The *K*-armed dueling bandits problem

Yisong Yue, Josef Broder, Robert Kleinberg, Thorsten Joachims

Journal of Computer and System Sciences 78 (2012) 1538–1556.

Speaker: Joseph Chuang-Chieh Lin

Institute of Information Science Academia Sinica Taiwan

22 July 2016

Yisong Yue @Caltech

Josef Broder @Google

Robert Kleinberg @Cornell

Thorsten Joachims @Cornell

Outline

- The dueling bandits problem
 - The algorithm

The main analysis

- Justification of the confidence intervals
- Regret per match
- Mistake bound
- Exploration bound w.h.p.
- Expected regret upper bound

The lower bound

Motivations

- The conventional bandit problem :
 - Choose, in each of T iterations, one of the K possible bandits/arms/strategies B = {b₁,..., b_K}.
 - Receive the payoff in [0,1] (initially unkown) in each iteration.
 - Goal: Maximize the total payoff.
- It's difficult to elicit absolute-scale payoffs in some applications.
 - One can only rely on *relative* judgment of payoff.
- Given a collection of K bandits, we wish to find a sequence of noisy comparisons that has low regret.

Motivations

- The conventional bandit problem :
 - Choose, in each of T iterations, one of the K possible bandits/arms/strategies B = {b₁,..., b_K}.
 - Receive the payoff in [0,1] (initially unkown) in each iteration.
 - Goal: Maximize the total payoff.
- It's difficult to elicit absolute-scale payoffs in some applications.
 - One can only rely on *relative* judgment of payoff.
- Given a collection of K bandits, we wish to find a sequence of noisy comparisons that has low regret.

Motivations

- The conventional bandit problem :
 - Choose, in each of T iterations, one of the K possible bandits/arms/strategies B = {b₁,..., b_K}.
 - Receive the payoff in [0,1] (initially unkown) in each iteration.
 - Goal: Maximize the total payoff.
- It's difficult to elicit absolute-scale payoffs in some applications.
 - One can only rely on *relative* judgment of payoff.
- Given a collection of K bandits, we wish to find a sequence of noisy comparisons that has low regret.

Noisy comparisons

 \star The noisy comparisons are independent and $\Pr[b \succ b']$ is stationary over time.

Regrets

- $(b_1^{(t)}, b_2^{(t)})$: the bandits chosen at iteration t.
- *b**: the overall best bandit.
- T be time horizon.

Regrets

• The strong regret

$$R_{T} = \sum_{t=1}^{T} \max\{\epsilon(b^{*}, b_{1}^{(t)}), \epsilon(b^{*}, b_{2}^{(t)})\}.$$

• The weak regret

$$\tilde{R}_{T} = \sum_{t=1}^{T} \min\{\epsilon(b^{*}, b_{1}^{(t)}), \epsilon(b^{*}, b_{2}^{(t)})\}.$$

Dueling Bandits The dueling bandits problem

Modeling assumptions

Strong stochastic transitivity

For bandits $b_i \succ b_j \succ b_k$,

$$\epsilon_{i,k} \geq \max{\{\epsilon_{i,j}, \epsilon_{j,k}\}}.$$

Strong triangular inequality

For bandits $b_i \succ b_j \succ b_k$,

$$\epsilon_{i,k} \leq \epsilon_{i,j} + \epsilon_{j,k}.$$

The Algorithm

Joseph C.-C. Lin (Academia Sinica, TW)

Dueling Bandits

22 July 2016 8 / 42

Explore then exploit

	Algorithm 2 Interleaved Filter (IF).
Algorithm 1 Explore then exploit1: Input: $T, \mathcal{B} = \{b_1, \dots, b_K\}, EXPLORE$ 2: $(\hat{b}, \hat{T}) \leftarrow EXPLORE(T, \mathcal{B})$ 3: for $t = \hat{T} + 1, \dots, T$ do4: compare \hat{b} and \hat{b} 5: end for	1: Input: $T, \mathcal{B} = \{b_1, \dots, b_K\}$ 2: $\delta \leftarrow 1/(TK^2)$ 3: Choose $\hat{b} \in \mathcal{B}$ randomly 4: $W \leftarrow \{b_1, \dots, b_K\} \setminus \{\hat{b}\}$ 5: $\forall b \in W$, maintain estimate $\hat{P}_{\hat{b}, \hat{b}}$ of $P(\hat{b} > b)$ according to (6) 6: $\forall b \in W$, maintain $1 - \delta$ confidence interval $\hat{C}_{\hat{b}, \hat{b}}$ of $\hat{P}_{\hat{b}, \hat{b}}$ according to (7), (8) 7: while $W \neq \emptyset$ do 8: for $b \in W$ do 9: compare \hat{b} and b 10: update $\hat{P}_{\hat{b}, \hat{b}}, \hat{C}_{\hat{b}, \hat{b}}$ 11: end for 12: while $\exists b \in W$ s.t. $(\hat{P}_{\hat{b}, \hat{b}} > 1/2 \land 1/2 \notin \hat{C}_{\hat{b}, \hat{b}})$ do 13: $W \leftarrow W \setminus \{b\}$ // \hat{b} declared winner against b 14: end while 15: if $\exists b' \in W$ s.t. $(\hat{P}_{i, i} < 1/2 \land 1/2 \notin \hat{C}_{i, i})$ then
	16: while $\exists b \in W$ s. $\hat{P}_{b,b} > 1/2$ do 17: $W \leftarrow W \setminus \{b\}$ //pruning 18: end while 19: $\hat{b} \leftarrow b', W \leftarrow W \setminus \{b'\}$ //b' declared winner against \hat{b} (new round) 20: $\forall b \in W$, reset $\hat{P}_{b,b}$ and $\hat{C}_{b,b}$ 21: end if 22: end while 23: $\hat{T} \leftarrow \text{Total Comparisons Made}$ 24: return (\hat{b}, \hat{T})

The exploit algorithm

Algorithm 2 Interleaved Filter (IF).

1: Input: $T, \mathcal{B} = \{b_1, \dots, b_K\}$ 2: $\delta \leftarrow 1/(TK^2)$ 3: Choose $\hat{b} \in \mathcal{B}$ randomly 4: $W \leftarrow \{b_1, \ldots, b_K\} \setminus \{\hat{b}\}$ 5: $\forall b \in W$, maintain estimate $\hat{P}_{\hat{b}, b}$ of $P(\hat{b} > b)$ according to (6) 6: $\forall b \in W$, maintain $1 - \delta$ confidence interval $\hat{C}_{\hat{h}|\hat{h}|}$ of $\hat{P}_{\hat{h}|\hat{h}|}$ according to (7), (8) 7: while $W \neq \emptyset$ do for $h \in W$ do 8: compare \hat{b} and b9: 10: update $\hat{P}_{\hat{h}h}$, $\hat{C}_{\hat{h}h}$ 11: end for 12: while $\exists b \in W$ s.t. $(\hat{P}_{\hat{h}|h} > 1/2 \land 1/2 \notin \hat{C}_{\hat{h}|h})$ do $W \leftarrow W \setminus \{b\}$ // \hat{b} declared winner against b 13: 14: end while if $\exists b' \in W$ s.t. $(\hat{P}_{\hat{h}|b'} < 1/2 \land 1/2 \notin \hat{C}_{\hat{h}|b'})$ then 15: while $\exists b \in W$ s.t. $\hat{P}_{\hat{h},h} > 1/2$ do 16: 17: $W \leftarrow W \setminus \{b\}$ [[pruning] 18: end while 19: $\hat{b} \leftarrow b', W \leftarrow W \setminus \{b'\}$ //b' declared winner against \hat{b} (new round) 20: $\forall b \in W$, reset $\hat{P}_{\hat{h},h}$ and $\hat{C}_{\hat{h},h}$ 21. end if 22: end while 23: $\hat{T} \leftarrow$ Total Comparisons Made 24: return (\hat{b}, \hat{T})

• $\hat{P}_{i,j} = \frac{\# b_i \text{ wins}}{\# \text{ comparisons}}$.

The empirical estimate of $\Pr[b_i \succ b_j]$ after *t* comparisons.

• Confidence interval:

$$\hat{C}_{i,j} := (\hat{P}_{i,j} - c_t, \hat{P}_{i,j} + c_t),$$

where $c_t = \sqrt{4\log(1/\delta)/t}.$

Contribution of this paper

Theorem 1

Running Algorithm 1 with $\mathcal{B} = \{b_1, \ldots, b_K\}$, time horizon \mathcal{T} ($\mathcal{T} \ge K$), then **IF** incurs expected regret (weak & strong) bounded by

$$\mathsf{E}[R_T] = O(\mathsf{E}[R_T^{IF}]) = O\left(\frac{K}{\epsilon_{1,2}}\log T\right).$$

Theorem 2

For any fixed $\epsilon > 0$ and any algorithm ϕ for the K-armed dueling bandit problem, there exists a problem instance such that

$$R_T^{\phi} = \Omega\left(\frac{K}{\epsilon}\log T\right),\,$$

where $\epsilon = \min_{b \neq b^*} \Pr[b^* \succ b]$.

Crucial lemmas

Lemma 1

The probability that IF makes a mistake resulting in the elimination of the best bandit b_1 is $\leq 1/T$.

• $\mathbf{E}[R_T] \le (1 - 1/T)\mathbf{E}[R_T^{IF}] + (1/T) \cdot O(T) = O(\mathbf{E}[R_T^{IF}]).$

• R_T^{IF} : the regret incurred from **IF**.

Crucial lemmas (contd.)

Lemma 2

Assuming IF is mistake-free, then with high probability,

$$R_T^{IF} = O\left(rac{K\log K}{\epsilon_{1,2}}\log T
ight)$$

for both weak and strong regret.

Lemma 3

Assuming IF is mistake-free, then

$$\mathbf{E}[R_T^{I\!F}] = O\left(\frac{K}{\epsilon_{1,2}}\log T\right)$$

for both weak and strong regret.

Some more terminologies

- IF makes a "mistake": it draws a false conclusion regarding a bandit pair.
- A "match": all the comparisons IF makes between two bandits.
- A "round": all the matches played by the *incumbent* bandit \hat{b} .

The Main Analysis

Joseph C.-C. Lin (Academia Sinica, TW)

Dueling Bandits

22 July 2016 15 / 42

Dueling Bandits The main analysis Justification of the confidence intervals

Justification of the confidence intervals

Lemma 4

• For $\delta = 1/(TK^2)$, the number of comparisons in a match b/w b_i, b_j is

$$O\left(\frac{1}{\epsilon_{i,j}^2}\log(TK)\right).$$

• Pr[an inferior bandit is declaired the winner at some time $t \leq T$] $\leq \delta$.

- IF makes a mistake at time $t \Rightarrow 1/2 + \epsilon_{i,j} \notin \hat{C}_{i,j}$.
- Note: $\mathbf{E}[\hat{P}_{i,j}] = 1/2 + \epsilon_{i,j}$.
- $\Pr[1/2 + \epsilon_{i,j} \notin \hat{C}_{i,j}] = \Pr[|\hat{P}_{i,j} \mathbf{E}[\hat{P}_{i,j}]| \ge c_t] \le 2 \cdot e^{-2t \cdot c_t^2} = 2/(T^8 K^{16}).$

 $\Pr\left[\bigcup_{i=1}^{T} \{1/2 + \epsilon_{i,j} \notin \hat{C}_{i,j}\}\right] \le \frac{2T}{T^8 K^{16}} \le \frac{1}{TK^2} = \delta.$

Dueling Bandits The main analysis Justification of the confidence intervals

Justification of the confidence intervals

Lemma 4

• For $\delta = 1/(TK^2)$, the number of comparisons in a match b/w b_i, b_j is

$$O\left(\frac{1}{\epsilon_{i,j}^2}\log(TK)\right).$$

- Pr[an inferior bandit is declaired the winner at some time $t \leq T$] $\leq \delta$.
- IF makes a mistake at time $t \Rightarrow 1/2 + \epsilon_{i,j} \notin \hat{C}_{i,j}$.

• Note:
$$\mathbf{E}[\hat{P}_{i,j}] = 1/2 + \epsilon_{i,j}.$$

• $\Pr[1/2 + \epsilon_{i,j} \notin \hat{C}_{i,j}] = \Pr[|\hat{P}_{i,j} - \mathbf{E}[\hat{P}_{i,j}]| \ge c_t] \le 2 \cdot e^{-2t \cdot c_t^2} = 2/(T^8 \kappa^{16}).$

$$\Pr\left[\bigcup_{t=1}^{T} \{1/2 + \epsilon_{i,j} \notin \hat{C}_{i,j}\}\right] \leq \frac{2T}{T^8 \mathcal{K}^{16}} \leq \frac{1}{T\mathcal{K}^2} = \delta.$$

Dueling Bandits The main analysis Justification of the confidence intervals

Proof of Lemma 4 (contd.)

• By the stopping condition of **IF**, the match terminates at any time t if $\hat{P}_{i,j} - c_t > 1/2$.

• If
$$n > t$$
, then $\hat{P}_{i,j} - c_t \leq 1/2$.

- $\Pr[n > t] \le \Pr[\hat{P}_{i,j} c_t \le 1/2] = \Pr[\hat{P}_{i,j} 1/2 \epsilon_{i,j} \le c_t \epsilon_{i,j}] = \Pr[\mathbf{E}[\hat{P}_{i,j}] \hat{P}_{i,j} \ge \epsilon_{i,j} c_t].$
- Set $m \ge 8$ and $t \ge \lceil 2m \log(TK^2)/\epsilon_{i,J}^2 \rceil$ (then $c_t \le \epsilon_{i,j}/2$), we will have

$$\Pr\left(n \geq \frac{m}{\epsilon_{i,j}^2}\log(TK)\right) \leq \frac{1}{(TK)^m}.$$

Dueling Bandits The main analysis Regret per match

Regret per match

Lemma 5

Assume that b_1 has not been removed and $T \ge K$, then w.h.p. the accumulated weak/strong regret **from any match** is

$$O\left(rac{1}{\epsilon_{1,2}}\log T
ight).$$

- Suppose $\hat{b} = b_j$ is playing a match against b_i .
- By Lemma 4, any match played by b_j contains at most

$$O\left(\frac{1}{\epsilon_{1,j}^2}\log(TK)\right) = O\left(\frac{1}{\epsilon_{1,2}^2}\log(TK)\right) \text{ comparisons.}$$

• Note: All matches within a round are played simultaneously.

Dueling Bandits The main analysis Regret per match

Proof of Lemma 5 (contd.)

• The accumulated weak regret is bounded by

$$\epsilon_{1,j} \cdot O\left(\frac{1}{\epsilon_{1,j}^2}\log(TK)\right) = O\left(\frac{1}{\epsilon_{1,j}}\log(TK)\right)$$
$$= O\left(\frac{1}{\epsilon_{1,j}}\log(T)\right).$$

Mistake bound

• IF eliminates the best bandit b_1 if

- an inferior bandit defeats b₁, or
- b_1 is removed during the pruning step (lines 16–18).
- Consider the second case.

Lemma 6

For all triples of bandits b, b', \hat{b} such that $b \succ b'$, the probability that **IF** eliminates b in a pruning step, where

- b' wins a match against \hat{b} while
- *b* is empirically inferior to \hat{b} ,

is $\leq \delta$.

Proof of Lemma 6

- X₁, X₂,...: an infinite sequence of i.i.d. Bernoulli random variables with E[X_i] = Pr[b̂ ≻ b'].
- Y₁, Y₂,...: an infinite sequence of i.i.d. Bernoulli random variables with E[Y_i] = Pr[b̂ ≻ b].
 - X_i (resp. Y_i) represents the outcome of the *i*th comparison b/w b & b' (resp. b & b).
- If b is eliminated in a pruning step at the end of a match consisting of n comparisons b/w b' and \hat{b} , then

$$X_1 + \ldots + X_n < n/2 - \sqrt{4n\log(1/\delta)},$$

$$Y_1 + \ldots + Y_n > n/2.$$

Proof of Lemma 6 (contd.)

• Define
$$Z_i = Y_i - X_i$$
, we have

$$Z_1 + \ldots + Z_n > \sqrt{4n\log(1/\delta)}.$$

•
$$(Z_i)_{i=1}^\infty$$
 are i.i.d., and $|Z_i| \leq 1$, $orall i$.

*
$$\mathbf{E}[Z_i] = \Pr[\hat{b} \succ b] - \Pr[\hat{b} \succ b'] \le 0.$$

• Taking Hoeffding's inequality & union bound...

Proof of Lemma 1

Lemma 1

The probability that **IF** makes a mistake resulting in the elimination of the best bandit b_1 is $\leq 1/T$.

- For every *i*, the probability that *b*₁ is eliminated in a match against *b_i* is ≤ δ (Lemma 4).
- For all *i*, *j*, the probability that b_1 is eliminated in a pruning step resulting from a match where b_i defeats b_j is $\leq \delta$ (Lemma 6).
- * The probability that **IF** makes a mistake resulting in eliminating b_1 is $\leq \delta(K-1) + \delta(K-1)^2 < \delta K^2 = 1/T$.

The regret upper bound

Lemma 2

Assuming IF is mistake-free, then with high probability,

$$R_T^{IF} = O\left(rac{K\log K}{\epsilon_{1,2}}\log T
ight)$$

for both weak and strong regret.

- We wish to prove that the number of candidate bandits (i.e., # rounds) is $O(\log K)$ w.h.p.
- Model the sequence of candidate bandits as a random walk.

Random walk model

Rd 1

$$b_8$$
 b_7
 b_6
 b_5
 b_4
 b_3
 b_2
 b_1

 Rd 2
 b_8
 b_7
 b_6
 b_5
 b_4
 b_3
 b_2
 b_1

 Rd 3
 b_8
 b_7
 b_6
 b_5
 b_4
 b_3
 b_2
 b_1

 Rd 4
 b_8
 b_7
 b_6
 b_5
 b_4
 b_3
 b_2
 b_1

• p_i : the prob. b_i will be the incumbent in the following round.

• $p_{j-1} \leq \ldots \leq p_1$ (: strong stochastic transitivity).

The "worst case": p_{j−1} = ... = p₁ = 1/(j − 1) (assuming no mistakes are made).

Random Walk Model (contd.)

Random Walk Model

Define a random walk graph with K nodes labeled b_1, \ldots, b_K . Each node b_j (j > 1) transitions to b_i for $j > i \ge 1$ with prob. 1/(j - 1) (uniform). The final node b_1 is an absorbing node.

Proposition 1

If S and \tilde{S} are random variables corresponding to the number of rounds in ${\rm IF}$ and the Random Walk Model, resp., then

$$\forall x: \ \Pr[S \ge x] \le \Pr[\tilde{S} \ge x].$$

Analysis of the Random Walk Model

Lemma 7

Let X_i $(1 \le i \le K)$ be an indicator random variable corresponding to whether a random walk starting at b_K visits b_i in the Random Walk Model. Then

$$\Pr[X_i=1]=\frac{1}{i},$$

and for all $W \subseteq \{X_1, \ldots, X_{K-1}\}$,

$$\Pr[\wedge_{i\in W}X_i] = \prod_{X_i\in W}\Pr[X_i].$$

• We can express the number of steps taken by a random walk from b_K to b_1 as $S_k = 1 + \sum_{i=1}^{K-1} X_i$. Then,

$$\mathbf{E}[S_k] = 1 + \sum_{i=1}^{K-1} \mathbf{E}[X_i] = 1 + H_{K-1} \approx \log K.$$

Analysis of the Random Walk Model (contd.)

Lemma 8

Assuming IF is mistake-free, then it runs for $O(\log K)$ rounds w.h.p..

Corollary 1

Assuming **IF** is mistake-free, then it plays $O(K \log K)$ matches w.h.p.

- $O(\log T/\epsilon_{1,2})$ accumulated regret per match (Lemma 5).
- ▷ Lemma 2 (i.e., $R_T^{IF} = O((K \log K) \log T/\epsilon_{1,2}))$ follows.

Dueling Bandits	
The main analysis	
Expected regret upper bound	

Expected Regret Upper Bound

Expected regret upper bound

Lemma 9

Assuming **IF** is mistake-free, then it plays O(K) matches in expectation.

Proof of Lemma 9 (contd.)

•
$$\mathbf{E}[INF_j] \le 1 + \sum_{i=j+1}^{K-1} \frac{1}{i} = 1 + H_{K-1} - H_i.$$

Proof of Lemma 9 (contd.)

- Assume that b_j does NOT lose a match (not to be eliminated) to any superior incumbent b_i before b_i is defeated unless $b_i = b_1$.
- *E*_{j,t}: *b*_j is pruned after the *t*-th round where the incumbent bandit is superior to *b*_j, conditioned on NOT being pruned in the first *t* − 1 such rounds.
- G_{j,t}: # matches beyond the first t − 1 played by b_j against a superior incumbent, conditioned on playing ≥ t − 1 such matches.
- $\mathbf{E}[G_{j,t}] = 1 + \Pr[\mathcal{E}_{j,t}^{c}] \cdot \mathbf{E}[G_{j,t+1}].$
- ★ $\mathbf{E}[SUP_j] \le \mathbf{E}[G_{j,1}] = 1 + \Pr[\mathcal{E}_{j,1}^c] \cdot \mathbf{E}[G_{j,2}] \le 1 + 1/2 + 1/4 + \ldots = 2.$ (∵ $\Pr[\mathcal{E}_{j,t}] \le 1/2, \forall j \ne 1, t$)

Proof of Lemma 9 (contd.)

• Thus,

$$\sum_{j=1}^{K} (\mathbf{E}[INF_{j}] + \mathbf{E}[SUP_{j}]) \leq \sum_{j=1}^{K} (1 + H_{K-1} - H_{j}) + 2K$$
$$= \sum_{j=1}^{K} \left(1 + \sum_{i=j+1}^{K-1} \frac{1}{i}\right) + 2K$$
$$= \sum_{j=1}^{K} (j-1)\frac{1}{j} + 3K$$
$$= O(K).$$

The Lower Bound

The lower bound

Theorem 2

For any fixed $\epsilon>0$ and any algorithm ϕ for the K-armed dueling bandit problem, there exists a problem instance such that

$$R^{\phi}_{T} = \Omega\left(rac{K}{\epsilon}\log T
ight),$$

where $\epsilon = \min_{b \neq b^*} \Pr[b^* \succ b]$.

Construction of the problem instances

A family of K problem instances

- In instance *j*, let *b_j* be the best bandit, order the remaining ones by their indices.
 - In instance j, we have b_j ≻ b_k for all k ≠ j and we have b_i ≻ b_k whenever i < k.
- $\Pr[b_i \succ b_k] := 1/2 + \epsilon$ whenever $b_i \succ b_k$.
- q_i : the *distribution* on *T*-step histories induced by ϕ under instance *j*.
- $n_{j,T}$: # comparisons involving b_j scheduled by ϕ up to time T.

Proving the lower bound

Lemma 10

Let ϕ be an algorithm for the *K*-armed dueling bandits problem, such that $R_T^{\phi} = o(T^a)$ for all a > 0. Then for all j,

$$\mathbf{E}_{q_1}[n_{j,T}] = \Omega\left(\frac{\log T}{\epsilon^2}\right).$$

- If $R_T^{\phi} \neq o(T^a)$, then Theorem 2 holds trivially.
- On instance j, φ incurs regret ≥ ε every time when it plays a match involving b_j ≠ b₁.

$$R_{T}^{\phi} \geq \sum_{j \neq 1} \epsilon \cdot \mathbf{E}_{q_{1}}[n_{j,T}] = \Omega\left(\frac{K}{\epsilon} \log T\right).$$

Proof of Lemma 10

- \mathcal{E}_j : the event that $n_{j,T} < \log(T)/\epsilon^2$.
- $J := \{j \mid q_1(\mathcal{E}_j) < 1/3\}.$
- For each $j \in J$:

$$\mathsf{E}_{q_1}[n_{j,T}] \geq q_1(\mathcal{E}_j^c)(\log(T)/\epsilon^2) = \Omega\left(rac{\log(T)}{\epsilon^2}
ight).$$

• Hence, it remains to show that $\mathbf{E}_{q_1}[n_{j,T}] = \Omega(\log(T)/\epsilon^2)$ for each $j \notin J$.

Proof of Lemma 10

- \mathcal{E}_j : the event that $n_{j,T} < \log(T)/\epsilon^2$.
- $J := \{j \mid q_1(\mathcal{E}_j) < 1/3\}.$
- For each $j \in J$:

$$\mathsf{E}_{q_1}[n_{j,T}] \geq q_1(\mathcal{E}_j^c)(\log(\mathcal{T})/\epsilon^2) = \Omega\left(rac{\log(\mathcal{T})}{\epsilon^2}
ight).$$

• Hence, it remains to show that $\mathbf{E}_{q_1}[n_{j,T}] = \Omega(\log(T)/\epsilon^2)$ for each $j \notin J$.

Proof of Lemma 10 (contd.)

• $\mathbf{E}_{q_j}[T - n_{j,T}] = o((T^a)/\epsilon).$

- Regret ϵ is incurred for every comparison not involving b_j .
- By Markov's inequality,

$$q_j(\mathcal{E}_j) = q_j(\{T - n_{j,T} > T - \log(T)/\epsilon^2\}) \leq \frac{\mathsf{E}_{q_j}[T - n_{j,T}]}{T - \log(T)/\epsilon^2} = o(T^{\mathfrak{s}-1}).$$

• Choose a sufficiently large T so that $q_j(\mathcal{E}_j) < 1/3$ for each j.

Karp & Kleinberg @SODA 2007

For any event ${\mathcal E}$ and distributions p,q with $p({\mathcal E}) \geq 1/3$ and $q({\mathcal E}) < 1/3$,

$$extsf{KL}(p||q) \geq rac{1}{3}\ln\left(rac{1}{3q(\mathcal{E})}-rac{1}{e}
ight).$$

Dueling Bandits The lower bound

Proof of Lemma 10 (contd.)

Karp & Kleinberg @SODA 2007

For any event ${\mathcal E}$ and distributions p,q with $p({\mathcal E}) \geq 1/3$ and $q({\mathcal E}) < 1/3$,

$$extsf{KL}(p||q) \geq rac{1}{3} \ln \left(rac{1}{3q(\mathcal{E})} - rac{1}{e}
ight).$$

We have

$$\mathcal{KL}(q_1||q_j) \geq rac{1}{3} \ln\left(rac{1}{o(\mathcal{T}^{a-1})}
ight) - rac{1}{e} = \Omega(\log \mathcal{T}).$$

Proof of Lemma 10 (contd.)

• On the other hand, by the chain rule for KL-divergence,

$$\mathsf{KL}(q_1||q_j) \leq \mathsf{E}_{q_1}[n_{j,\tau}] \cdot \mathsf{KL}(1/2 + \epsilon||1/2 - \epsilon) \leq 16\epsilon^2 \cdot \mathsf{E}_{q_1}[n_{j,\tau}].$$

- If a comparison does not involve b_j, then the distribution on the comparison outcome will be the same under q₁ and q_j.
- $KL(1/2 + \epsilon || 1/2 \epsilon)$: the KL-divergence b/w two Bernoulli distributions Ber $(1/2 + \epsilon)$, Ber $(1/2 - \epsilon)$.

KL-divergence

k

For two probability mass functions $p(x_1, \ldots, x_r)$ and $q(x_1, \ldots, x_r)$,

$$\mathcal{K}L(p(x_1,\ldots,x_r)|q(x_1,\ldots,x_r)) = \sum_{x_1}\ldots\sum_{x_r}p(x_1,\ldots,x_r)\lograc{p(x_1,\ldots,x_r)}{q(x_1,\ldots,x_r)}.$$

• Hence, $\mathbf{E}_{q_1}[n_{j,T}] = \Omega(\log(T)/\epsilon^2)$ for $j \notin J$.

42 / 42