Testing cycle-freeness in bounded-degree graphs

Oded Goldreich and Dana Ron

Algorithmica 32 (2002) 302-343.

Speaker: Joseph, Chuang-Chieh Lin
Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Department of Computer Science and Information Engineering
National Chung Cheng University, Taiwan

September 28, 2010

Background on property testing

Cycle-freeness

A two-sided-error property tester for cycle-freeness

Background on property testing

Background on property testing

m Try to answer ‘“yes” or “no” for the following relaxed decision
problems by observing only a small fraction of the input.

Background on property testing

m Try to answer ‘“yes” or “no” for the following relaxed decision
problems by observing only a small fraction of the input.

m Does the input satisfy a designated property, or

m is e-far from satisfying the property?

Background on property testing (contd.)

m In property testing, we use e-far to say that the input is far
from a certain property.

m ¢: the least fraction of the input needs to be modified.

Background on property testing (contd.)

m In property testing, we use e-far to say that the input is far
from a certain property.

m ¢: the least fraction of the input needs to be modified.

m For example:
m A sequence of integers L = (0,2,3,4,1).
m Allowed operations: integer deletions
m L is 0.2-far from being monotonically nondecreasing.

The model for graphs

m Graph model: adjacency list for graphs with vertex-degree
bounded by d.

m It takes O(1) time to access to a function
fe - [n] x [d] — [n] U {}.

m The value fg(v, i) is the ith neighbor of v or a special symbol
‘«' if v has less than i neighbors.

The model for graphs

m Graph model: adjacency list for graphs with vertex-degree
bounded by d.
m It takes O(1) time to access to a function
fo : [n] > [d] — [n] U {x}.

m The value fg(v, i) is the ith neighbor of v or a special symbol
‘«' if v has less than i neighbors.

m c-far from satisfying a graph property PP:
m one has to modify > edn entries in fg (i.e., > edn/2 edges) to
make the input graph satisfy P.

Background on property testing (contd.)

m The complexity measure: queries & running time.

m The complexity (say q(n, d,€)) is asked to be sublinear
in |V|=n.

Background on property testing (contd.)

m The complexity measure: queries & running time.

m The complexity (say q(n, d,€)) is asked to be sublinear
in |V|=n.
m g(n,d,e) = o(f(n)) if lim % — 0, where € and d are

viewed as constants.

Property testers

m A property tester for P is an algorithm utilizing sublinear
queries such that:

> if the input satisfies P:
answers “yes” with probability > 2/3 (1 — one-sided error);

> if the input is e-far from satisfying P:
answers “no” with probability > 2/3.

Background on property testing (contd.)

m Unlike testing graph properties in the adjacency-matrix model,
only a few, very simple graph properties are known to be
testable (i.e., query complexity is independent of n).

m For most of nontrivial graph properties, super-constant lower
bounds exist.

m k-colorability:
m Q(n).

m cycle-freeness:
] O(Ei3 + 6%) (two-sided error);
m Q(4/n) (one-sided error).

m having a vertex-cover of size pn for a fixed p > 0:
m Q(n).

m having a dominating set of size pn for a fixed p > 0:
m ?? (known to be non-testable).

Background on property testing (contd.)

m Unlike testing graph properties in the adjacency-matrix model,
only a few, very simple graph properties are known to be
testable (i.e., query complexity is independent of n).

m For most of nontrivial graph properties, super-constant lower
bounds exist.
m k-colorability:
m Q(n).
cycle-freeness: (We talk about it today)
] 0(53 + E%) (two-sided error);
m Q(4/n) (one-sided error).
m having a vertex-cover of size pn for a fixed p > 0:
m Q(n).
m having a dominating set of size pn for a fixed p > 0:
m ?? (known to be non-testable).

Cycle-freeness

10/34

Cycle-freeness

m A graph is cycle-free if it does not contain a cycle as a
subgraph (or an induced subgraph).

m A connected graph with no cycles is a tree.

m A connected n-vertex graph with n — 1 edges is a tree.

m An n-vertex graph with no cycles is a forest.
m A forest has n — k edges (k: the number of components in the
graph).

11 /34

Deterministic: O(n) time

m Using DFS, to determine if an n-vertex graph G has a cycle
can be done in O(n) time.

12/34

A two-sided-error property tester for cycle-freeness

13/34

A property tester for cycle-freeness in bounded-degree graphs

Algorithm: cycle-free-tester

Input: G = (V, E) in an adjacency-list with bounded-degree d, 0 < ¢ < 1.
1: Uniformly and independently select £ = 23 /¢? vertices from V;
2: for each selected vertex s do

3: Perform a BFS starting from s until % vertices are reached or
no more new vertices can be reached;

4. end for

5: if any of the above searches found a cycle then

6: Output REJECT;

7: end if

8: Let i denote the number of vertices in the sample that belong to

connected components of size > %;

9: Let /m denote half the sum of their degrees;
10: if ﬁ’zﬁ > % then

11: Output REJECT;
12: else

13: Output ACCEPT;
14: endif

Time complexity

m Steps 1-7 (mainly BFS) totally takes time
O(t-5-d)=0(3-2)=0(3)

m Steps 8-14 takes at most /- d = O (;%) time.
m Calculation of sum of degrees of the sampled ¢ vertices.

15/34

Rough ideas of the tester

m If G is cycle-free, then each of its components is a tree.

m If G is e-far from being cycle-free, then it has many more
edges within its components, where these edges (say
superfluous edges) create cycles.

16 /34

Rough ideas of the tester (contd.)

m If many superfluous edges reside in “small’ components,

= many vertices are in these small components (. bounded
degree).

= Uniformly select a large enough number of vertices, with high
probability we catch such a vertex and then by performing a
(bounded) search we can find a cycle.

17 /34

Rough ideas of the tester (contd.)

m If many superfluous edges reside in “small’ components,
= many vertices are in these small components (. bounded
degree).
= Uniformly select a large enough number of vertices, with high
probability we catch such a vertex and then by performing a
(bounded) search we can find a cycle.

m If many superfluous edges reside in “big” components, we
cannot exhaustively search in such components.
m For this case, we count the sampled vertices belonging to big
components and and the edges incident them.

m The discrepancy between such edge count and the vertex
count is believed to be large.

17 /34

Rough ideas of the tester (contd.)

m If many superfluous edges reside in “small’ components,
= many vertices are in these small components (. bounded
degree).
= Uniformly select a large enough number of vertices, with high
probability we catch such a vertex and then by performing a
(bounded) search we can find a cycle.

m If many superfluous edges reside in “big” components, we
cannot exhaustively search in such components.
m For this case, we count the sampled vertices belonging to big
components and and the edges incident them.
m The discrepancy between such edge count and the vertex
count is believed to be large.
m This is due to that the number of big components is relatively
small.

17 /34

Before we proceed with the proof of correctness of the tester, let
us see the following useful observations first.

18/34

Discrepancy between the edge count and the vertex count

m A component is small (resp., big): it contains < % vertices
(resp., > 2 vertices).

m Some further notations:
m t: the number of big components in G.
m n': the number of vertices in big components in G.
m m': the number of edges in big components in G.
m Big: the set of vertices in big components in G.

19/34

Discrepancy between the edge count and the vertex count

m A component is small (resp., big): it contains < % vertices
(resp., > 2 vertices).

m Some further notations:

m t: the number of big components in G.
n’: the number of vertices in big components in G.
m’: the number of edges in big components in G.
Big: the set of vertices in big components in G.

Observation*

m—h m’

For any graph G, we have |77 —
probability > %

m We ignore the proof here.

19/34

Proof of the “correctness’ of the tester

Next, we shall prove that cycle-free-tester achieves the following
conditions:

m if G is cycle-free, then cycle-free-tester outputs ACCEPT with
probability > 2;

m if G is e-far from being cycle-free, then cycle-free-tester
outputs REJECT with probability > 3.

20/34

Recall the property tester...

Algorithm: cycle-free-tester

Input: G = (V, E) in an adjacency-list with bounded-degree d, 0 < ¢ < 1.
1: Uniformly and independently select £ = 23 /¢? vertices from V;
2: for each selected vertex s do

3: Perform a BFS starting from s until % vertices are reached or
no more new vertices can be reached;

4. end for

5: if any of the above searches found a cycle then

6: Output REJECT;

7: end if

8: Let i denote the number of vertices in the sample that belong to

connected components of size > %;

9: Let /m denote half the sum of their degrees;
10: if ﬁ’zﬁ > % then

11: Output REJECT;
12: else

13: Output ACCEPT;
14: endif

21/34

The case where G is cycle-free

m cycle-free-tester never outputs REJECT in Step 6.
mm —n=—-t<0.

m Recall that with probability > 2/3, the inequality

m—h m' —n’ ed
7 n S 16 holds.

m The inequality (/i — 7)/¢ < ed/16 holds with probability
> 2/3, thus the algorithm accepts G in Step 13 with
probability > 2/3.

22 /34

The case when G is e-far from being cycle-free

m For a graph G with t connected components, n vertices and
m edges, we define m — (n — t) > 0 to be the number of
superfluous edges in G.

m G is e-far from being cycle-free = the number of superfluous
edges > %edn.

m Let us consider two cases:

23 /34

Case 1: There are > edn/4 superfluous edges inside small components

m Consider a small component having s superfluous edges.

m This component must contain > 275 vertices.

m The total number of vertices in small components that
contain superfluous edges > en/2.

m Hence, no cycle is detected in Step 2 with probability
< (1-¢/2) < 1/3.

24 /34

Case 2: There are > edn/4 superfluous edges inside big components

m Recall that
m t: the number of big components;

m n’: the number of vertices in big components;
m m’: the number of edges in big components.

d
mm — (0 —t)> <"

n___ edn
m Note that t§ W—T

’ ’
m We have%z%.

m Recall that with probability > 2/3, the inequality

m—h m'—n’ ed
. n < 16°

u mzh > % with probability > 2/3.

m Thus the algorithm returns REJECT in Step 11 with
probability > 2/3.

25 /34

Thank you,

and

Happy Teachers’ Day!

Proof of Observation*

m Fori=1,...,¢ let x; be a 0—1 random variable that equals 1
iff the ith selected vertex (say, vk;) belongs to Big.

’

m E[xi]= > 1-Prly, is selected] = n’ - % =
ig

27/ 34

Chernoff bounds

Some useful Chernoff bounds:

m Let X1, X5, ..., X, be a series of mutually independent
Bernoulli random variables with S = >""_; X; and u = E[S].
Assume that, for all i, Pr[X; = 1] = p for some p > 0, then

e5 I

Pr(|S — pu| > 6u] < 2e /3 for 5 € (0,1).

28 /34

Proof of Observation* (contd.)

Applying the Chernoff bound below:

Ao € n’
o n
= Pr[”_? ’Z<32 F)'F']
< 267%-%{(3;#) (note that £ = 213 /¢?)
< 2.¢783
1
< 6

/

m Thus with probability > 5/6, we have % — ”7‘ < 35

29 /34

Proof of Observation* (contd.)

m Similarly, for i = 1,...,¢ let ¢; be a random variable that
equals the degree of the ith selected vertex if it belongs to
a big component, and 0 otherwise.

~

m Then =33 ¢;, and E[f] = L.
i=1
m E[p)]= > d(w) Prlv is selected] = 2m’ - 1.
Vk,.GBig

m Note that 0 < ¢; < d for each i.

30/34

A Hoeffding's bound

A Hoeffding's bound:

m Let X1, X5,..., X, be a series of mutually independent
bounded Bernoulli random variables (i.e., a; < X; < b;, for
some positive real a; and b;), then for a > 0

Pr{|S — | > a] < 2e~20%/ Tia(bima)?,

31/34

Proof of Observation* (contd.)

Applying the previous Hoeffding's bound below:

ed
> | =
_32] Pr[m

/ m'é

n

m m
{ n

edl
> 2
- 32

32/34

Proof of Observation* (contd.)

Here we have:

= With probability > 5/6, we have |2 %/ < 35 (say (i)), and

= With probability > 5/6, we have [— ™| < < (say (ii))
Pr((i) or (ii) is not satisfied] < 3. J
Thus with probability > 2/3, the inequality ‘ﬁ?;ﬁ —men) < ed
holds.

33/34

Thank you,

and

Happy Teachers’ Day!

	Background on property testing
	Cycle-freeness
	A two-sided-error property tester for cycle-freeness
	
	

