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Dueling Bandits
The dueling bandits problem

Motivations

@ The conventional bandit problem :

@ Choose, in each of T iterations, one of the K possible
bandits/arms/strategies B = {b1,..., bk }.

@ Receive the payoff in [0,1] (initially unkown) in each iteration.
o Goal: Maximize the total payoff.
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Dueling Bandits
The dueling bandits problem

Motivations

@ The conventional bandit problem :

@ Choose, in each of T iterations, one of the K possible
bandits/arms/strategies B = {b1,..., bk }.

@ Receive the payoff in [0,1] (initially unkown) in each iteration.
o Goal: Maximize the total payoff.

@ It's difficult to elicit absolute-scale payoffs in some applications.
@ One can only rely on relative judgment of payoff.

@ Given a collection of K bandits, we wish to find a sequence of noisy
comparisons that has low regret.
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Dueling Bandits
The dueling bandits problem

Noisy comparisons

@ Pr[b > b'] :=¢€(b,b') +1/2.
e €(b,b') € (—1/2,1/2): a measure distinguishing b and b'.
@ e(b,b') = —¢(b', b)
9 €= G(b,', bj).
@ b= b =¢€(b,b)>0.

* The noisy comparisons are independent and Pr[b = b'] is stationary
over time.
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Dueling Bandits
The dueling bandits problem

Regrets

° (bgt), bgt)): the bandits chosen at iteration t.
@ b*: the overall best bandit.

@ T be time horizon.

@ The strong regret ;
Ry = Z max{e(b", bgt)), e(b”, bgt))}.
t=1

@ The weak regret .

Rr =" min{e(b*, b{), e(b*, b))}

t=1

@
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Dueling Bandits
The dueling bandits problem

Modeling assumptions

Strong stochastic transitivity
For bandits b; > bj > by,

€i k > max{e,-d-,ej,k}.

Strong triangular inequality
For bandits b; - bj >~ by,

€k S €ij+ €k
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The algorithm

The Algorithm
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Dueling Bandits
The algorithm

Explore then exploit

Algorithm 1 Explore then exploit

Input T, B={b1,...,bk}, EXPLORE
2 (b T) <—EXPLORE(T B)
3: fort=T+ 1,...,T do
4:  compare b and b
5: end for

Algorithm 2 Interleaved Filter (IF).

1: Input: T, B={by,...,bk}

21:

22:
23:
24:

18— 1/(TK?)

Choose b € B randomly
W by, bi)\ B} )
Vb € W, maintain estimate Py of P(b > b) according to (6)

Vb € W, maintain 1 —§ confidence interval f“ of IA’“ according to (7), (8)

: while W # ¢ do

for be W do
compare b and b
update f’”, ¢
end for
while 3b e W st. (P, >1/271/2¢C; ;) do
W < W\ {b} //B declared winner against b
end while
if 3 e W st (P, <1/2A1/2¢C;,,) then
while 3b e W s.t. P >1/2 do
W <« W\ (b} //pnmmg
end while
beb, W< wh {b'} |/b’" declared winner against b (new round)
Vb e W, reset P 5.5 and Cbb
end if

end while
T« Total Comparlsons Made v

return (b T)

b.b
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Dueling Bandits
The algorithm

The exploit algorithm

Algorithm 2 Interleaved Filter (IF).

1: Input: T, B={by,..., bk}

2: 8 < 1/(TK?)

3: Choose b € B randomly Py Is . _ _ #bjwins

4: W <« {by,...,bg}\ {b} . A '] ™ 4 comparisons

5: Vb e W, maintain estimate P; , of P(b > b) according to (6) The empirical estimate of

6: ¥b € W, maintain 1 —§ confidence interval éB.b of i)&b according to (7), (8) Pr[b- . b'] after t comparisons
7: while W # ¢ do ! J )
8 for be W do

S compareband b @ Confidence interval:

10: update Pt}.b' C[;_b

11:  end for A A A

12:  while 3beW st (P;, >1/2A1/2¢C;,) do Cij = (Pij—ct, Pij+ct),

13: W <« W\ {b} //B declared winner against b where Ct = 4/ 4 Iog(l/d)/t.

14:  end while R R
150 if 3’ e W st (Py,, <1/271/2¢C; ) then

16: while 3be W st. Py >1/2 do

17: W < W\ {b} [[pruning

18: end while

19: b<b, W< W\{b} /b declared winner against b (new round)
20: Vb € W, reset 13“ and vab

21:  end if

22: gnd while
23: T « Total hComparisons Made
24: return (b, T)
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Dueling Bandits
The algorithm

Contribution of this paper

Running Algorithm 1 with B = {b,..., bk}, time horizon T (T > K), then IF
incurs expected regret (weak & strong) bounded by

E[Rr] = O(E[R¥]) =0 (ei log T) :

fay
N
N,

Theorem 2

For any fixed € > 0 and any algorithm ¢ for the K-armed dueling bandit problem,
there exists a problem instance such that

K
Ri:Q(—logT>,
€

where € = minpp- Pr[b* > b].

N
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Dueling Bandits
The algorithm

Crucial lemmas

The probability that IF makes a mistake resulting in the elimination of the best
bandit by is < 1/T.

o E[Rr] < (1-1/TE[RT]+(1/T)  O(T) = O(E[RT]).

o RY: the regret incurred from IF.
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Dueling Bandits

The algorithm

Crucial lemmas (contd.)

Assuming IF is mistake-free, then with high probability,
Klog K
Rf=0 <i log T)
€1,2

for both weak and strong regret.

N,

Lemma 3

Assuming IF is mistake-free, then

E[Rf]=0 <£ log T)
€1,2

)

for both weak and strong regret.
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Dueling Bandits
The algorithm

Some more terminologies

@ IF makes a "mistake”: it draws a false conclusion regarding a bandit
pair.

@ A “match”: all the comparisons IF makes between two bandits.

@ A “round”: all the matches played by the incumbent bandit b.
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The Main Analysis

Joseph C.-C. Lin (Academia Sinica, TW) i i 22 July 2016 15 / 42



Dueling Bandits
The main analysis
Justification of the confidence intervals

Justification of the confidence intervals

@ For § = 1/(TK?), the number of comparisons in a match b/w b;, b; is

o) (e% Iog(TK)) .

@ Pr[an inferior bandit is declaired the winner at some time t < T] < 4.
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Dueling Bandits
The main analysis
Justification of the confidence intervals

Justification of the confidence intervals

@ For § = 1/(TK?), the number of comparisons in a match b/w b;, b; is

0] (e% Iog(TK)) .

Pr[an inferior bandit is declaired the winner at some time t < T] < .

()

IF makes a mistake at time t = 1/2+¢,; ¢ G ).
Note: E[:‘s;,j] = 1/2 =+ €ij.

®

Pr[1/2 + € ¢ CA',',J'] = PI’[“’:\’,‘J‘ — E[/S,',j]l > Ct] <2- eiZt'C‘2 = 2/(T8K16).

(]

-
Pr |:U{1/2+€i,j ¢ Ci,j}] = T8K16 = TK2 ~ >

t=1
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Dueling Bandits
The main analysis
Justification of the confidence intervals

Proof of Lemma 4 (contd.)

@ By the stopping condition of IF, the match terminates at any time t
if P,'J-Ct > 1/2.
@ If n>t, then Ia,'J —c < 1/2
o Pr[n> t] §Pr[lf’,-,j—ctg1/2]:Pr[lf’;J—1/2—e;JSct—e,-,j]:
PF[E[P,'J] — P,"j > €ij— Ct].

@ Set m>8and t > [2mlog(TK?)/€2 ] (then c; < ¢;;/2), we will

have
m 1
P > —log(TK) | < .
' (”— 2 og( )> = (TK)m

Joseph C.-C. Lin (Academia Sinica, TW) Dueling Bandits 22 July 2016 17 / 42



Dueling Bandits
The main analysis

Regret per match

Regret per match

Assume that b; has not been removed and T > K, then w.h.p. the accumulated
weak /strong regret from any match is

0] (L log T) .
€1,2

@ Suppose b= b; is playing a match against b;.

@ By Lemma 4, any match played by b; contains at most

) (21 log( TK)) =0 (; log( TK)) comparisons.

1) €1,2

@ Note: All matches within a round are played simultaneously.
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Dueling Bandits
The main analysis
Regret per match

Proof of Lemma 5 (contd.)

@ The accumulated weak regret is bounded by

erj- O (% Iog(TK)> = 0 <i Iog(TK))

1) €1,

~ 0 (i log( T)) .

)
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Dueling Bandits
The main analysis
Mistake bound

Mistake bound

@ |IF eliminates the best bandit by if

@ an inferior bandit defeats by, or
@ by is removed during the pruning step (lines 16-18).

@ Consider the second case.

For all triples of bandits b, b, b such that b = b/, the probability that IF
eliminates b in a pruning step, where

o b wins a match against b while
@ b is empirically inferior to b,
is < 4.
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Dueling Bandits
The main analysis
Mistake bound

Proof of Lemma 6

@ Xi,Xo,...: an infinite sequence of i.i.d. Bernoulli random variables
with E[X;] = Pr[b = b'].

@ Y1, Yo, ... : an infinite sequence of i.i.d. Bernoulli random variables
with E[Y;] = Pr[b > b].
@ X; (resp. Y;) represents the outcome of the ith comparison b/w b& v
(resp. b & b).

o If b is eliminated in a pruning step at the end of a match consisting of
n comparisons b/w b’ and b, then

X1+...+ X, <n/2—+/4nlog(1/6),

Y1+...+Yn>n/2.
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Dueling Bandits
The main analysis
Mistake bound

Proof of Lemma 6 (contd.)

@ Define Z; = Y; — X;, we have
Zi+ ...+ Z, > +/4nlog(1/0).
o (Z)x, areiid., and |Z] <1, Vi.
* E[Z] = Pr[b > b] — Pr[b = ] <0.

@ Taking Hoeffding's inequality & union bound...
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Dueling Bandits
The main analysis
Mistake bound

Proof of Lemma 1

The probability that IF makes a mistake resulting in the elimination of the best
bandit by is < 1/T.

@ For every i, the probability that by is eliminated in a match against b;
is <6 (Lemma 4).

@ For all i,j, the probability that by is eliminated in a pruning step
resulting from a match where b; defeats b; is < § (Lemma 6).

* The probability that IF makes a mistake resulting in eliminating by is
<OK-1)+6(K—-122<dK2=1/T.
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Dueling Bandits

The main analysis
Exploration bound w.h.p.

The regret upper bound

Assuming IF is mistake-free, then with high probability,

RIF = 0 (KlOgKlog T)

€1,2

for both weak and strong regret.

@ We wish to prove that the number of candidate bandits (i.e., #
rounds) is O(log K') w.h.p.

@ Model the sequence of candidate bandits as a random walk.
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Dueling Bandits
The main analysis
Exploration bound w.h.p.

Random walk model

“@OOOOOG®
“OHOOEO@O®®
HOOOOOO®
U HOOOOOOO

@ p;: the prob. b; will be the incumbent in the following round.
@ pj_1 <...< pp (. strong stochastic transitivity).
@ The "worst case”: pj_1 =...=p1 = 1/(j — 1) (assuming no
mistakes are made).
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Dueling Bandits
The main analysis

Exploration bound w.h.p.

Random Walk Model (contd.)

Random Walk Model

Define a random walk graph with K nodes labeled by, ..., bkx. Each node
bj (j > 1) transitions to b; for j > i > 1 with prob. 1/(j — 1) (uniform).
The final node b; is an absorbing node.

Proposition 1

If S and S are random variables corresponding to the number of rounds in
IF and the Random Walk Model, resp., then

Vx: Pr[S > x] < Pr[S > x].
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Dueling Bandits

The main analysis
Exploration bound w.h.p.

Analysis of the Random Walk Model

Let X; (1 <7< K) be an indicator random variable corresponding to whether a
random walk starting at bk visits b; in the Random Walk Model. Then

1
PI’[X,' = 1] = 7,

and for all W C {Xq,..., Xk_1},

PriniewXi] = ] PrlXil.
XieWw

@ We can express the number of steps taken by a random walk from bk to by
as S =1+ 31" X;. Then,
K—1
E[S] =1+ ) E[X] =1+ Hx_1~logK.

i=1

Joseph C.-C. Lin (Academia Sinica, TW) Dueling Bandits 22 July 2016 27 / 42



Dueling Bandits
The main analysis

Exploration bound w.h.p.

Analysis of the Random Walk Model (contd.)

Lemma 8

Assuming IF is mistake-free, then it runs for O(log K') rounds w.h.p..

Assuming IF is mistake-free, then it plays O(K log K) matches w.h.p. \

@ O(log T /e12) accumulated regret per match (Lemma 5).

> Lemma 2 (i.e., R = O((Klog K) log T /e1,2)) follows.
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The main analysis

Expected regret upper bound

Expected Regret Upper Bound
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Dueling Bandits

The main analysis
Expected regret upper bound

Expected regret upper bound

Assuming IF is mistake-free, then it plays O(K) matches in expectation. I

@ Bj: # matches played by b; when it is NOT the incumbent.
@ B; = INF; + SUP;, where

o INFj: # matches played by b; against b; for i > j.

@ SUP;: # matches played by b; against b; for i < j.

o Then f E[B)] = f}(E[/NFj] + E[SUP))).
j=1 j=1
00000000
H_/ H_/
SUP; INF;
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Dueling Bandits
The main analysis
Expected regret upper bound

Proof of Lemma 9 (contd.)

00000002
H—/ H—/

SUP, INF;

K-1
o E[INF] <1+ 3> =1+ Hk_1-H.
i=j+1
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Dueling Bandits
The main analysis
Expected regret upper bound

Proof of Lemma 9 (contd.)

00000000
H—/ H—/

SUP; INF,

@ Assume that b; does NOT lose a match (not to be eliminated) to any
superior incumbent b; before b; is defeated unless b; = b;.

@ & ;1 bjis pruned after the t-th round where the incumbent bandit is superior
to bj, conditioned on NOT being pruned in the first t — 1 such rounds.

@ Gj;: # matches beyond the first t — 1 played by b; against a superior
incumbent, conditioned on playing > t — 1 such matches.

o E[q,t] =1+ Pr[gﬁt] . E[Q,t+1]'

« E[SUP] <E[G1] = 1+ Prl€f)] - E[Go] S 1+1/241/4+... =2,
(o Prl&.] < 1/2, V) # 1, 1)
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Dueling Bandits

The main analysis
Expected regret upper bound

Proof of Lemma 9 (contd.)

@ Thus,
K K
(E[INFj] + E[SUP}]) < > (14 Hx_1— H;)+2K
Jj=1 j=1
K K-1 1
= Z 1+ Z HRES
j=1 i=j+1
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The Lower Bound
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Dueling Bandits
The lower bound

The lower bound

For any fixed € > 0 and any algorithm ¢ for the K-armed dueling bandit
problem, there exists a problem instance such that

R?zQ(EIogT),
€

where € = minpp- Pr[b* > b].
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Dueling Bandits

The lower bound

Construction of the problem instances

A family of K problem instances

@ In instance j, let b; be the best bandit, order the remaining ones by
their indices.
@ In instance j, we have b; > by for all k # j and we have b; >~ by
whenever | < k.

@ Pr[b; > bk] :=1/2 + € whenever b; >~ by.

@ qj: the distribution on T-step histories induced by ¢ under instance ;.

v

@ n; 1: # comparisons involving b; scheduled by ¢ up to time T.
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Dueling Bandits
The lower bound

Proving the lower bound

Let ¢ be an algorithm for the K-armed dueling bandits problem, such that
R? = o(T?) for all a > 0. Then for all j,

log T
E%[”J',T] =Q ( €2 ) :

o If R? # o(T?), then Theorem 2 holds trivially.

@ On instance j, ¢ incurs regret > € every time when it plays a match
involving b; # by.

K
Ry > e Eqlnr]=Q <€ log T> :
J#1
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Dueling Bandits
The lower bound

Proof of Lemma 10

o &;: the event that n; 7 < log(T)/€2.

o Ji={j | a(&) < 1/3}.
@ For each j € J:

EdmﬂZm@ﬂwdﬂk5=Q(
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Dueling Bandits
The lower bound

Proof of Lemma 10

o &;: the event that n; 7 < log(T)/€2.

o Ji={j | a(&) < 1/3}.
@ For each j € J:

€2

Eq [nj,7] > q1(E7)(log(T)/€%) = Q (IOg(T)) .

@ Hence, it remains to show that Eg,[n; 7] = Q(log(T)/€?) for each
jéd
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Dueling Bandits
The lower bound

Proof of Lemma 10 (contd.)

® Eg[T —njr]=0o((T%)/e).
@ Regret € is incurred for every comparison not involving b;.

@ By Markov's inequality,

qu[T — nj’T] _

(&) = ({T = nj7 > T —log(T)/e’}) < T ol = o(T*1).

@ Choose a sufficiently large T so that q;(&;) < 1/3 for each j.

Karp & Kleinberg @SODA 2007

For any event £ and distributions p, g with p(£) > 1/3 and q(&) < 1/3,

1 1 1
KL(pllq) = 3 In <W - g) .
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Dueling Bandits
The lower bound

Proof of Lemma 10 (contd.)

Karp & Kleinberg @SODA 2007
For any event £ and distributions p, g with p(£) > 1/3 and q(€) < 1/3,

@ We have ) ) 1
V> Iin(—— ) -1 = 7).
Kialla) > 30 (Smsy ) — 3 = 208 T)
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Dueling Bandits
The lower bound

Proof of Lemma 10 (contd.)

@ On the other hand, by the chain rule for KL-divergence,
KL(q1|lg)) < Equ[m;,7] - KL(1/2 + €]|1/2 — €) < 16€” - Eq, [ 7).

@ If a comparison does not involve bj, then the distribution on the comparison
outcome will be the same under g1 and g;.

9 KL(1/2+ ¢€||1/2 — €): the KL-divergence b/w two Bernoulli distributions
Ber(1/2 + €), Ber(1/2 — ¢).

KL-divergence

For two probability mass functions p(xi,...,x-) and g(x1,...,x:),

XLy ooy Xr
KL(p(x1, ..., x||lg(xt, ..., %)) = Z...Zp(xl,...,xr)logu.
X1 Xr

@ Hence, Eq [n,7] = Q(log(T)/e?) for j ¢ J.
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