Computing Equilibria in Anonymous Games

Constantinos Daskalakis and Christos Papadimitriou

FOCS 2007.

Speaker: Joseph Chuang-Chieh Lin

Institute of Information Science Academia Sinica Taiwan

6 January 2017

References

- Constantinos Daskalakis and Christos Papadimitriou: "Computing Equilibria in Anonymous Games." *FOCS* 2007.
- Constantinos Daskalakis and Christos Papadimitriou: "Discretized Multinomial Distributions and Nash Equilibria in Anonymous Games." FOCS 2008.
- * Yu Cheng, Ilias Diakonikolas, Alistair Stewart: "Playing Anonymous Games using Simple Strategies." *SODA 2017.*

Outline

2 The Two-strategy Case

Joseph C.-C. Lin (Academia Sinica, TW) Approx. NE 2-strategy anonymous games

Approx. NE 2-strategy anonymous games Introduction

Authors

"Will you come to FOCS? This decision depends on many factors, but one of them is HOW MANY other theoreticians will come."

PTAS for two-strategy anonymous games

The main idea:

- Round the mixed strategies of the players to some nearby multiple of ϵ .
- Each such quantized mixed strategy can be considered as a pure strategy.
- Exhaustively search for the solution (polynomial time in *n*).
- * The only problem: Why should the expected utilities before and after the quantization be close?

Rough idea of the key probabilistic lemma

- Players strategies: *n* Bernoulli random variables.
 - with probabilities p_1, p_2, \ldots, p_n).
- There exists a way to round the probabilities to multiples of 1/z, for any z, so that:
 - the distribution of the sum of these *n* random variables is affected only by an additive $O(1/\sqrt{z})$ in total variational (TV) distance.
 - Such a TV distance is independent of *n*.
- $\triangleright O(n^{1/\epsilon^2})$ PTAS to find an $O(1/\sqrt{z})$ -NE for a two-strategy anonymous game.

The total variation distance (recall)

The total variation distance

 $\mathbb{P},\mathbb{Q}:$ two distributions supported by a finite set $\mathcal{A}.$

$$||\mathbb{P} - \mathbb{Q}|| \triangleq ||\mathbb{P} - \mathbb{Q}||_{TV} = \frac{1}{2} \cdot \sum_{\alpha \in \mathcal{A}} |\mathbb{P}(\alpha) - \mathbb{Q}(\alpha)|.$$

Recall: For $f : \{0, \ldots, n\} \mapsto [0, 1]$,

$$\sum_{\alpha \in \mathcal{A}} f(\alpha) \cdot (\mathbb{P}(\alpha) - \mathbb{Q}(\alpha)) \le 2\delta.$$

if $||\mathbb{P} - \mathbb{Q}|| \leq \delta$.

The main theorem

Theorem 1

- $\{p_i\}_{i=1}^n$: arbitrary probabilities, $p_i \in [0, 1]$ for i = 1, ..., n.
- $\{X_i\}_{i=1}^n$: independent indicator random variables, $\mathbf{E}[X_i] = p_i$.
- z > 0: a positive integer.

Then there exists another set of probabilities $\{q_i\}_{i=1}^n$, $q_i \in [0, 1]$ for $i \in [n]$, which satisfy the following properties:

1
$$|q_i - p_i| = O(1/z)$$
, for all $i \in [n]$.

2 q_i is an integer multiple of 1/z, for all $i \in [n]$.

(3) if $\{Y_i\}_{i=1}^n$ are independent indicator random variables such that $\mathbf{E}[Y_i] = q_i$, then

$$\left\|\sum_{i}X_{i}-\sum_{i}Y_{i}\right\|=O(z^{-1/2}),$$

and for all $j \in [n]$,

$$\left\|\sum_{i,i\neq j}X_i-\sum_{i,i\neq j}Y_i\right\|=O(z^{-1/2}).$$

The constructive proof for the PTAS for the two-strategy case

Corollary 1

There is a PTAS for finding a mixed NE for the two-player anonymous game.

Sketch of the proof:

- Let (p_1, \ldots, p_n) be a mixed NE of the game.
- <u>Claim</u>: q_1, \ldots, q_n specified by Theorem 1 constitute an $O(1/\sqrt{z})$ -approximated mixed NE.
- The absolute change of the expected utility of player *i*: bounded by $\|\sum_{j\neq i} X_j \sum_{j\neq i} Y_j\|_{TV}$.
 - The distribution over $\prod_{n=1}^{2}$ defined by $\{p_i\}_{i=1}^{n}$ is replaced by $\{q_i\}_{i=1}^{n}$:
 - * **<u>Recall</u>**: $\prod_{n=1}^{k} = \{(x_1, \ldots, x_k) \in ([k] \cup \{0\})^k \mid \sum_{i=1}^{k} x_i = n-1\}$: the set of all the ways to partition n-1 players into the k strategies.
- Yet, how to compute such $\{q_i\}_{i=1}^n$?

Sketch of the proof of Corollary 1 (computation of q_i 's)

- Remember, q_i is an integer multiple of 1/z, for each *i*.
- We proceed with a related (z + 1)-strategy game, for $z = O(\frac{1}{\epsilon^2})$, and seek for its pure NE.

The new (z+1)-strategy game

The *j*-th pure strategy, $j \in [z] \cup \{0\}$, corresponds to a player in the original game playing strategy 2 w.p. $\frac{j}{z}$.

• The payoffs resulting from the new game: translating the pure strategy profile into a mixed strategy profile of the original game.

Sketch of the proof of Corollary 1 (computation of q_i 's)

- For any player *i*, with its strategy $j \in [z] \cup \{0\}$, and any partition $x \in \prod_{n=1}^{z+1}$, we can compute its payoff by dynamic programming [e.g., Papadimitriou @STOC 2005].
 - $n^{O(z)} = n^{O(1/\epsilon)}$ time overall.
- The remaining details are omitted.

Some naïve methods of rounding seem to fail

• Rounding to the closest multiple of 1/z.

- A counterexample: $p_i := 1/n$, $\forall i$.
- The trivial rounding make $q_i := 0, \forall i$.
- $\triangleright \ \|\sum_i X_i \sum_i Y_i\|_{TV} \to 1 1/e \text{ as } n \to \infty.$
- Randomized Rounding:
 - Independently rounding each p_i to some random q_i which is an integer multiple of 1/z such that E[q_i] = p_i.
 - Seems promising since $\mathbf{E}[\Pr[\sum_{i} Y_{i} = \ell]] = \Pr[\sum_{i} X_{i} = \ell]$ (correct expectation).
 - ▷ The trouble: **E**[Pr[$\sum_i Y_i = \ell$]] is very small.
 - Concentration seems to require z scaling polynomially in n.

The intuition of Theorem 1's proof

- The distribution of $\sum_{i} X_{i}$ should be close (in TV distance) to a Poisson distribution of the same mean $\sum_{i} p_{i}$.
- Hence, if we define q_i's (as multiples of 1/z) in such a way that the means ∑_i p_i and ∑_i q_i are close, then the distribution of ∑_i Y_i should be close (in TV distance) to the same Poisson distribution, and hence to the distribution of ∑_i X_i.
- <u>The trouble</u>: approximation by Poisson distribution works well only when the *p_i*'s are relatively small.
- ▷ The approach:
 - Use translated Poisson distributions for those *p_i*'s of intermediate values.
 - Use Poisson distributions for those p_i 's close to 0 or 1.

The translated Poisson distributions

The translated Poisson distributions (TP) [Röllin 2006]

We say that an integer random variable Y has a *translated Poisson* distribution $\mathcal{L}(Y) = TP(\mu, \sigma^2)$ with parameters μ and σ^2 if

$$\mathcal{L}(Y) = \mathsf{Poisson}(\sigma^2 + \{\mu - \sigma^2\}),$$

where $\{\mu - \sigma^2\}$ represents the fractional part of $\mu - \sigma^2$.

Categories of the p_i 's

• First, we define the following subintervals of [0,1] (for some $\alpha \in (0,1)$):

•
$$\mathcal{L}(z) := [0, \frac{\lfloor z^{\alpha} \rfloor}{z}).$$

•
$$\mathcal{M}_1(z) := \begin{bmatrix} \lfloor z^{\alpha} \rfloor \\ z \end{bmatrix}, \frac{z/2}{z} \end{bmatrix}.$$

•
$$\mathcal{M}_2(z) := [\frac{z/z}{z}, 1 - \frac{|z|}{z}]$$

• $\mathcal{H}(z) := [1 - \frac{|z^{\alpha}|}{z}, 1].$

- Denote by $\mathcal{L}^*(z) := \{i \mid \mathbf{E}[X_i] \in \mathcal{L}(z)\}$
 - Similarly for $\mathcal{M}_1^*(z)$, $\mathcal{M}_2^*(z)$, and $\mathcal{H}^*(z)$).

Some building blocks

Lemma 1

$$\left|\sum_{i\in\mathcal{L}^*(z)}X_i-\sum_{i\in\mathcal{L}^*(z)}Y_i\right|\leq\frac{3}{z^{1-\alpha}}.$$

Lemma 2

$$\left\|\sum_{i\in\mathcal{M}_1^*(z)}X_i-\sum_{i\in\mathcal{M}_1^*(z)}Y_i\right\|\leq O(z^{-(\alpha+\beta-1)/2)})+O(z^{-\alpha})+O(z^{1/2})+O(z^{-(1-\beta)}),$$

for some $\beta \in (0, 1)$ such that $\alpha + \beta > 1$.

• Symmetric arguments for $\mathcal{M}_2^*(z)$ and $\mathcal{H}^*(z)$.

Putting everything together...

Suppose that the random variables $\{Y_i\}_i$ are mutually independent.

$$\left\|\sum_{i} X_{i} - \sum_{i} Y_{i}\right\| = O(z^{-(1-\alpha)}) + O(z^{-\frac{\alpha+\beta-1}{2}}) + O(z^{-\alpha}) + O(z^{-1/2}) + O(z^{-(1-\beta)}).$$
(*)

Setting $\alpha = \beta = \frac{3}{4}$, we get (*) = $O(z^{-1/4})$. More delicate arguments establish an $O(z^{-1/2})$ bound.

Categorize the expectations $\{\mathbf{E}[X_i]\}_i$

Consider the interval
$$\mathcal{L}(z):=[0,rac{\lfloor z^lpha
floor}{z})$$

Define Y_i , $i \in \mathcal{L}^*(z)$ via the following iterative procedure.

•
$$\epsilon_0 := 0;$$

• for $j \leftarrow 0$ to $\lfloor z^{\alpha} \rfloor - 1$:
(a) $S_j := \epsilon_j + \sum_{i=1}^{n_j} \delta_i^j;$
(b) $m_j := \lfloor \frac{S_j}{1/z} \rfloor; \epsilon_{j+1} := S_j - m_j \cdot \frac{1}{z};$
(c) set $q_i^j := \frac{j+1}{z}$ for $i = 1, \dots, m_j$, and $q_i^j := \frac{j}{z}$ for $i = m_j + 1, \dots, n_j;$
(d) for all $i \in \{1, \dots, n_j\}$, let Y_{j_i} be a $\{0, 1\}$ -randmo variable with expectation $q_i^j;$

Suppose that $\{Y_i\}_{i \in \mathcal{L}^*(z)}$ are mutually independent.

* It's easy to see that
$$\epsilon_j < \frac{1}{z} \forall j$$
, and $m_j \leq n_j$.

19 / 30

6 Jan 2017

Consider the interval $\mathcal{L}(z) := [0, \frac{\lfloor z^{\alpha} \rfloor}{z})$ (contd.)

For all j,

$$\sum_{i=1}^{n_j} q_i^j = m_j \frac{j+1}{z} + (n_j - m_j) \frac{j}{z} = n_j \frac{j}{z} + m_j \frac{1}{z} = n_j \frac{j}{z} + S_j - \epsilon_{j+1}$$
$$= n_j \frac{j}{z} + \sum_{i=1}^{n_j} \delta_i^j + \epsilon_j - \epsilon_{j+1}$$
$$= \sum_{i=1}^{n_j} p_i^j + \epsilon_j - \epsilon_{j+1}.$$

Thus,

$$\sum_{j=0}^{\lfloor z^lpha
floor -1} \sum_{i=1}^{n_j} q_i^j = \sum_{j=0}^{\lfloor z^lpha
floor -1} \sum_{i=1}^{n_j} p_i^j + \epsilon_0 - \epsilon_{\lfloor z^lpha
floor}.$$

Lemma 1.1

$$\left|\sum_{i\in\mathcal{L}^*(z)}\mathbf{E}[Y_i]-\sum_{i\in\mathcal{L}^*(z)}\mathbf{E}[X_i]\right|=\left|\sum_{i\in\mathcal{L}^*(z)}q_i-\sum_{i\in\mathcal{L}^*(z)}p_i\right|\leq\frac{1}{z}.$$

Poisson approximations

Lemma 1.2 [Barbour, Holst, Janson 1992]

Let J_1, \ldots, J_n be a sequence of independent random indicators with $\mathbf{E}[J_i] = p_i$. Then

$$\left\|\sum_{i=1}^{n} J_{i} - \mathsf{Poisson}\left(\sum_{i=1}^{n} p_{i}\right)\right\| \leq \frac{\sum_{i=1}^{n} p_{i}^{2}}{\sum_{i=1}^{n} p_{i}}$$

Lemma 1.3

Let $\lambda_1, \lambda_2 \in \mathbb{R}_+ \setminus \{0\}$. Then,

$$\|\mathsf{Poisson}(\lambda_1) - \mathsf{Poisson}(\lambda_2)\| \le e^{|\lambda_1 - \lambda_2|} - e^{-|\lambda_1 - \lambda_2|}$$

Proof of Lemma 1

Lemma 1

$$\left\|\sum_{i\in\mathcal{L}^*(z)}X_i-\sum_{i\in\mathcal{L}^*(z)}Y_i
ight\|\leq rac{3}{z^{1-lpha}}.$$

• By Lemma 1.2 we have

$$\left\|\sum_{i\in\mathcal{L}^*(z)}X_i-\operatorname{Poisson}\left(\sum_{i\in\mathcal{L}^*(z)}p_i\right)\right\|\leq \frac{\sum_{i\in\mathcal{L}^*(z)}p_i^2}{\sum_{i\in\mathcal{L}^*(z)}p_i^2}\leq \frac{z^{\alpha}}{z}$$

and

$$\left\|\sum_{i\in\mathcal{L}^*(z)}Y_i-\mathsf{Poisson}\left(\sum_{i\in\mathcal{L}^*(z)}q_i\right)\right\|\leq \frac{\sum_{i\in\mathcal{L}^*(z)}q_i^2}{\sum_{i\in\mathcal{L}^*(z)}q_i^2}\leq \frac{z^\alpha}{z}.$$

So,

$$\left\|\sum_{i \in \mathcal{L}^*(z)} X_i - \sum_{i \in \mathcal{L}^*(z)} Y_i\right\| \leq \frac{2}{z^{1-\alpha}} + (e^{1/z} - e^{-1/z}) \leq \frac{3}{z^{1-\alpha}}.$$

Consider the interval
$$\mathcal{M}_1(z) := \left[rac{\lfloor z^{lpha}
floor}{z}, rac{z/2}{z}
ight)$$

Define Y_i , $i \in \mathcal{M}_1^*(z)$ via the following iterative procedure.

• for
$$j \leftarrow \lfloor z^{\alpha} \rfloor$$
 to $\lfloor \frac{z}{2} \rfloor$:
(a) $S_j := \sum_{i=1}^{n_j} \delta_i^j$;
(b) $m_j := \lfloor \frac{S_j}{1/z} \rfloor$;
(c) set $q_i^j := \frac{j+1}{z}$ for $i = 1, \dots, m_j$, and $q_i^j := \frac{j}{z}$ for $i = m_j + 1, \dots, n_j$;
(d) for all $i \in \{1, \dots, n_j\}$, let Y_{j_i} be a $\{0, 1\}$ -randmo variable with expectation q_i^j ;

Suppose that $\{Y_i\}_{i \in \mathcal{M}_1^*(z)}$ are mutually independent.

Quality of the rounding procedure

$$\zeta_j := \sum_{i \in I_j^*} \mathbf{E}[X_i] - \sum_{i \in I_j^*} \mathbf{E}[Y_i].$$

Lemma 2.1

For all $j \in \{\lfloor z^{\alpha}, \dots, \lfloor \frac{z}{2} \rfloor\}$, (a) $\zeta_{j} = \sum_{i=1}^{n_{j}} \delta_{i}^{j} - m_{j} \cdot \frac{1}{z}$. (b) $0 \leq \zeta_{j} \leq \frac{1}{z}$. (c) $\sum_{i \in l_{j}^{*}} \operatorname{Var}[X_{i}] = n_{j} \frac{i}{z} (1 - \frac{i}{z}) + (1 - \frac{2j}{z}) \sum_{i=1}^{n_{j}} \delta_{i}^{j} - \sum_{i=1}^{n_{j}} (\delta_{i}^{j})^{2}$. (d) $\sum_{i \in l_{j}^{*}} \operatorname{Var}[Y_{i}] = n_{j} \frac{i}{z} (1 - \frac{i}{z}) + m_{j} \frac{1}{z} (1 - \frac{2j+1}{z})$. (e) $\sum_{i \in l_{i}^{*}} \operatorname{Var}[X_{i}] - \sum_{i \in l_{i}^{*}} \operatorname{Var}[Y_{i}] = (1 - \frac{2j}{z}) \zeta_{j} + (m_{j} \frac{1}{z^{2}} - \sum_{i=1}^{n_{j}} (\delta_{i}^{j})^{2})$.

Proof of Lemma 2

Lemma 2

$$\left\|\sum_{i\in\mathcal{M}_1^*(z)}X_i - \sum_{i\in\mathcal{M}_1^*(z)}Y_i\right\| \leq O(z^{-(\alpha+\beta-1)/2)}) + O(z^{-\alpha}) + O(z^{1/2}) + O(z^{-(1-\beta)}),$$

for some $\beta \in (0, 1)$ such that $\alpha + \beta > 1$.

• Let's distinguish two possibilities for $|\mathcal{M}_1^*(z)|$:

- $|\mathcal{M}_1^*(z)| \leq z^{\beta};$
- $|\mathcal{M}_1^*(z)| > z^{\beta}$.
- * **Recall**: $\beta \in (0, 1)$ such that $\alpha + \beta > 1$.

Case 1 of Lemma 2's proof

Lemma 2.2

If
$$|\mathcal{M}_1^*(z)| \leq z^{\beta}$$
, then $\left\|\sum_{i \in \mathcal{M}_1^*(z)} X_i - \sum_{i \in \mathcal{M}_1^*(z)} Y_i\right\| \leq \frac{z^{\beta}}{z} = \frac{1}{z^{1-\beta}}$.

• Choose a joint distribution on $\{X_i\}_i \cup \{Y_i\}_i$ such that $\Pr[X_i \neq Y_i] \leq \frac{1}{z}$.

Coupling

X, Y: random variables with distribution $\mathbb P$ and $\mathbb Q$ on Ω respectively.

 \mathbb{W} : a distribution on $\Omega \times \Omega$ is a **coupling** of (\mathbb{P}, \mathbb{Q}) if

•
$$\forall x \in \Omega$$
, $\sum_{y \in \Omega} W(x, y) = \mathbb{P}(x)$.

• $\forall y \in \Omega, \sum_{x \in \Omega} W(x, y) = \mathbb{Q}(y).$

The coupling lemma

 $\|\mathbb{P} - \mathbb{Q}\| \le \Pr[X \neq Y].$

Case 2 of Lemma 2's proof

Lemma 2.3

If
$$|\mathcal{M}_1^*(z)| > z^{\beta}$$
, then
$$\left\|\sum_{i\in\mathcal{M}_1^*(z)} X_i - \sum_{i\in\mathcal{M}_1^*(z)} Y_i\right\| \le O(z^{-\frac{\alpha+\beta-1}{2}}) + O(k^{-\alpha}) + O(k^{-\frac{1}{2}}).$$

Approximations by TPs

Lemma 2.4 [Röllin 2006]

Let J_1, \ldots, J_n be a sequence of independent random indicators with $E[J_i] = p_i$. Then

$$\left\|\sum_{i=1}^{n} J_{i} - TP(\mu, \sigma^{2})\right\| \leq \frac{\sqrt{\sum_{i=1}^{n} p_{i}^{3}(1-p_{i})+2}}{\sum_{i=1}^{n} p_{i}(1-p_{i})}.$$

Lemma 2.5 [Barbour & Lindvall @J. Theoret. Prob. 2006]

Let $\mu_1, \mu_2 \in \mathbb{R}$ and $\sigma_1^2, \sigma_2^2 \in \mathbb{R}_+ \setminus \{0\}$ be such that $\lfloor \mu_1 - \sigma_1^2 \rfloor \leq \lfloor \mu_2 - \sigma_2^2 \rfloor$. Then,

$$\left\| TP(\mu_1, \sigma_1^2) - TP(\mu_2, \sigma_2^2) \right\| \leq \frac{|\mu_1 - \mu_2|}{\sigma_1} + \frac{|\sigma_1^2 - \sigma_2^2| + 1}{\sigma_1^2}.$$

Let

•
$$p_i := \mathbf{E}[X_i], q_i = \mathbf{E}[Y_i], \forall i;$$

• $\mu_1 = \sum_{i \in \mathcal{M}_1^*} p_i, \mu_2 = \sum_{i \in \mathcal{M}_1^*} q_i;$
• $\sigma_1^2 = \sum_{i \in \mathcal{M}_1^*} p_i(1 - p_i), \sigma_2^2 = \sum_{i \in \mathcal{M}_1^*} q_i(1 - q_i);$

Lemma 2.6

For any $u \in (0, \frac{1}{2})$ and any set $\{p_i\}_{i \in \mathcal{I}}$, where $p_i \in [u, \frac{1}{2}]$ for all $i \in \mathcal{I}$, then

$$\frac{\sqrt{\sum_{i\in\mathcal{I}}p_i^3(1-p_i)}}{\sum_{i\in\mathcal{I}}p_i(1-p_i)} \leq \frac{1+2u+4u^2-8u^3}{\sqrt{16|\mathcal{I}|(1-u-4u^2+4u^3)}}$$

Lemma 2.7

For the parameters specified above,

$$\left\| \mathsf{TP}(\mu_1, \sigma_1^2) - \mathsf{TP}(\mu_2, \sigma_2^2) \right\| \le O(k^{-\alpha}) + O(k^{-1/2}).$$

Proofs are omitted.

Approx. NE 2-strategy anonymous games

Thank you.

Joseph C.-C. Lin (Academia Sinica, TW) Approx. NE 2-strategy anonymous games