Finding and counting given length cycles

N. Alon, R. Yuster, and U. Zwick *Algorithmica* **17** (1997) 209–223.

Speaker: Joseph, Chuang-Chieh Lin Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

January 5, 2010

1 Introduction

2 General results

Finding cycles in graphs with low degeneracy
 Finding C₆ using color-coding

1 Introduction

2 General results

Finding cycles in graphs with low degeneracy
 Finding C₆ using color-coding

Problem

Given a graph and an integer k, decide whether a given graph G = (V, E) contains a simple cycle of length k.

This problem is NP-complete.

- However, for every fixed k, it can be solved in either O(|V||E|) time or $O(|V|^{\omega} \log |V|)$ time ($\omega < 2.376$)
 - Monien. Annuals of Discret. Math., 1985.
 - Alon, Yuster, Zwick. J. ACM, 1995.

Problem

Given a graph and an integer k, decide whether a given graph G = (V, E) contains a simple cycle of length k.

- This problem is **NP**-complete.
- However, for every fixed k, it can be solved in either O(|V||E|) time or $O(|V|^{\omega} \log |V|)$ time ($\omega < 2.376$)

4/40

- Monien. Annuals of Discret. Math., 1985.
- Alon, Yuster, Zwick. J. ACM, 1995.

- An assortment of methods for finding and counting simple cycles of a given length in directed/undirected graphs.
- Most of the bounds depends solely on the number of edges of the input graph.
 - These bounds are of the form O(|E|^{α_k}) or O(|E|^{β_k} · d(G)^{γ_k}), where α_k, β_k, γ_k are some constants depending on k and d(G) is the degeneracy of a graph (we will talk about it later).

5/40

- An application of color-coding.
 - Omitted in this talk due to insufficient time.

 C_k : a simple cycle of length k; $d(G) \leq 2|E|^{1/2}$.

 \triangleright In directed or undirected graphs:

• A C_k in a directed or undirected graph G = (V, E), if one exists, can be found in

•
$$O(|E|^{2-2/k})$$
 time if k is even;

- $O(|E|^{2-2/(k+1)})$ time if k is odd.
- * A C_3 (triangle) can be found in $O(|E|^{2\omega/(\omega+1)}) = O(|E|^{1.41})$ time.
- \triangleright In directed or undirected graphs (with the parameter d(G)):
 - A C_{4k-2} can be found in $O(|E|^{2-(1/2k)} \cdot d(G)^{1-1/k})$ time.
 - A C_{4k-1} and a C_{4k} can be found in $O(|E|^{2-1/k} \cdot d(G))$ time;
 - A C_{4k+1} can be found in $O(|E|^{2-1/k} \cdot d(G)^{1+1/k})$ time;

- ▷ In an undirected graph, finding even cycles is even faster:
 - A C_{4k-2} (if one exists) can be found in $O(|E|^{2-(1/2k)(1+1/k)})$ time.
 - A C_{4k} can be found in $O(|E|^{2-(1/k-1/(2k+1))})$ time;
 - * A C_4 can be found in $O(|E|^{4/3})$ time; and a C_6 can be found in $O(|E|^{13/8})$ time.

Cycle	Complexity	Cycle	Complexity
<i>C</i> ₃	$ E ^{1.41}$, $ E \cdot d(G)$	C ₇	$ E ^{1.75}$, $ E ^{3/2} \cdot d(G)$
<i>C</i> ₄	$ E ^{1.5}$, $ E \cdot d(G)$	<i>C</i> ₈	$ E ^{1.75}, E ^{3/2} \cdot d(G)$
C_5	$ E ^{1.67}$, $ E \cdot d(G)^2$	C9	$ E ^{1.8}$, $ E ^{3/2} \cdot d(G)^{3/2}$
<i>C</i> ₆	$ E ^{1.67}, E ^{3/2} \cdot d(G)^{1/2}$	<i>C</i> ₁₀	$ E ^{1.8}$, $ E ^{5/3} \cdot d(G)^{2/3}$

Table: Finding small cycles in *directed* graphs – some of the new results in this paper.

Cycle	Complexity	Cycle	Complexity
<i>C</i> ₄	$ E ^{1.34}$	<i>C</i> ₈	$ E ^{1.7}$
C_6	$ E ^{1.63}$	C_{10}	$ E ^{1.78}$

Table: Finding small cycles in *undirected* graphs – some of the new results in this paper.

1 Introduction

2 General results

Finding cycles in graphs with low degeneracy
 Finding C₆ using color-coding

■ A *p*-set is a set of size *p*.

Definition

Let \mathcal{F} be a collection of p-sets. A subcollection $\hat{\mathcal{F}} \subseteq \mathcal{F}$ is *q*-representative for \mathcal{F} if:

• for every q-set B, there exists a set $A \in \mathcal{F}$ such that $A \cap B = \emptyset$ if and only if there exists a set $A' \in \hat{\mathcal{F}}$ such that $A' \cap B = \emptyset$.

For example, let

 $\mathcal{F} = \{\{1,2,3\},\{2,3,4\},\{1,3,6\},\{4,5,6\},\{4,5,7\}\}$

be a collection of 3-sets.

- Choose *Ê* = {{1, 2, 3}, {4, 5, 7}}.
 Ê is NOT 3-representative (conider {2, 4, 7}).
 Ê is NOT 2-representative (consider {1, 5}).
- Choose $\hat{\mathcal{F}}' = \{\{1, 2, 3\}, \{1, 3, 6\}, \{4, 5, 7\}\}.$ $\hat{\mathcal{F}}'$ is NOT 3-representative (consider $\{1, 5, 8\}$).
- Choose $\hat{\mathcal{F}}'' = \{\{1, 2, 3\}, \{2, 3, 4\}, \{1, 3, 6\}, \{4, 5, 7\}\}.$ $\hat{\mathcal{F}}''$ is still NOT 3-representative (consider $\{1, 3, 7\}$).

For example, let

 $\mathcal{F} = \{\{1,2,3\},\{2,3,4\},\{1,3,6\},\{4,5,6\},\{4,5,7\}\}$

be a collection of 3-sets.

- Choose $\hat{\mathcal{F}}' = \{\{1, 2, 3\}, \{1, 3, 6\}, \{4, 5, 7\}\}.$ $\hat{\mathcal{F}}'$ is NOT 3-representative (consider $\{1, 5, 8\}$).
- Choose $\hat{\mathcal{F}}'' = \{\{1, 2, 3\}, \{2, 3, 4\}, \{1, 3, 6\}, \{4, 5, 7\}\}.$ $\hat{\mathcal{F}}''$ is still NOT 3-representative (consider $\{1, 3, 7\}$).

For example, let

 $\mathcal{F} = \{\{1,2,3\},\{2,3,4\},\{1,3,6\},\{4,5,6\},\{4,5,7\}\}$

be a collection of 3-sets.

Choose Â = {{1,2,3}, {4,5,7}}.
 Â is NOT 3-representative (conider {2,4,7}).
 Â is NOT 2-representative (consider {1,5}).
Choose Â' = {{1,2,3}, {1,3,6}, {4,5,7}}.
 Â' is NOT 3-representative (consider {1,5,8}).
Choose Â'' = {{1,2,3}, {2,3,4}, {1,3,6}, {4,5,7}}.
 Â'' is still NOT 3-representative (consider {1,3,7}).

Consider another example. Let

$$\mathcal{F} = \{\{a, b, c\}, \{b, c, d\}, \{c, d, e\}, \{d, e, f\}, \{e, f, a\}, \{f, a, b\}\}$$

◆□▶ ◆課▶ ★注▶ ★注▶ 注目 のへで

12/40

be a collection of 3-sets.

■ Choose
$$\hat{\mathcal{F}} = \{\{a, b, c\}, \{d, e, f\}\}.$$

■ $\hat{\mathcal{F}}$ is *r*-representative for any integer $r \ge 1$.

Lemma 2.1 (Bollobás. 1965)

Any collection \mathcal{F} of p-sets, no matter how large it is, has a q-representative subcollection of size at most $\binom{p+q}{p}$.

Theorem 2.2 (Monien. 1985)

Given a collection \mathcal{F} of p-sets. There is an $O(pq \cdot \sum_{i=0}^{q} p^{i} \cdot |\mathcal{F}|)$ time algorithm to find a q-representative subcollection $\mathcal{F}' \subseteq \mathcal{F}$ where $|\mathcal{F}'| \leq \sum_{i=0}^{q} p^{i}$.

Lemma 2.3

 \mathcal{F} : a collection of p-sets; \mathcal{G} : a collection of q-sets (p, q are fixed). We can either (1) find $A \in \mathcal{F}, B \in \mathcal{G}$ s.t. $A \cap B = \emptyset$ or (2) decide that no such two sets exist in $O(|\mathcal{F}| + |\mathcal{G}|)$ time.

Proof.

Use Monien's algorithm to find (in O(|F| + |G|) time):
a *q*-representative *F̂* ⊆ *F* s.t. |*F̂*| ≤ ∑^{*q*}_{*i*=0} *pⁱ*,
a *p*-representative *Ĝ* ⊆ *G* s.t. |*Ĝ*| ≤ ∑^{*p*}_{*i*=0} *qⁱ*.

<u>Claim:</u> If $\exists A \in \mathcal{F}$, $\exists B \in \mathcal{G}$ such that $A \cap B = \emptyset$, then $\exists A' \in \hat{\mathcal{F}}$, $\exists B' \in \hat{\mathcal{G}}$ such that $A' \cap B' = \emptyset$.

* if $A \cap B = \emptyset$, by the definition, $\exists A' \in \hat{\mathcal{F}}$ such that $A' \cap B = \emptyset$ (similarly, $\exists B' \in \hat{\mathcal{G}}$ such that $A' \cap B' = \emptyset$).

After finding *F̂* and *Ĝ̂*, it is enough to check whether they contain two disjoint sets in constant time.

Lemma 2.3

 \mathcal{F} : a collection of p-sets; \mathcal{G} : a collection of q-sets (p, q are fixed). We can either (1) find $A \in \mathcal{F}, B \in \mathcal{G}$ s.t. $A \cap B = \emptyset$ or (2) decide that no such two sets exist in $O(|\mathcal{F}| + |\mathcal{G}|)$ time.

Proof.

• Use Monien's algorithm to find (in $O(|\mathcal{F}| + |\mathcal{G}|)$ time):

- a q-representative $\hat{\mathcal{F}} \subseteq \mathcal{F}$ s.t. $|\hat{\mathcal{F}}| \leq \sum_{i=0}^{q} p^{i}$,
- a *p*-representative $\hat{\mathcal{G}} \subseteq \mathcal{G}$ s.t. $|\hat{\mathcal{G}}| \leq \sum_{i=0}^{p} q^{i}$.

<u>Claim</u>: If $\exists A \in \mathcal{F}$, $\exists B \in \mathcal{G}$ such that $A \cap B = \emptyset$, then $\exists A' \in \hat{\mathcal{F}}$, $\exists B' \in \hat{\mathcal{G}}$ such that $A' \cap B' = \emptyset$.

* if $A \cap B = \emptyset$, by the definition, $\exists A' \in \hat{\mathcal{F}}$ such that $A' \cap B = \emptyset$ (similarly, $\exists B' \in \hat{\mathcal{G}}$ such that $A' \cap B' = \emptyset$).

After finding *F̂* and *Ĝ*, it is enough to check whether they contain two disjoint sets in constant time.

Lemma 2.3

 \mathcal{F} : a collection of p-sets; \mathcal{G} : a collection of q-sets (p, q are fixed). We can either (1) find $A \in \mathcal{F}, B \in \mathcal{G}$ s.t. $A \cap B = \emptyset$ or (2) decide that no such two sets exist in $O(|\mathcal{F}| + |\mathcal{G}|)$ time.

Proof.

• Use Monien's algorithm to find (in $O(|\mathcal{F}| + |\mathcal{G}|)$ time):

- a q-representative $\hat{\mathcal{F}} \subseteq \mathcal{F}$ s.t. $|\hat{\mathcal{F}}| \leq \sum_{i=0}^{q} p^{i}$,
- a *p*-representative $\hat{\mathcal{G}} \subseteq \mathcal{G}$ s.t. $|\hat{\mathcal{G}}| \leq \sum_{i=0}^{p} q^{i}$.
- **Claim:** If $\exists A \in \mathcal{F}$, $\exists B \in \mathcal{G}$ such that $A \cap B = \emptyset$, then $\exists A' \in \hat{\mathcal{F}}$, $\exists B' \in \hat{\mathcal{G}}$ such that $A' \cap B' = \emptyset$.
 - ★ if $A \cap B = \emptyset$, by the definition, $\exists A' \in \hat{\mathcal{F}}$ such that $A' \cap B = \emptyset$ (similarly, $\exists B' \in \hat{\mathcal{G}}$ such that $A' \cap B' = \emptyset$).

After finding *F̂* and *Ĝ*, it is enough to check whether they contain two disjoint sets in constant time.

Lemma 2.3

 \mathcal{F} : a collection of p-sets; \mathcal{G} : a collection of q-sets (p, q are fixed). We can either (1) find $A \in \mathcal{F}, B \in \mathcal{G}$ s.t. $A \cap B = \emptyset$ or (2) decide that no such two sets exist in $O(|\mathcal{F}| + |\mathcal{G}|)$ time.

Proof.

• Use Monien's algorithm to find (in $O(|\mathcal{F}| + |\mathcal{G}|)$ time):

- a q-representative $\hat{\mathcal{F}} \subseteq \mathcal{F}$ s.t. $|\hat{\mathcal{F}}| \leq \sum_{i=0}^{q} p^{i}$,
- a *p*-representative $\hat{\mathcal{G}} \subseteq \mathcal{G}$ s.t. $|\hat{\mathcal{G}}| \leq \sum_{i=0}^{p} q^{i}$.
- <u>Claim</u>: If $\exists A \in \mathcal{F}$, $\exists B \in \mathcal{G}$ such that $A \cap B = \emptyset$, then $\exists A' \in \hat{\mathcal{F}}$, $\exists B' \in \hat{\mathcal{G}}$ such that $A' \cap B' = \emptyset$.
 - * if $A \cap B = \emptyset$, by the definition, $\exists A' \in \hat{\mathcal{F}}$ such that $A' \cap B = \emptyset$ (similarly, $\exists B' \in \hat{\mathcal{G}}$ such that $A' \cap B' = \emptyset$).
- After finding *F̂* and *Ĝ*, it is enough to check whether they contain two disjoint sets in constant time.

Lemma 2.4 (Monien. 1985)

Let G = (V, E) be a directed/undirected graph, let $v \in V$, and let $k \ge 3$. A C_k passing through v, if one exists, can be found in O(|E|) time.

Theorem 2.5

Deciding whether a directed/undirected graph G = (V, E) contains simple cycles of length exactly 2k - 1 and of length exactly 2k, and finding such cycles if it does, can be done in $O(|E|^{2-1/k})$ time.

Proof of Theorem 2.5

- Let $\Delta = |E|^{1/k}$.
- $v \in V$ is of high degree: $deg(v) \ge \Delta$.
 - * G contains $\leq 2|E|/\Delta = O(|E|^{1-1/k})$ high-degree vertices.
- ∨ We describe an $O(|E|^{2-1/k})$ time algorithm for finding a C_{2k} in a directed graph G = (V, E).

* The other cases are similar.

Sketch of the proof (algorithm):

- I. Preprocessing (data reduction).
- II. Find a C_{2k} containing u, v \Rightarrow Finding two paths: $u \xrightarrow{k} v \& v \xrightarrow{k} u$

III. Make use of representative collections.

Proof of Theorem 2.5

- Let $\Delta = |E|^{1/k}$.
- $v \in V$ is of high degree: deg $(v) \ge \Delta$.
 - * G contains $\leq 2|E|/\Delta = O(|E|^{1-1/k})$ high-degree vertices.
- \bigtriangledown We describe an $O(|E|^{2-1/k})$ time algorithm for finding a C_{2k} in a directed graph G = (V, E).
 - * The other cases are similar.

Sketch of the proof (algorithm):

- I. Preprocessing (data reduction).
- II. Find a C_{2k} containing u, v
 - \Rightarrow Finding two paths: $u \xrightarrow{k} v \& v \xrightarrow{k} u$.

III. Make use of representative collections.

Proof of Theorem 2.5

- Let $\Delta = |E|^{1/k}$.
- $v \in V$ is of high degree: deg $(v) \ge \Delta$.
 - * G contains $\leq 2|E|/\Delta = O(|E|^{1-1/k})$ high-degree vertices.
- \bigtriangledown We describe an $O(|E|^{2-1/k})$ time algorithm for finding a C_{2k} in a directed graph G = (V, E).
 - * The other cases are similar.

Sketch of the proof (algorithm):

- I. Preprocessing (data reduction).
- II. Find a C_{2k} containing u, v \Rightarrow Finding two paths: $u \xrightarrow{k} v \& v \xrightarrow{k} u$.
- III. Make use of representative collections.

Actions similar to data reductions.

- $\sqrt{}$ Check any of these high-degree vertices lies on a C_{2k} .
 - If one of these vertices does lie on a C_{2k} then we are done.
 - * Total time cost: $O(|E| \cdot |E|/\Delta) = O(|E|^{2-1/k})$.

 \checkmark Otherwise, remove all the high-degree vertices and all edges incident to them, and then obtain a graph G'.

- * G' contains a $C_{2k} \Leftrightarrow G$ contains a C_{2k} .
- * max{deg_{G'}(v) | $v \in V$ } $\leq \Delta = |E|^{1/k}$.
 - $\Rightarrow \leq |E| \cdot \Delta^{k-1} = |E|^{2-1/k} \text{ simple directed } k \text{-paths in } G' \text{ (finding all of them: } O(|E|^{2-1/k}) \text{ time}\text{).}$

Actions similar to data reductions.

- $\sqrt{}$ Check any of these high-degree vertices lies on a C_{2k} .
 - If one of these vertices does lie on a C_{2k} then we are done.
 - * Total time cost: $O(|E| \cdot |E|/\Delta) = O(|E|^{2-1/k})$.

 \checkmark Otherwise, remove all the high-degree vertices and all edges incident to them, and then obtain a graph G'.

- * G' contains a $C_{2k} \Leftrightarrow G$ contains a C_{2k} .
- * max{deg_{G'}(v) | $v \in V$ } $\leq \Delta = |E|^{1/k}$.
 - $\Rightarrow \leq |E| \cdot \Delta^{k-1} = |E|^{2-1/k} \text{ simple directed } k \text{-paths in } G' \text{ (finding all of them: } O(|E|^{2-1/k}) \text{ time}).$

Actions similar to data reductions.

- $\sqrt{}$ Check any of these high-degree vertices lies on a C_{2k} .
 - If one of these vertices does lie on a C_{2k} then we are done.
 - * Total time cost: $O(|E| \cdot |E|/\Delta) = O(|E|^{2-1/k})$.

 \checkmark Otherwise, remove all the high-degree vertices and all edges incident to them, and then obtain a graph G'.

* G' contains a $C_{2k} \Leftrightarrow G$ contains a C_{2k} .

* max{deg_{G'}(v) |
$$v \in V$$
} $\leq \Delta = |E|^{1/k}$.

 $\Rightarrow \leq |E| \cdot \Delta^{k-1} = |E|^{2-1/k} \text{ simple directed } k \text{-paths in } G' \text{ (finding all of them: } O(|E|^{2-1/k}) \text{ time}\text{).}$

√ Divide these paths into groups according to their endpoints. ★ $O(|E|^{2-1/k})$ time & space by radix sort.

• We get a list $L = \{(u, v) \mid u \xrightarrow{k} v \text{ in } G'\}.$

√ For each pair (u, v) ∈ L, get a collection F_{u,v} of (k − 1)-sets.
 Each (k − 1)-set in F_{u,v} corresponds to the k − 1 intermediate vertices on some directed path u k/v.

 \checkmark For each $(u, v) \in L$, check whether there exist two directed paths $u \xrightarrow{k} v$ and $v \xrightarrow{k} u$ that meet only at u, v.

Such two paths exist if $\exists A \in \mathcal{F}_{u,v}, B \in \mathcal{F}_{v,u}$ s.t. $A \cap B = \emptyset$. * Time cost: $O(|\mathcal{F}_{u,v}| + |\mathcal{F}_{v,u}|)$ (by the key lemma).

♦ The total time cost: $O(|E|^{2-1/k})$. ★ Note that $\sum_{(u,v)\in L} |\mathcal{F}_{u,v}| = O(|E|^{2-1/k})$

Divide these paths into groups according to their endpoints.
 * O(|E|^{2-1/k}) time & space by radix sort.

• We get a list $L = \{(u, v) \mid u \xrightarrow{k} v \text{ in } G'\}.$

√ For each pair (u, v) ∈ L, get a collection \$\mathcal{F}_{u,v}\$ of (k − 1)-sets.
 Each (k − 1)-set in \$\mathcal{F}_{u,v}\$ corresponds to the k − 1 intermediate vertices on some directed path u ^k/_k v.

√ For each $(u, v) \in L$, check whether there exist two directed paths $u \xrightarrow{k} v$ and $v \xrightarrow{k} u$ that meet only at u, v.

Such two paths exist if $\exists A \in \mathcal{F}_{u,v}, B \in \mathcal{F}_{v,u}$ s.t. $A \cap B = \emptyset$. * Time cost: $O(|\mathcal{F}_{u,v}| + |\mathcal{F}_{v,u}|)$ (by the key lemma).

♠ The total time cost: $O(|E|^{2-1/k})$.
★ Note that $\sum_{(u,v) \in L} |\mathcal{F}_{u,v}| = O(|E|^{2-1/k})$

Divide these paths into groups according to their endpoints.
 * O(|E|^{2-1/k}) time & space by radix sort.

• We get a list $L = \{(u, v) \mid u \xrightarrow{k} v \text{ in } G'\}.$

√ For each pair (u, v) ∈ L, get a collection \$\mathcal{F}_{u,v}\$ of (k − 1)-sets.
 Each (k − 1)-set in \$\mathcal{F}_{u,v}\$ corresponds to the k − 1 intermediate vertices on some directed path u ^k/_k v.

 \checkmark For each $(u, v) \in L$, check whether there exist two directed paths $u \xrightarrow{k} v$ and $v \xrightarrow{k} u$ that meet only at u, v.

Such two paths exist if $\exists A \in \mathcal{F}_{u,v}, B \in \mathcal{F}_{v,u}$ s.t. $A \cap B = \emptyset$. \star Time cost: $O(|\mathcal{F}_{u,v}| + |\mathcal{F}_{v,u}|)$ (by the key lemma).

♠ The total time cost: $O(|E|^{2-1/k})$.
★ Note that $\sum_{(u,v)\in L} |\mathcal{F}_{u,v}| = O(|E|^{2-1/k})$.

Divide these paths into groups according to their endpoints.
 * O(|E|^{2-1/k}) time & space by radix sort.

• We get a list $L = \{(u, v) \mid u \xrightarrow{k} v \text{ in } G'\}.$

√ For each pair (u, v) ∈ L, get a collection \$\mathcal{F}_{u,v}\$ of (k − 1)-sets.
 Each (k − 1)-set in \$\mathcal{F}_{u,v}\$ corresponds to the k − 1 intermediate vertices on some directed path u ^k/_k v.

 \checkmark For each $(u, v) \in L$, check whether there exist two directed paths $u \xrightarrow{k} v$ and $v \xrightarrow{k} u$ that meet only at u, v.

Such two paths exist if $\exists A \in \mathcal{F}_{u,v}, B \in \mathcal{F}_{v,u}$ s.t. $A \cap B = \emptyset$. \star Time cost: $O(|\mathcal{F}_{u,v}| + |\mathcal{F}_{v,u}|)$ (by the key lemma).

♠ The total time cost:
$$O(|E|^{2-1/k})$$
.
★ Note that $\sum_{(u,v)\in L} |\mathcal{F}_{u,v}| = O(|E|^{2-1/k})$.

Theorem 2.6

Deciding whether a directed/undirected graph G = (V, E) contains a triangle, and finding one if it does, can be done in $O(E^{2\omega/(\omega+1)}) = O(E^{1.41})$ time.

Proof:

• Let
$$\Delta = |E|^{(\omega-1)/(\omega+1)}$$
.

• v is of high-degree: $\deg_G(v) > \Delta$ (low: otherwise).

★ The number of high-degree vertices: $\leq 2|E|/\Delta$.

20 / 40

Consider all directed paths of length 2 in G whose intermediate vertex is of low degree.

 $\star \leq |E| \cdot \Delta$ such paths and can be found in $O(|E| \cdot \Delta)$ time.

- For each such 2-path {(u, v), (v, w)}, check whether u, v are connected by an edge (w, u).
 - No such a triangle is found ⇒ triangles in *G* must be composed of three high-degree vertices.
 - Check whether there exists such a triangle using matrix multiplication (O((|E|/Δ)^ω) time).
- Thus the total time cost is

$$O\left(|E|\cdot\Delta + \left(\frac{|E|}{\Delta}\right)^{\omega}
ight) = O(|E|^{2\omega/(\omega+1)}).$$

1 Introduction

2 General results

Finding cycles in graphs with low degeneracy Finding C₆ using color-coding

 The degeneracy d(G) of an undirected graph G = (V, E) is:

- \triangleright the smallest number *d* for which there exists an *acyclic* orientation of *G* where all the out-degrees are at most *d*.
 - * G is called *d*-degenerate.
- ▷ the maximum of the minimum degrees taken over all the subgraphs of G.
- It's linearly related to arboricity of the graph.
 - \triangleright a(G) is the minimum number of forests needed to cover all the edges of G.

•
$$a(G) \leq d(G) \leq 2 \cdot a(G) - 1.$$

• It is easy to see that $a(G) \ge \lceil |E|/(|V|-1) \rceil$.

Degeneracy (contd.)

・ロト < 部ト < 言ト < 言ト 言 のへで 24/40 Some examples.

- The degeneracy of any *tree* is 1.
- The degeneracy of any *cycle* is 2.
- The degeneracy of any *planar graph* is at most 5.
- For any graph G = (V, E), we have $d(G) \le 2|E|^{1/2}$ (when $|E| = \binom{|V|}{2}$, $V \approx (2|E|)^{1/2} < 2|E|^{1/2}$).
- If G is d-degenerate, then $|E| \leq d \cdot |V|$.

Lemma 3.1 (Matula & Beck. J. ACM, 1983)

Let G = (V, E) be a connected undirected graph. An acyclic orientation of G s.t. $\forall v \in V$, $d_{out} \leq d(G)$ can be found in O(|E|) time.

The other main result

Theorem 3.2

Let G = (V, E) be a directed/undirected graph.

- (i) Deciding whether G contains a C_{4k-2} , and finding such a cycle if it does, can be done in $O(|E|^{2-1/k} \cdot d(G)^{1-1/k})$ time.
- (ii) Deciding whether G contains a C_{4k-1} and a C_{4k} , and finding such cycles if it does, can be done in $O(|E|^{2-1/k} \cdot d(G))$ time.
- (iii) Deciding whether G contains a C_{4k+1} , and finding such a cycle if it does, can be done in $O(|E|^{2-1/k} \cdot d(G)^{1+1/k})$ time.
 - * If d(G) ≥ |E|^{1/(2k+1)}, we can use the previous general algorithm.

* $O(|E|^{2-1/(2k+1)}) \le O(|E|^{2-1/k} \cdot d(G)^{1+1/k}).$

* Hence we assume that $d(G) \leq |E|^{1/(2k+1)}$.

The other main result

Theorem 3.2

Let G = (V, E) be a directed/undirected graph.

- (i) Deciding whether G contains a C_{4k-2} , and finding such a cycle if it does, can be done in $O(|E|^{2-1/k} \cdot d(G)^{1-1/k})$ time.
- (ii) Deciding whether G contains a C_{4k-1} and a C_{4k} , and finding such cycles if it does, can be done in $O(|E|^{2-1/k} \cdot d(G))$ time.
- (iii) Deciding whether G contains a C_{4k+1} , and finding such a cycle if it does, can be done in $O(|E|^{2-1/k} \cdot d(G)^{1+1/k})$ time.
 - * If $d(G) \ge |E|^{1/(2k+1)}$, we can use the previous general algorithm.

* $O(|E|^{2-1/(2k+1)}) \leq O(|E|^{2-1/k} \cdot d(G)^{1+1/k}).$

* Hence we assume that $d(G) \leq |E|^{1/(2k+1)}$.

Proof of Theorem 3.2

• Let
$$\Delta = |E|^{1/k}/d(G)^{1+1/k}$$
.

- $d(G) \leq |E|^{1/(2k+1)} = |E|^{\frac{1}{k} (\frac{1}{2k+1})(\frac{k+1}{k})} \leq \Delta.$
- v has high-degree: deg(v) > Δ (low-degree: otherwise).
- √ Check whether ∃ a high-degree vertex lies on a C_{4k+1} . ★ $O(|E|^2/\Delta)$ time.
- $\sqrt{}$ If none of them lies on a C_{4k+1} , remove all the high-degree vertices from G, then obtain a graph \tilde{G} with maximum degree $\leq \Delta$.

•
$$d(\tilde{G}) \leq d(G)$$
.

* The degeneracy of a graph can only decrease when removing vertices and edges.

 $\sqrt{}$ Get an acyclically oriented version G' of \tilde{G} where each vertex has out-degree $\leq d(\tilde{G}) \leq d(G)$ (in O(|E|) time).

Consider the orientations, in G', of the edges on a (2k + 1)-path in G.

* In at least one direction, $\exists \leq k$ counterdirected edges.

29/40

Fig.: Orientations of edges on paths.

30 / 40

The number of paths, **not necessarily directed**, of length 2k + 1 in \tilde{G} , is at most

$$2 \cdot 2|E| \cdot \sum_{i=0}^{k} {\binom{2k}{i}} \Delta^{i} d(G)^{2k-i}$$

$$= O\left(|E| \cdot k {\binom{2k}{k}} \cdot \sum_{i=0}^{k} \Delta^{i} d(G)^{2k-i}\right)$$

$$= O\left(|E| \cdot d(G)^{2k} \cdot \left(1 + \frac{\Delta}{d(G)} + \left(\frac{\Delta}{d(G)}\right)^{2} + \dots + \left(\frac{\Delta}{d(G)}\right)^{k}\right)\right)$$

$$= O\left(|E| \cdot d(G)^{2k} \cdot \frac{(\Delta/d(G))^{k+1} - 1}{\Delta/d(G) - 1}\right)$$

$$= O(|E|\Delta^{k} d(G)^{k}).$$

Similarly, the number of 2k-paths in G is $O(|E|\Delta^k d(G)^{k-1})$.

- By some further observations, we can lower the number of 2k + 1-paths and 2k-paths a little bit.
 - * They are both $O(|E|\Delta^{k-1}d(G)^{k+1})$.
 - All the properly directed paths in G can be found in O(|E|∆^{k-1}d(G)^{k+1}) time.
- \checkmark Find a directed (2k + 1)-path and a directed 2k-path that close a directed simple cycle.

*
$$O(|E|\Delta^{k-1}d(G)^{k+1})$$
 time.

The overall complexity:

$$O\left(rac{|E|^2}{\Delta}+|E|\Delta^{k-1}d(G)^{k+1}
ight)=O(|E|^{2-1/k}d(G)^{1+1/k}).$$

Corollary 3.3

If a directed/undirected planar graph G = (V, E) contains a C_5 , then such a C_5 can be found in O(|V|) time.

* k = 1 in this case.

*
$$|E| \le d(G) \cdot |V|$$
 and $d(G) \le 5$ (:: G is planar).

* $O(|E|^{2-1/k} \cdot d(G)^{1+1/k}) = O(|E| \cdot d(G)^2) = O(|V|).$

33 / 40

1 Introduction

2 General results

Finding cycles in graphs with low degeneracy
 Finding C₆ using color-coding

The following theorem follows by

- combining the previous ideas,
- using the $O(|E|^{2\omega/(\omega+1)})$ algorithm for finding triangles, and
- the color-coding method (Alon, Yuster, Zwick. J. ACM, 1995).

Theorem 3.4

Let G = (V, E) be a directed/undirected graph. A C_6 in G, if one exists, can be found in either

- $O((|E| \cdot d(G))^{2\omega/(\omega+1)}) = O((|E| \cdot d(G))^{1.41})$ expected time, or
- $O((|E| \cdot d(G))^{1.41} \cdot \log |V|)$ worst-case time.

- Get an acyclically oriented G' of G with out-degree bounded by d(G) (in O(|E|) time).
- Suppose that G contains a C_6 .

Color vertices of G' by six colors uniformly at random

- Let A be a copy of A_1 in G'. A is well-colored if its vertices are consecutively colored by 1 through 6.
- * **Pr**[*A* is well-colored] = $6/6^6 = 1/6^5$.
- Assume that color 1 is assigned to a vertex having only out-going edges.

Create another undirected graph $G^* = (V^*, E^*)$ from G'

c(v): the color number of v. $V^* = \{v \in V \mid c(v) \in \{2, 4, 6\}\}.$ $E^* = \{(u, v) \mid c(u) = 6, c(v) = 2, (\exists w \in V)(c(w) = 1, (w, u), (w, v) \in E')\}$ $\cup \{(u, v) \mid c(u) = 2, c(v) = 4, (\exists w \in V)(c(w) = 3, (w, u), (w, v) \in E')\}$ $\cup \{(u, v) \mid c(u) = 4, c(v) = 6, (\exists w \in V)(c(w) = 5, (w, u), (w, v) \in E')\}.$ $\star |E^*| < |E| \cdot d(G).$

Create another undirected graph $G^* = (V^*, E^*)$ from G'

c(v): the color number of v. $V^* = \{v \in V \mid c(v) \in \{2, 4, 6\}\}.$ $E^* = \{(u, v) \mid c(u) = 6, c(v) = 2, (\exists w \in V)(c(w) = 1, (w, u), (w, v) \in E')\}$ $\cup \{(u, v) \mid c(u) = 2, c(v) = 4, (\exists w \in V)(c(w) = 3, (w, u), (w, v) \in E')\}$ $\cup \{(u, v) \mid c(u) = 4, c(v) = 6, (\exists w \in V)(c(w) = 5, (w, u), (w, v) \in E')\}.$ $\star |E^*| < |E| \cdot d(G).$

Create another undirected graph $G^* = (V^*, E^*)$ from G'

c(v): the color number of v. $V^* = \{v \in V \mid c(v) \in \{2, 4, 6\}\}.$ $E^* = \{(u, v) \mid c(u) = 6, c(v) = 2, (\exists w \in V)(c(w) = 1, (w, u), (w, v) \in E')\}$ $\cup \{(u, v) \mid c(u) = 2, c(v) = 4, (\exists w \in V)(c(w) = 3, (w, u), (w, v) \in E')\}$ $\cup \{(u, v) \mid c(u) = 4, c(v) = 6, (\exists w \in V)(c(w) = 5, (w, u), (w, v) \in E')\}.$ $\star |E^*| < |E| \cdot d(G).$

- \exists an undirected triangle in $G^* \iff \exists$ a well-colored A_1 in G'.
- Detecting triangles in G^* : $O(|E^*|^{2\omega/(\omega+1)}) = O((|E| \cdot d(G))^{2\omega/(\omega+1)}).$
- Expected number of repetitions of the randomized coloring: $6^5 = 7776$.

39/40

• The price for derandomization: $O(\log |V|)$.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

40 / 40