proof of Theorem 3.2 (contd.)

m By some further observations, we can lower the number of
2k + 1-paths and 2k-paths a little bit.
x They are both O(|E|AK—1d(G)*1).
m All the properly directed paths in G can be found
in O(|E|AF1d(G) 1) time.

\/ Find a directed (2k + 1)-path and a directed 2k-path that
close a directed simple cycle.

* O(|E|AF=1d(G) 1) time.
m The overall complexity:

2
0 <“‘ET + \E\Ak_ld(G)k“) = O(|EPYkd(G) /).

32/40



An application

If a directed/undirected planar graph G = (V, E) contains a GCs,
then such a Cs can be found in O(|V|) time.

* k =1 in this case.
« |E| < d(G)-|V|and d(G) <5 (. G is planar).
x O(|EP~ - d(G)H1/k) = O(IE| - d(G)?) = O(| V).

33/40



Finding cycles in graphs with low degeneracy
m Finding Cg using color-coding
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Finding Cg using color-coding

The following theorem follows by
m combining the previous ideas,
= using the O(|E|>*/(“+1)) algorithm for finding triangles, and

m the color-coding method (Alon, Yuster, Zwick. J. ACM,
1995).

Theorem 3.4

Let G = (V,E) be a directed/undirected graph. A Cs in G, if one
exists, can be found in either

m O((|E| - d(G))>*/@+1)) = O((|E| - d(G))**!) expected time,
or
m O((|E| - d(G))*** - log |V|) worst-case time.
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m Get an acyclically oriented G’ of G with out-degree bounded
by d(G) (in O(|E|) time).

m Suppose that G contains a Gg.

94949
L

Fig.: Six possible orientations of a Cg in G’
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Color vertices of G’ by six colors uniformly at random

m Let A be a copy of Ay in G'. Ais well-colored if its vertices
are consecutiely colored by 1 through 6.

* Pr[A is well-colored] = 6/6° = 1/6°.

m Assume that color 1 is assigned to a vertex having only
out-going edges.
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Create another undirected graph G* = (V*, E*) from G’

2 3 2 3

¢(v): the color number of v.
VE={veV]c(v)e{246}}

E* ={(u,v) | c(u) =6,c(v) =2,(3w € V)(c(w) = 1,(w,u),(w,v) € E')}
UA{(u,v) | c(u) =2,¢c(v) =4, 3w € V)(c(w) =3, (w, u),(w,v) € E")}
U{(u,v) | c(u) =4,¢c(v) =6,(3w € V)(c(w) =5, (w,u),(w,v) € E')}

« |E*| < |E| - d(G).
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3 an undirected triangle in G* <= 3 a well-colored A; in G.

Detecting triangles in G*:
O(|E* [/t = O((|E| - d(G))>/(+ D).

Expected number of repetitions of the randomized coloring:
6° = 7776.

The price for derandomization: O(log|V/|).
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Thank you!



