The K-armed dueling bandits problem

Yisong Yue, Josef Broder, Robert Kleinberg, Thorsten Joachims Journal of Computer and System Sciences 78 (2012) 1538-1556.

Speaker: Joseph Chuang-Chieh Lin

Institute of Information Science Academia Sinica

Taiwan
22 July 2016

Outline

(1) The dueling bandits problem
(2) The algorithm
(3) The main analysis

- Justification of the confidence intervals
- Regret per match
- Mistake bound
- Exploration bound w.h.p.
- Expected regret upper bound

4 The lower bound
$4 \square$ 》

Motivations

- The conventional bandit problem :
- Choose, in each of T iterations, one of the K possible bandits/arms/strategies $\mathcal{B}=\left\{b_{1}, \ldots, b_{K}\right\}$.
- Receive the payoff in $[0,1]$ (initially unkown) in each iteration.
- Goal: Maximize the total payoff.
- It's difficult to elicit absolute-scale payoffs in some applications. - One can only rely on relative judgment of payoff.
- Given a collection of K bandits, we wish to find a sequence of noisy comparisons that has low regret.

Motivations

- The conventional bandit problem :
- Choose, in each of T iterations, one of the K possible bandits/arms/strategies $\mathcal{B}=\left\{b_{1}, \ldots, b_{K}\right\}$.
- Receive the payoff in $[0,1]$ (initially unkown) in each iteration.
- Goal: Maximize the total payoff.
- It's difficult to elicit absolute-scale payoffs in some applications.
- One can only rely on relative judgment of payoff.
- Given a collection of K bandits, we wish to find a sequence of noisy comparisons that has low regret.

Motivations

- The conventional bandit problem :
- Choose, in each of T iterations, one of the K possible bandits/arms/strategies $\mathcal{B}=\left\{b_{1}, \ldots, b_{K}\right\}$.
- Receive the payoff in $[0,1]$ (initially unkown) in each iteration.
- Goal: Maximize the total payoff.
- It's difficult to elicit absolute-scale payoffs in some applications.
- One can only rely on relative judgment of payoff.
- Given a collection of K bandits, we wish to find a sequence of noisy comparisons that has low regret.

Noisy comparisons

- $\operatorname{Pr}\left[b \succ b^{\prime}\right]:=\epsilon\left(b, b^{\prime}\right)+1 / 2$.
- $\epsilon\left(b, b^{\prime}\right) \in(-1 / 2,1 / 2)$: a measure distinguishing b and b^{\prime}.
- $\epsilon\left(b, b^{\prime}\right)=-\epsilon\left(b^{\prime}, b\right)$
- $\epsilon_{i, j} \equiv \epsilon\left(b_{i}, b_{j}\right)$.
- $b \succ b^{\prime} \Rightarrow \epsilon\left(b, b^{\prime}\right)>0$.
* The noisy comparisons are independent and $\operatorname{Pr}\left[b \succ b^{\prime}\right]$ is stationary over time.

Regrets

- $\left(b_{1}^{(t)}, b_{2}^{(t)}\right)$: the bandits chosen at iteration t.
- b^{*} : the overall best bandit.
- T be time horizon.

Regrets

- The strong regret

$$
R_{T}=\sum_{t=1}^{T} \max \left\{\epsilon\left(b^{*}, b_{1}^{(t)}\right), \epsilon\left(b^{*}, b_{2}^{(t)}\right)\right\} .
$$

- The weak regret

$$
\tilde{R}_{T}=\sum_{t=1}^{T} \min \left\{\epsilon\left(b^{*}, b_{1}^{(t)}\right), \epsilon\left(b^{*}, b_{2}^{(t)}\right)\right\} .
$$

Modeling assumptions

Strong stochastic transitivity

For bandits $b_{i} \succ b_{j} \succ b_{k}$,

$$
\epsilon_{i, k} \geq \max \left\{\epsilon_{i, j}, \epsilon_{j, k}\right\}
$$

Strong triangular inequality

For bandits $b_{i} \succ b_{j} \succ b_{k}$,

$$
\epsilon_{i, k} \leq \epsilon_{i, j}+\epsilon_{j, k}
$$

The Algorithm

Explore then exploit

```
Algorithm 1 Explore then exploit
```

1: Input: $T, \mathcal{B}=\left\{b_{1}, \ldots, b_{K}\right\}$, EXPLORE
$(\hat{b}, \hat{T}) \leftarrow \operatorname{EXPLORE}(T, \mathcal{B})$
for $t=\hat{T}+1, \ldots, T$ do
compare \hat{b} and \hat{b}
end for

```
Algorithm 2 Interleaved Filter (IF).
: Input: \(T, \mathcal{B}=\left\{b_{1}, \ldots, b_{K}\right\}\)
```

$: \delta \leftarrow 1 /\left(T K^{2}\right)$

```
\(: \delta \leftarrow 1 /\left(T K^{2}\right)\)
: Choose \(\hat{b} \in \mathcal{B}\) randomly
: Choose \(\hat{b} \in \mathcal{B}\) randomly
\(W \leftarrow\left\{b_{1}, \ldots, b_{K}\right\} \backslash\{\hat{b}\}\)
\(W \leftarrow\left\{b_{1}, \ldots, b_{K}\right\} \backslash\{\hat{b}\}\)
: \(\forall b \in W\), maintain estimate \(\hat{P}_{\hat{b}, b}\) of \(P(\hat{b}>b)\) according to (6)
: \(\forall b \in W\), maintain estimate \(\hat{P}_{\hat{b}, b}\) of \(P(\hat{b}>b)\) according to (6)
\(\forall b \in W\), maintain \(1-\delta\) confidence interval \(\hat{C}_{\hat{b}, b}\) of \(\hat{P}_{\hat{b}, b}\) according to (7), (8)
\(\forall b \in W\), maintain \(1-\delta\) confidence interval \(\hat{C}_{\hat{b}, b}\) of \(\hat{P}_{\hat{b}, b}\) according to (7), (8)
while \(W \neq \emptyset\) do
while \(W \neq \emptyset\) do
        for \(b \in W\) do
        for \(b \in W\) do
            compare \(\hat{b}\) and \(b\)
            compare \(\hat{b}\) and \(b\)
            update \(\hat{P}_{\hat{b}, b}, \hat{C}_{\hat{b}, b}\)
            update \(\hat{P}_{\hat{b}, b}, \hat{C}_{\hat{b}, b}\)
        end for
        end for
        while \(\exists b \in W\) s.t. \(\left(\hat{P}_{\hat{b}, b}>1 / 2 \wedge 1 / 2 \notin \hat{C}_{\hat{b}, b}\right)\) do
        while \(\exists b \in W\) s.t. \(\left(\hat{P}_{\hat{b}, b}>1 / 2 \wedge 1 / 2 \notin \hat{C}_{\hat{b}, b}\right)\) do
            \(W \leftarrow W \backslash\{b\} \quad / / \hat{b}\) declared winner against \(b\)
            \(W \leftarrow W \backslash\{b\} \quad / / \hat{b}\) declared winner against \(b\)
            end while
            end while
            if \(\exists b^{\prime} \in W\) s.t. \(\left(\hat{P}_{\hat{b} . b^{\prime}}<1 / 2 \wedge 1 / 2 \notin \hat{C}_{\hat{b}, b^{\prime}}\right)\) then
            if \(\exists b^{\prime} \in W\) s.t. \(\left(\hat{P}_{\hat{b} . b^{\prime}}<1 / 2 \wedge 1 / 2 \notin \hat{C}_{\hat{b}, b^{\prime}}\right)\) then
            while \(\exists b \in W\) s.t. \(\hat{P}_{\hat{b}, b}>1 / 2\) do
            while \(\exists b \in W\) s.t. \(\hat{P}_{\hat{b}, b}>1 / 2\) do
                    \(W \leftarrow W \backslash\{b\} \quad\) lpruning
                    \(W \leftarrow W \backslash\{b\} \quad\) lpruning
            end while
            end while
            \(\hat{b} \leftarrow b^{\prime}, W \leftarrow W \backslash\left\{b^{\prime}\right\} \quad / / b^{\prime}\) declared winner against \(\hat{b}\) (new round)
            \(\hat{b} \leftarrow b^{\prime}, W \leftarrow W \backslash\left\{b^{\prime}\right\} \quad / / b^{\prime}\) declared winner against \(\hat{b}\) (new round)
            \(\forall b \in W\), reset \(\hat{P}_{\hat{b}, b}\) and \(\hat{C}_{\hat{b}, b}\)
            \(\forall b \in W\), reset \(\hat{P}_{\hat{b}, b}\) and \(\hat{C}_{\hat{b}, b}\)
        end if
        end if
    end while
    end while
    \(\hat{T} \leftarrow\) Total Comparisons Made
    \(\hat{T} \leftarrow\) Total Comparisons Made
    return \((\hat{b}, \hat{T})\)
```

 return \((\hat{b}, \hat{T})\)
    ```

\section*{The exploit algorithm}

\section*{Algorithm 2 Interleaved Filter (IF).}

1: Input: \(T, \mathcal{B}=\left\{b_{1}, \ldots, b_{K}\right\}\)
2: \(\delta \leftarrow 1 /\left(T K^{2}\right)\)
3: Choose \(\hat{b} \in \mathcal{B}\) randomly
\(W \leftarrow\left\{b_{1}, \ldots, b_{K}\right\} \backslash\{\hat{b}\}\)
\(\forall b \in W\), maintain estimate \(\hat{P}_{\hat{b}, b}\) of \(P(\hat{b}>b)\) according to (6)
6: \(\forall b \in W\), maintain \(1-\delta\) confidence interval \(\hat{C}_{\hat{b}, b}\) of \(\hat{P}_{\hat{b}, b}\) according to (7), (8)
while \(W \neq \emptyset\) do
for \(b \in W\) do
compare \(\hat{b}\) and \(b\)
update \(\hat{P}_{\hat{b}, b}, \hat{C}_{\hat{b}, b}\)
end for
while \(\exists b \in W\) s.t. \(\left(\hat{P}_{\hat{b}, b}>1 / 2 \wedge 1 / 2 \notin \hat{C}_{\hat{b}, b}\right)\) do
\(W \leftarrow W \backslash\{b\} \quad \| \hat{b}\) declared winner against \(b\)
end while
if \(\exists b^{\prime} \in W\) s.t. \(\left(\hat{P}_{\hat{b}, b^{\prime}}<1 / 2 \wedge 1 / 2 \notin \hat{C}_{\hat{b}, b^{\prime}}\right)\) then
while \(\exists b \in W\) s.t. \(\hat{P}_{\hat{b} . b}>1 / 2\) do
\(W \leftarrow W \backslash\{b\} \quad\) I/pruning
end while
\(\hat{b} \leftarrow b^{\prime}, W \leftarrow W \backslash\left\{b^{\prime}\right\} \quad / / b^{\prime}\) declared winner against \(\hat{b}\) (new round)
\(\forall b \in W\), reset \(\hat{P}_{\hat{b}, b}\) and \(\hat{C}_{\hat{b}, b}\)
end if
end while
\(\hat{T} \leftarrow\) Total Comparisons Made
24: return \((\hat{b}, \hat{T})\)
- \(\hat{P}_{i, j}=\frac{\# b_{i} \text { wins }}{\# \text { comparisons }}\).

The empirical estimate of \(\operatorname{Pr}\left[b_{i} \succ b_{j}\right]\) after \(t\) comparisons.
- Confidence interval:
\(\hat{C}_{i, j}:=\left(\hat{P}_{i, j}-c_{t}, \hat{P}_{i, j}+c_{t}\right)\),
where \(c_{t}=\sqrt{4 \log (1 / \delta) / t}\).

\section*{Contribution of this paper}

\section*{Theorem 1}

Running Algorithm 1 with \(\mathcal{B}=\left\{b_{1}, \ldots, b_{K}\right\}\), time horizon \(T(T \geq K)\), then IF incurs expected regret (weak \& strong) bounded by
\[
\mathbf{E}\left[R_{T}\right]=O\left(\mathbf{E}\left[R_{T}^{I F}\right]\right)=O\left(\frac{K}{\epsilon_{1,2}} \log T\right)
\]

\section*{Theorem 2}

For any fixed \(\epsilon>0\) and any algorithm \(\phi\) for the \(K\)-armed dueling bandit problem, there exists a problem instance such that
\[
R_{T}^{\phi}=\Omega\left(\frac{K}{\epsilon} \log T\right)
\]
where \(\epsilon=\min _{b \neq b^{*}} \operatorname{Pr}\left[b^{*} \succ b\right]\).

\section*{Crucial lemmas}

\section*{Lemma 1}

The probability that IF makes a mistake resulting in the elimination of the best bandit \(b_{1}\) is \(\leq 1 / T\).
- \(\mathbf{E}\left[R_{T}\right] \leq(1-1 / T) \mathbf{E}\left[R_{T}^{I F}\right]+(1 / T) \cdot O(T)=O\left(\mathbf{E}\left[R_{T}^{I F}\right]\right)\).
- \(R_{T}^{I F}\) : the regret incurred from IF.

\section*{Crucial lemmas (contd.)}

\section*{Lemma 2}

Assuming IF is mistake-free, then with high probability,
\[
R_{T}^{I F}=O\left(\frac{K \log K}{\epsilon_{1,2}} \log T\right)
\]
for both weak and strong regret.

\section*{Lemma 3}

Assuming IF is mistake-free, then
\[
\mathbf{E}\left[R_{T}^{\prime \mathbb{F}}\right]=O\left(\frac{K}{\epsilon_{1,2}} \log T\right)
\]
for both weak and strong regret.

\section*{Some more terminologies}
- IF makes a "mistake": it draws a false conclusion regarding a bandit pair.
- A "match": all the comparisons IF makes between two bandits.
- A "round": all the matches played by the incumbent bandit \(\hat{b}\).

\section*{The Main Analysis}

\section*{Justification of the confidence intervals}

\section*{Lemma 4}
- For \(\delta=1 /\left(T K^{2}\right)\), the number of comparisons in a match \(\mathrm{b} / \mathrm{w} b_{i}, b_{j}\) is
\[
O\left(\frac{1}{\epsilon_{i, j}^{2}} \log (T K)\right) .
\]
- \(\operatorname{Pr}[\) an inferior bandit is declaired the winner at some time \(t \leq T] \leq \delta\).
- IF makes a mistake at time \(t\)
- Note: \(\mathbf{E}\left[\hat{P}_{i}\right.\),
- \(\operatorname{Pr}\left[1 / 2+\epsilon_{i, j} \notin \hat{C}_{i, j}\right]=\operatorname{Pr}\left[\left|\hat{P}_{i, j}-E\left[\hat{P}_{i, j}\right]\right| \geq c_{t}\right] \leq 2 \cdot e^{-2 t \cdot c_{t}^{2}}=2 /\left(T^{8} K^{16}\right)\)


\section*{Justification of the confidence intervals}

\section*{Lemma 4}
- For \(\delta=1 /\left(T K^{2}\right)\), the number of comparisons in a match \(\mathrm{b} / \mathrm{w} b_{i}, b_{j}\) is
\[
O\left(\frac{1}{\epsilon_{i, j}^{2}} \log (T K)\right)
\]
- \(\operatorname{Pr}[\) an inferior bandit is declaired the winner at some time \(t \leq T] \leq \delta\).
- IF makes a mistake at time \(t \Rightarrow 1 / 2+\epsilon_{i, j} \notin \hat{C}_{i, j}\).
- Note: \(\mathbf{E}\left[\hat{P}_{i, j}\right]=1 / 2+\epsilon_{i, j}\).
- \(\operatorname{Pr}\left[1 / 2+\epsilon_{i, j} \notin \hat{C}_{i, j}\right]=\operatorname{Pr}\left[\left|\hat{P}_{i, j}-\mathbf{E}\left[\hat{P}_{i, j}\right]\right| \geq c_{t}\right] \leq 2 \cdot e^{-2 t \cdot c_{t}^{2}}=2 /\left(T^{8} K^{16}\right)\).
-
\[
\operatorname{Pr}\left[\bigcup_{t=1}^{T}\left\{1 / 2+\epsilon_{i, j} \notin \hat{C}_{i, j}\right\}\right] \leq \frac{2 T}{T^{8} K^{16}} \leq \frac{1}{T K^{2}}=\delta
\]

\section*{Proof of Lemma 4 (contd.)}
- By the stopping condition of IF, the match terminates at any time \(t\) if \(\hat{P}_{i, j}-c_{t}>1 / 2\).
- If \(n>t\), then \(\hat{P}_{i, j}-c_{t} \leq 1 / 2\).
- \(\operatorname{Pr}[n>t] \leq \operatorname{Pr}\left[\hat{P}_{i, j}-c_{t} \leq 1 / 2\right]=\operatorname{Pr}\left[\hat{P}_{i, j}-1 / 2-\epsilon_{i, j} \leq c_{t}-\epsilon_{i, j}\right]=\) \(\operatorname{Pr}\left[\mathbf{E}\left[\hat{P}_{i, j}\right]-\hat{P}_{i, j} \geq \epsilon_{i, j}-c_{t}\right]\).
- Set \(m \geq 8\) and \(t \geq\left\lceil 2 m \log \left(T K^{2}\right) / \epsilon_{i, J}^{2}\right\rceil\) (then \(\left.c_{t} \leq \epsilon_{i, j} / 2\right)\), we will have
\[
\operatorname{Pr}\left(n \geq \frac{m}{\epsilon_{i, j}^{2}} \log (T K)\right) \leq \frac{1}{(T K)^{m}}
\]

\section*{Regret per match}

\section*{Lemma 5}

Assume that \(b_{1}\) has not been removed and \(T \geq K\), then w.h.p. the accumulated weak/strong regret from any match is
\[
O\left(\frac{1}{\epsilon_{1,2}} \log T\right)
\]
- Suppose \(\hat{b}=b_{j}\) is playing a match against \(b_{i}\).
- By Lemma 4, any match played by \(b_{j}\) contains at most
\[
O\left(\frac{1}{\epsilon_{1, j}^{2}} \log (T K)\right)=O\left(\frac{1}{\epsilon_{1,2}^{2}} \log (T K)\right) \text { comparisons. }
\]
- Note: All matches within a round are played simultaneously.

\section*{Proof of Lemma 5 (contd.)}
- The accumulated weak regret is bounded by
\[
\begin{aligned}
\epsilon_{1, j} \cdot O\left(\frac{1}{\epsilon_{1, j}^{2}} \log (T K)\right) & =O\left(\frac{1}{\epsilon_{1, j}} \log (T K)\right) \\
& =O\left(\frac{1}{\epsilon_{1,2}} \log (T)\right) .
\end{aligned}
\]

\section*{Mistake bound}
- IF eliminates the best bandit \(b_{1}\) if
- an inferior bandit defeats \(b_{1}\), or
- \(b_{1}\) is removed during the pruning step (lines 16-18).
- Consider the second case.

\section*{Lemma 6}

For all triples of bandits \(b, b^{\prime}, \hat{b}\) such that \(b \succ b^{\prime}\), the probability that IF eliminates \(b\) in a pruning step, where
- \(b^{\prime}\) wins a match against \(\hat{b}\) while
- \(b\) is empirically inferior to \(\hat{b}\), is \(\leq \delta\).

\section*{Proof of Lemma 6}
- \(X_{1}, X_{2}, \ldots\) : an infinite sequence of i.i.d. Bernoulli random variables with \(\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[\hat{b} \succ b^{\prime}\right]\).
- \(Y_{1}, Y_{2}, \ldots\) : an infinite sequence of i.i.d. Bernoulli random variables with \(\mathbf{E}\left[Y_{i}\right]=\operatorname{Pr}[\hat{b} \succ b]\).
- \(X_{i}\) (resp. \(Y_{i}\) ) represents the outcome of the \(i\) th comparison \(\mathrm{b} / \mathrm{w} \hat{b}\) \& \(b^{\prime}\) (resp. \(\hat{b} \& b\) ).
- If \(b\) is eliminated in a pruning step at the end of a match consisting of \(n\) comparisons \(\mathrm{b} / \mathrm{w} b^{\prime}\) and \(\hat{b}\), then
\[
\begin{gathered}
X_{1}+\ldots+X_{n}<n / 2-\sqrt{4 n \log (1 / \delta)} \\
Y_{1}+\ldots+Y_{n}>n / 2
\end{gathered}
\]

\section*{Proof of Lemma 6 (contd.)}
- Define \(Z_{i}=Y_{i}-X_{i}\), we have
\[
Z_{1}+\ldots+Z_{n}>\sqrt{4 n \log (1 / \delta)}
\]
- \(\left(Z_{i}\right)_{i=1}^{\infty}\) are i.i.d., and \(\left|Z_{i}\right| \leq 1, \forall i\).
\(\star \mathbf{E}\left[Z_{i}\right]=\operatorname{Pr}[\hat{b} \succ b]-\operatorname{Pr}\left[\hat{b} \succ b^{\prime}\right] \leq 0\).
- Taking Hoeffding's inequality \& union bound...

\section*{Proof of Lemma 1}

\section*{Lemma 1}

The probability that IF makes a mistake resulting in the elimination of the best bandit \(b_{1}\) is \(\leq 1 / T\).
- For every \(i\), the probability that \(b_{1}\) is eliminated in a match against \(b_{i}\) is \(\leq \delta\) (Lemma 4).
- For all \(i, j\), the probability that \(b_{1}\) is eliminated in a pruning step resulting from a match where \(b_{i}\) defeats \(b_{j}\) is \(\leq \delta\) (Lemma 6).
\(\star\) The probability that IF makes a mistake resulting in eliminating \(b_{1}\) is
\[
\leq \delta(K-1)+\delta(K-1)^{2}<\delta K^{2}=1 / T
\]

\section*{The regret upper bound}

\section*{Lemma 2}

Assuming IF is mistake-free, then with high probability,
\[
R_{T}^{\mathbb{F}}=O\left(\frac{K \log K}{\epsilon_{1,2}} \log T\right)
\]
for both weak and strong regret.
- We wish to prove that the number of candidate bandits (i.e., \# rounds) is \(O(\log K)\) w.h.p.
- Model the sequence of candidate bandits as a random walk.

\section*{Random walk model}

- \(p_{i}\) : the prob. \(b_{i}\) will be the incumbent in the following round.
- \(p_{j-1} \leq \ldots \leq p_{1}(\because\) strong stochastic transitivity \()\).
- The "worst case": \(p_{j-1}=\ldots=p_{1}=1 /(j-1)\) (assuming no mistakes are made).

つ Q

\section*{Random Walk Model (contd.)}

\section*{Random Walk Model}

Define a random walk graph with \(K\) nodes labeled \(b_{1}, \ldots, b_{K}\). Each node \(b_{j}(j>1)\) transitions to \(b_{i}\) for \(j>i \geq 1\) with prob. \(1 /(j-1)\) (uniform). The final node \(b_{1}\) is an absorbing node.

\section*{Proposition 1}

If \(S\) and \(\tilde{S}\) are random variables corresponding to the number of rounds in IF and the Random Walk Model, resp., then
\[
\forall x: \operatorname{Pr}[S \geq x] \leq \operatorname{Pr}[\tilde{S} \geq x]
\]

\section*{Analysis of the Random Walk Model}

\section*{Lemma 7}

Let \(X_{i}(1 \leq i \leq K)\) be an indicator random variable corresponding to whether a random walk starting at \(b_{K}\) visits \(b_{i}\) in the Random Walk Model. Then
\[
\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{i}
\]
and for all \(W \subseteq\left\{X_{1}, \ldots, X_{K-1}\right\}\),
\[
\operatorname{Pr}\left[\wedge_{i \in W} X_{i}\right]=\prod_{X_{i} \in W} \operatorname{Pr}\left[X_{i}\right]
\]
- We can express the number of steps taken by a random walk from \(b_{K}\) to \(b_{1}\) as \(S_{k}=1+\sum_{i=1}^{K-1} X_{i}\). Then,
\[
\mathrm{E}\left[S_{k}\right]=1+\sum_{i=1}^{K-1} \mathrm{E}\left[X_{i}\right]=1+H_{K-1} \approx \log K
\]

\section*{Analysis of the Random Walk Model (contd.)}

\section*{Lemma 8}

Assuming IF is mistake-free, then it runs for \(O(\log K)\) rounds w.h.p..

\section*{Corollary 1}

Assuming IF is mistake-free, then it plays \(O(K \log K)\) matches w.h.p.
- \(O\left(\log T / \epsilon_{1,2}\right)\) accumulated regret per match (Lemma 5\()\).
\(\triangleright\) Lemma 2 (i.e., \(\left.R_{T}^{I F}=O\left((K \log K) \log T / \epsilon_{1,2}\right)\right)\) follows.

\section*{Expected Regret Upper Bound}

\section*{Expected regret upper bound}

\section*{Lemma 9}

Assuming IF is mistake-free, then it plays \(O(K)\) matches in expectation.
- \(B_{j}\) : \# matches played by \(b_{j}\) when it is NOT the incumbent.
- \(B_{j}=I N F_{j}+S U P_{j}\), where
- \(I N F_{j}: \#\) matches played by \(b_{j}\) against \(b_{i}\) for \(i>j\).
- \(S U P_{j}\) : \# matches played by \(b_{j}\) against \(b_{i}\) for \(i<j\).
- Then \(\sum_{j=1}^{K} \mathbf{E}\left[B_{j}\right]=\sum_{j=1}^{K}\left(\mathbf{E}\left[I N F_{j}\right]+\mathbf{E}\left[S U P_{j}\right]\right)\).


\section*{Proof of Lemma 9 (contd.)}

- \(\mathrm{E}\left[I N F_{j}\right] \leq 1+\sum_{i=j+1}^{K-1} \frac{1}{i}=1+H_{K-1}-H_{i}\).

\section*{Proof of Lemma 9 (contd.)}

- Assume that \(b_{j}\) does NOT lose a match (not to be eliminated) to any superior incumbent \(b_{i}\) before \(b_{i}\) is defeated unless \(b_{i}=b_{1}\).
- \(\mathcal{E}_{j, t}: b_{j}\) is pruned after the \(t\)-th round where the incumbent bandit is superior to \(b_{j}\), conditioned on NOT being pruned in the first \(t-1\) such rounds.
- \(G_{j, t}\) : \# matches beyond the first \(t-1\) played by \(b_{j}\) against a superior incumbent, conditioned on playing \(\geq t-1\) such matches.
- \(\mathbf{E}\left[G_{j, t}\right]=1+\operatorname{Pr}\left[\mathcal{E}_{j, t}^{c}\right] \cdot \mathbf{E}\left[G_{j, t+1}\right]\).
\(\star \mathbf{E}\left[S U P_{j}\right] \leq \mathbf{E}\left[G_{j, 1}\right]=1+\operatorname{Pr}\left[\mathcal{E}_{j, 1}^{\mathcal{c}}\right] \cdot \mathbf{E}\left[G_{j, 2}\right] \leq 1+1 / 2+1 / 4+\ldots=2\). \(\left(\because \operatorname{Pr}\left[\mathcal{E}_{j, t}\right] \leq 1 / 2, \forall j \neq 1, t\right)\)

\section*{Proof of Lemma 9 (contd.)}
- Thus,
\[
\begin{aligned}
\sum_{j=1}^{K}\left(\mathbf{E}\left[I N F_{j}\right]+\mathbf{E}\left[S U P_{j}\right]\right) & \leq \sum_{j=1}^{K}\left(1+H_{K-1}-H_{j}\right)+2 K \\
& =\sum_{j=1}^{K}\left(1+\sum_{i=j+1}^{K-1} \frac{1}{i}\right)+2 K \\
& =\sum_{j=1}^{K}(j-1) \frac{1}{j}+3 K \\
& =O(K)
\end{aligned}
\]

\section*{The Lower Bound}

\section*{The lower bound}

\section*{Theorem 2}

For any fixed \(\epsilon>0\) and any algorithm \(\phi\) for the \(K\)-armed dueling bandit problem, there exists a problem instance such that
\[
R_{T}^{\phi}=\Omega\left(\frac{K}{\epsilon} \log T\right),
\]
where \(\epsilon=\min _{b \neq b^{*}} \operatorname{Pr}\left[b^{*} \succ b\right]\).

\section*{Construction of the problem instances}

\section*{A family of \(K\) problem instances}
- In instance \(j\), let \(b_{j}\) be the best bandit, order the remaining ones by their indices.
- In instance \(j\), we have \(b_{j} \succ b_{k}\) for all \(k \neq j\) and we have \(b_{i} \succ b_{k}\) whenever \(i<k\).
- \(\operatorname{Pr}\left[b_{i} \succ b_{k}\right]:=1 / 2+\epsilon\) whenever \(b_{i} \succ b_{k}\).
- \(q_{j}\) : the distribution on \(T\)-step histories induced by \(\phi\) under instance \(j\).
- \(n_{j, T}\) : \# comparisons involving \(b_{j}\) scheduled by \(\phi\) up to time \(T\).

\section*{Proving the lower bound}

\section*{Lemma 10}

Let \(\phi\) be an algorithm for the \(K\)-armed dueling bandits problem, such that \(R_{T}^{\phi}=o\left(T^{a}\right)\) for all \(a>0\). Then for all \(j\),
\[
\mathbf{E}_{q_{1}}\left[n_{j, T}\right]=\Omega\left(\frac{\log T}{\epsilon^{2}}\right)
\]
- If \(R_{T}^{\phi} \neq o\left(T^{a}\right)\), then Theorem 2 holds trivially.
- On instance \(j, \phi\) incurs regret \(\geq \epsilon\) every time when it plays a match involving \(b_{j} \neq b_{1}\).
\[
R_{T}^{\phi} \geq \sum_{j \neq 1} \epsilon \cdot \mathbf{E}_{q_{1}}\left[n_{j, T}\right]=\Omega\left(\frac{K}{\epsilon} \log T\right)
\]

\section*{Proof of Lemma 10}
- \(\mathcal{E}_{j}:\) the event that \(n_{j, T}<\log (T) / \epsilon^{2}\).
- \(J:=\left\{j \mid q_{1}\left(\mathcal{E}_{j}\right)<1 / 3\right\}\).
- For each \(j \in J\) :
\[
\mathbf{E}_{q_{1}}\left[n_{j, T}\right] \geq q_{1}\left(\mathcal{E}_{j}^{c}\right)\left(\log (T) / \epsilon^{2}\right)=\Omega\left(\frac{\log (T)}{\epsilon^{2}}\right)
\]
- Hence, it remains to show that \(\mathbf{E}_{q_{1}}\left[n_{j, T}\right]=\Omega\left(\log (T) / \epsilon^{2}\right)\) for each

\section*{Proof of Lemma 10}
- \(\mathcal{E}_{j}\) : the event that \(n_{j, T}<\log (T) / \epsilon^{2}\).
- \(J:=\left\{j \mid q_{1}\left(\mathcal{E}_{j}\right)<1 / 3\right\}\).
- For each \(j \in J\) :
\[
\mathbf{E}_{q_{1}}\left[n_{j, T}\right] \geq q_{1}\left(\mathcal{E}_{j}^{c}\right)\left(\log (T) / \epsilon^{2}\right)=\Omega\left(\frac{\log (T)}{\epsilon^{2}}\right)
\]
- Hence, it remains to show that \(\mathbf{E}_{q_{1}}\left[n_{j, T}\right]=\Omega\left(\log (T) / \epsilon^{2}\right)\) for each \(j \notin J\).

\section*{Proof of Lemma 10 (contd.)}
- \(\mathbf{E}_{q_{j}}\left[T-n_{j, T}\right]=o\left(\left(T^{a}\right) / \epsilon\right)\).
- Regret \(\epsilon\) is incurred for every comparison not involving \(b_{j}\).
- By Markov's inequality,
\[
q_{j}\left(\mathcal{E}_{j}\right)=q_{j}\left(\left\{T-n_{j, T}>T-\log (T) / \epsilon^{2}\right\}\right) \leq \frac{\mathbf{E}_{q_{j}}\left[T-n_{j, T}\right]}{T-\log (T) / \epsilon^{2}}=o\left(T^{a-1}\right)
\]
- Choose a sufficiently large \(T\) so that \(q_{j}\left(\mathcal{E}_{j}\right)<1 / 3\) for each \(j\).

\section*{Karp \& Kleinberg @SODA 2007}

For any event \(\mathcal{E}\) and distributions \(p, q\) with \(p(\mathcal{E}) \geq 1 / 3\) and \(q(\mathcal{E})<1 / 3\),
\[
K L(p \| q) \geq \frac{1}{3} \ln \left(\frac{1}{3 q(\mathcal{E})}-\frac{1}{e}\right) .
\]

\section*{Proof of Lemma 10 (contd.)}

\section*{Karp \& Kleinberg @SODA 2007}

For any event \(\mathcal{E}\) and distributions \(p, q\) with \(p(\mathcal{E}) \geq 1 / 3\) and \(q(\mathcal{E})<1 / 3\),
\[
K L(p \| q) \geq \frac{1}{3} \ln \left(\frac{1}{3 q(\mathcal{E})}-\frac{1}{e}\right) .
\]
- We have
\[
K L\left(q_{1} \| q_{j}\right) \geq \frac{1}{3} \ln \left(\frac{1}{o\left(T^{a-1}\right)}\right)-\frac{1}{e}=\Omega(\log T)
\]

\section*{Proof of Lemma 10 (contd.)}
- On the other hand, by the chain rule for KL-divergence,
\[
K L\left(q_{1} \| q_{j}\right) \leq \mathbf{E}_{q_{1}}\left[n_{j, T}\right] \cdot K L(1 / 2+\epsilon \| 1 / 2-\epsilon) \leq 16 \epsilon^{2} \cdot \mathbf{E}_{q_{1}}\left[n_{j, T}\right]
\]
- If a comparison does not involve \(b_{j}\), then the distribution on the comparison outcome will be the same under \(q_{1}\) and \(q_{j}\).
- \(K L(1 / 2+\epsilon \| 1 / 2-\epsilon)\) : the KL-divergence \(\mathrm{b} / \mathrm{w}\) two Bernoulli distributions \(\operatorname{Ber}(1 / 2+\epsilon), \operatorname{Ber}(1 / 2-\epsilon)\).

\section*{KL-divergence}

For two probability mass functions \(p\left(x_{1}, \ldots, x_{r}\right)\) and \(q\left(x_{1}, \ldots, x_{r}\right)\),
\[
K L\left(p\left(x_{1}, \ldots, x_{r} \| q\left(x_{1}, \ldots, x_{r}\right)\right)=\sum_{x_{1}} \ldots \sum_{x_{r}} p\left(x_{1}, \ldots, x_{r}\right) \log \frac{p\left(x_{1}, \ldots, x_{r}\right)}{q\left(x_{1}, \ldots, x_{r}\right)}\right.
\]
- Hence, \(\mathbf{E}_{q_{1}}\left[n_{j, T}\right]=\Omega\left(\log (T) / \epsilon^{2}\right)\) for \(j \notin J\).

(20mbsmem
の Q```

