
Testing cycle-freeness in bounded-degree graphs

Oded Goldreich and Dana Ron

Algorithmica 32 (2002) 302–343.

Speaker: Joseph, Chuang-Chieh Lin
Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Department of Computer Science and Information Engineering

National Chung Cheng University, Taiwan

September 28, 2010

1 / 34

Outline

1 Background on property testing

2 Cycle-freeness

3 A two-sided-error property tester for cycle-freeness

2 / 34

Outline

1 Background on property testing

2 Cycle-freeness

3 A two-sided-error property tester for cycle-freeness

3 / 34

Background on property testing

Try to answer “yes” or “no” for the following relaxed decision
problems by observing only a small fraction of the input.

Does the input satisfy a designated property, or

is ǫ-far from satisfying the property?

4 / 34

Background on property testing

Try to answer “yes” or “no” for the following relaxed decision
problems by observing only a small fraction of the input.

Does the input satisfy a designated property, or

is ǫ-far from satisfying the property?

4 / 34

Background on property testing (contd.)

In property testing, we use ǫ-far to say that the input is far
from a certain property.

ǫ: the least fraction of the input needs to be modified.

For example:

A sequence of integers L = (0, 2, 3, 4, 1).
Allowed operations: integer deletions
L is 0.2-far from being monotonically nondecreasing.

5 / 34

Background on property testing (contd.)

In property testing, we use ǫ-far to say that the input is far
from a certain property.

ǫ: the least fraction of the input needs to be modified.

For example:

A sequence of integers L = (0, 2, 3, 4, 1).
Allowed operations: integer deletions
L is 0.2-far from being monotonically nondecreasing.

5 / 34

The model for bounded-degree graphs

Graph model: adjacency list for graphs with vertex-degree
bounded by d .

It takes O(1) time to access to a function
fG : [n] × [d] 7→ [n] ∪ {∗}.

The value fG (v , i) is the ith neighbor of v or a special symbol
‘∗’ if v has less than i neighbors.

ǫ-far from satisfying a graph property P:

one has to modify > ǫdn entries in fG (i.e., > ǫdn/2 edges) to
make the input graph satisfy P.

6 / 34

The model for bounded-degree graphs

Graph model: adjacency list for graphs with vertex-degree
bounded by d .

It takes O(1) time to access to a function
fG : [n] × [d] 7→ [n] ∪ {∗}.

The value fG (v , i) is the ith neighbor of v or a special symbol
‘∗’ if v has less than i neighbors.

ǫ-far from satisfying a graph property P:

one has to modify > ǫdn entries in fG (i.e., > ǫdn/2 edges) to
make the input graph satisfy P.

6 / 34

Background on property testing (contd.)

The complexity measure: queries & running time.

The complexity (say q(n, d , ǫ)) is asked to be sublinear
in |V | = n.

q(n, d , ǫ) = o(f (n)) if lim
n→∞

q(n,d,ǫ)
f (n) → 0, where ǫ and d are

viewed as constants.

7 / 34

Background on property testing (contd.)

The complexity measure: queries & running time.

The complexity (say q(n, d , ǫ)) is asked to be sublinear
in |V | = n.

q(n, d , ǫ) = o(f (n)) if lim
n→∞

q(n,d,ǫ)
f (n) → 0, where ǫ and d are

viewed as constants.

7 / 34

Property testers

A property tester for P is an algorithm utilizing sublinear
queries such that:

¤ if the input satisfies P:
answers “yes” with probability ≥ 2/3 (1 → one-sided error);

¤ if the input is ǫ-far from satisfying P:
answers “no” with probability ≥ 2/3.

8 / 34

Background on property testing (contd.)

Unlike testing graph properties in the adjacency-matrix model,
only a few, very simple graph properties are known to be
testable (i.e., query complexity is independent of n).

For most of nontrivial graph properties, super-constant lower
bounds exist.

k-colorability:

Ω(n).

cycle-freeness: (We talk about it today)

O(1

ǫ
3 + d

ǫ
2) (two-sided error);

Ω(
√

n) (one-sided error).

having a vertex-cover of size ρn for a fixed ρ > 0:

Ω(n).

having a dominating set of size ρn for a fixed ρ > 0:

?? (known to be non-testable).

. . .

9 / 34

Background on property testing (contd.)

Unlike testing graph properties in the adjacency-matrix model,
only a few, very simple graph properties are known to be
testable (i.e., query complexity is independent of n).

For most of nontrivial graph properties, super-constant lower
bounds exist.

k-colorability:

Ω(n).

cycle-freeness: (We talk about it today)

O(1

ǫ
3 + d

ǫ
2) (two-sided error);

Ω(
√

n) (one-sided error).

having a vertex-cover of size ρn for a fixed ρ > 0:

Ω(n).

having a dominating set of size ρn for a fixed ρ > 0:

?? (known to be non-testable).

. . .

9 / 34

Outline

1 Background on property testing

2 Cycle-freeness

3 A two-sided-error property tester for cycle-freeness

10 / 34

Cycle-freeness

A graph is cycle-free if it does not contain a cycle as a
subgraph (or an induced subgraph).

A connected graph with no cycles is a tree.

A connected n-vertex graph with n − 1 edges is a tree.

An n-vertex graph with no cycles is a forest.

A forest has n − k edges (k: the number of components in the
graph).

11 / 34

Deterministic: O(n) time

Using DFS, to determine if an n-vertex graph G has a cycle
can be done in O(n) time.

12 / 34

Outline

1 Background on property testing

2 Cycle-freeness

3 A two-sided-error property tester for cycle-freeness

13 / 34

A property tester for cycle-freeness in bounded-degree graphs

Algorithm: cycle-free-tester
Input: G = (V , E) in an adjacency-list with bounded-degree d , 0 < ǫ < 1.

1: Uniformly and independently select ℓ = 213/ǫ2 vertices from V ;
2: for each selected vertex s do

3: Perform a BFS starting from s until 8
ǫd

vertices are reached or
no more new vertices can be reached;

4: end for

5: if any of the above searches found a cycle then

6: Output REJECT;
7: end if

8: Let n̂ denote the number of vertices in the sample that belong to
connected components of size ≥

8
ǫd

;
9: Let m̂ denote half the sum of their degrees;

10: if m̂−n̂
ℓ

≥
ǫd
16

then

11: Output REJECT;
12: else

13: Output ACCEPT;
14: end if

14 / 34

Time complexity

Steps 1–7 (mainly BFS) totally takes time
O

(

ℓ · 1
ǫd · d

)

= O
(

1
ǫ2 ·

1
ǫ

)

= O
(

1
ǫ3

)

.

Steps 8–14 takes at most ℓ · d = O
(

d
ǫ2

)

time.

Calculation of sum of degrees of the sampled ℓ vertices.

15 / 34

Rough ideas of the tester

If G is cycle-free, then each of its components is a tree.

If G is ǫ-far from being cycle-free, then it has many more
edges within its components, where these edges (say
superfluous edges) create cycles.

16 / 34

Rough ideas of the tester (contd.)

If many superfluous edges reside in “small” components,

⇒ many vertices are in these small components (∵ bounded
degree).

⇒ Uniformly select a large enough number of vertices, with high
probability we catch such a vertex and then by performing a
(bounded) search we can find a cycle.

If many superfluous edges reside in “big” components, we
cannot exhaustively search in such components.

For this case, we count the sampled vertices belonging to big
components and and the edges incident them.

The discrepancy between such edge count and the vertex
count is believed to be large.

This is due to that the number of big components is relatively
small.

17 / 34

Rough ideas of the tester (contd.)

If many superfluous edges reside in “small” components,

⇒ many vertices are in these small components (∵ bounded
degree).

⇒ Uniformly select a large enough number of vertices, with high
probability we catch such a vertex and then by performing a
(bounded) search we can find a cycle.

If many superfluous edges reside in “big” components, we
cannot exhaustively search in such components.

For this case, we count the sampled vertices belonging to big
components and and the edges incident them.

The discrepancy between such edge count and the vertex
count is believed to be large.

This is due to that the number of big components is relatively
small.

17 / 34

Rough ideas of the tester (contd.)

If many superfluous edges reside in “small” components,

⇒ many vertices are in these small components (∵ bounded
degree).

⇒ Uniformly select a large enough number of vertices, with high
probability we catch such a vertex and then by performing a
(bounded) search we can find a cycle.

If many superfluous edges reside in “big” components, we
cannot exhaustively search in such components.

For this case, we count the sampled vertices belonging to big
components and and the edges incident them.

The discrepancy between such edge count and the vertex
count is believed to be large.

This is due to that the number of big components is relatively
small.

17 / 34

Before we proceed with the proof of correctness of the tester, let
us see the following useful observations first.

18 / 34

Discrepancy between the edge count and the vertex count

A component is small (resp., big): it contains < 8
ǫd vertices

(resp., ≥ 8
ǫd vertices).

Some further notations:

t: the number of big components in G .
n′: the number of vertices in big components in G .
m′: the number of edges in big components in G .
Big: the set of vertices in big components in G .

Observation*

For any graph G , we have
∣

∣

∣

m̂−n̂
ℓ − m′

−n′

n

∣

∣

∣
≤ ǫd

16 with

probability ≥ 2
3 .

We ignore the proof here.

19 / 34

Discrepancy between the edge count and the vertex count

A component is small (resp., big): it contains < 8
ǫd vertices

(resp., ≥ 8
ǫd vertices).

Some further notations:

t: the number of big components in G .
n′: the number of vertices in big components in G .
m′: the number of edges in big components in G .
Big: the set of vertices in big components in G .

Observation*

For any graph G , we have
∣

∣

∣

m̂−n̂
ℓ − m′

−n′

n

∣

∣

∣
≤ ǫd

16 with

probability ≥ 2
3 .

We ignore the proof here.

19 / 34

Proof of the “correctness” of the tester

Next, we shall prove that cycle-free-tester achieves the following
conditions:

if G is cycle-free, then cycle-free-tester outputs ACCEPT with
probability > 2

3 ;

if G is ǫ-far from being cycle-free, then cycle-free-tester
outputs REJECT with probability > 2

3 .

20 / 34

Recall the property tester...

Algorithm: cycle-free-tester
Input: G = (V , E) in an adjacency-list with bounded-degree d , 0 < ǫ < 1.

1: Uniformly and independently select ℓ = 213/ǫ2 vertices from V ;
2: for each selected vertex s do

3: Perform a BFS starting from s until 8
ǫd

vertices are reached or
no more new vertices can be reached;

4: end for

5: if any of the above searches found a cycle then

6: Output REJECT;
7: end if

8: Let n̂ denote the number of vertices in the sample that belong to
connected components of size ≥

8
ǫd

;
9: Let m̂ denote half the sum of their degrees;

10: if m̂−n̂
ℓ

≥
ǫd
16

then

11: Output REJECT;
12: else

13: Output ACCEPT;
14: end if

21 / 34

The case where G is cycle-free

cycle-free-tester never outputs REJECT in Step 6.

m′ − n′ = −t ≤ 0.

Recall that with probability ≥ 2/3, the inequality
∣

∣

∣

m̂−n̂
ℓ − m′

−n′

n

∣

∣

∣
≤ ǫd

16 holds.

The inequality (m̂ − n̂)/ℓ < ǫd/16 holds with probability
≥ 2/3, thus the algorithm accepts G in Step 13 with
probability ≥ 2/3.

22 / 34

The case when G is ǫ-far from being cycle-free

For a graph G with t connected components, n vertices and
m edges, we define m − (n − t) ≥ 0 to be the number of
superfluous edges in G .

G is ǫ-far from being cycle-free ⇒ the number of superfluous
edges ≥ 1

2ǫdn.

Let us consider two cases:

23 / 34

Case 1: There are ≥ ǫdn/4 superfluous edges inside small components

Consider a small component having s superfluous edges.

This component must contain ≥ 2s
d

vertices.

The total number of vertices in small components that
contain superfluous edges ≥ ǫn/2.

Hence, no cycle is detected in Step 2 with probability
< (1 − ǫ/2)ℓ < 1/3.

24 / 34

Case 2: There are ≥ ǫdn/4 superfluous edges inside big components

Recall that

t: the number of big components;
n′: the number of vertices in big components;
m′: the number of edges in big components.

m′ − (n′ − t) ≥ ǫdn
4

Note that t ≤ n
8/ǫd = ǫdn

8 .

We have m′
−n′

n
≥ ǫd

8 .

Recall that with probability ≥ 2/3, the inequality
∣

∣

∣

m̂−n̂
ℓ − m′

−n′

n

∣

∣

∣
≤ ǫd

16 .

m̂−n̂
ℓ

> ǫd
16 with probability ≥ 2/3.

Thus the algorithm returns REJECT in Step 11 with
probability ≥ 2/3.

25 / 34

Thank you,

and

Happy Teachers’ Day!

26 / 34

Proof of Observation*

For i = 1, . . . , ℓ, let χi be a 0–1 random variable that equals 1
iff the ith selected vertex (say, vki

) belongs to Big.

n̂ =
ℓ

∑

i=1

χi .

E[χi] =
∑

vki
∈Big

1 · Pr[vki
is selected] = n′ · 1

n
= n′

n
.

∴ E[n̂] = n′ℓ
n

.

27 / 34

Chernoff bounds

Some useful Chernoff bounds:

Let X1, X2, . . . ,Xn be a series of mutually independent

Bernoulli random variables with S =
∑n

i=1 Xi and µ = E[S].
Assume that, for all i , Pr[Xi = 1] = p for some p > 0, then

Pr[S ≥ (1 + δ)µ] ≤

(

eδ

(1 + δ)(1+δ)

)µ

, for any δ > 0;

Pr[|S − µ| ≥ δµ] ≤ 2e−µδ2/3 for δ ∈ (0, 1).

28 / 34

Proof of Observation* (contd.)

Applying the Chernoff bound below:

Pr

[∣

∣

∣

∣

n̂

ℓ
−

n′

n

∣

∣

∣

∣

≥
ǫ

32

]

≤ Pr

[∣

∣

∣

∣

n̂ −
n′

n
· ℓ

∣

∣

∣

∣

≥
ǫ

32
· ℓ

]

≤ Pr

[
∣

∣

∣

∣

n̂ −
n′

n
· ℓ

∣

∣

∣

∣

≥
(ǫ

32
·

n

n′

)

·
n′

n
· ℓ

]

≤ 2e−
1
3
·
n′

n
·ℓ·(ǫn

32n′
)

2

(note that ℓ = 213/ǫ2)

≤ 2 · e−8/3

<
1

6
.

Thus with probability ≥ 5/6, we have
∣

∣

∣

n̂
ℓ − n′

n

∣

∣

∣
< ǫ

32 .

29 / 34

Proof of Observation* (contd.)

Similarly, for i = 1, . . . , ℓ let φi be a random variable that
equals the degree of the ith selected vertex if it belongs to

a big component, and 0 otherwise.

Then m̂ = 1
2

ℓ
∑

i=1

φi , and E[m̂] = m′ℓ
n

.

E[φi] =
∑

vki
∈Big

d(vki
) · Pr[vki

is selected] = 2m′ · 1
n
.

Note that 0 ≤ φi ≤ d for each i .

30 / 34

A Hoeffding’s bound

A Hoeffding’s bound:

Let X1, X2, . . . ,Xn be a series of mutually independent
bounded Bernoulli random variables (i.e., ai ≤ Xi ≤ bi , for
some positive real ai and bi), then for α > 0

Pr[|S − µ| ≥ α] ≤ 2e−2α2/
Pn

i=1(bi−ai)
2
.

31 / 34

Proof of Observation* (contd.)

Applying the previous Hoeffding’s bound below:

Pr

[
∣

∣

∣

∣

m̂

ℓ
−

m′

n

∣

∣

∣

∣

≥
ǫd

32

]

= Pr

[
∣

∣

∣

∣

m̂ −
m′ℓ

n

∣

∣

∣

∣

≥
ǫdℓ

32

]

≤ 2e
−

2·(ǫdℓ
32)

2

ℓ·d2

= 2e
−

2· ǫ
2
·d2

·ℓ
2

210

ℓ·d2

= 2e
−

ǫ
2
·
213

ǫ2

29

= 2e−16

<
1

6
.

Thus with probability ≥ 5/6, we have
∣

∣

∣

m̂
ℓ − m′

n

∣

∣

∣
< ǫd

32 .

32 / 34

Proof of Observation* (contd.)

Here we have:

With probability ≥ 5/6, we have
∣

∣

∣

n̂
ℓ − n′

n

∣

∣

∣
< ǫ

32 (say (i)), and

With probability ≥ 5/6, we have
∣

∣

∣

m̂
ℓ − m′

n

∣

∣

∣
< ǫd

32 (say (ii)).

Pr[(i) or (ii) is not satisfied] < 1
3 .

Thus with probability ≥ 2/3, the inequality
∣

∣

∣

m̂−n̂
ℓ − m′

−n′

n

∣

∣

∣
≤ ǫd

16

holds.

33 / 34

Thank you,

and

Happy Teachers’ Day!

34 / 34

	Background on property testing
	Cycle-freeness
	A two-sided-error property tester for cycle-freeness
	
	

