Computing Equilibria in Anonymous Games

Constantinos Daskalakis and Christos Papadimitriou
FOCS 2007.

Speaker: Joseph Chuang-Chieh Lin
Institute of Information Science
Academia Sinica
Taiwan
6 January 2017

References

- Constantinos Daskalakis and Christos Papadimitriou: "Computing Equilibria in Anonymous Games." FOCS 2007.
- Constantinos Daskalakis and Christos Papadimitriou: "Discretized Multinomial Distributions and Nash Equilibria in Anonymous Games." FOCS 2008.
* Yu Cheng, Ilias Diakonikolas, Alistair Stewart: "Playing Anonymous Games using Simple Strategies." SODA 2017.

Outline

(1) Introduction

(2) The Two-strategy Case

(3) The k-strategy Case (TBD)

Authors

"Will you come to FOCS? This decision depends on many factors, but one of them is HOW MANY other theoreticians will come."

PTAS for two-strategy anonymous games

The main idea:

- Round the mixed strategies of the players to some nearby multiple of ϵ.
- Each such quantized mixed strategy can be considered as a pure strategy.
- Exhaustively search for the solution (polynomial time in n).
* The only problem: Why should the expected utilities before and after the quantization be close?

Rough idea of the key probabilistic lemma

- Players strategies: n Bernoulli random variables.
- with probabilities $\left.p_{1}, p_{2}, \ldots, p_{n}\right)$.
- There exists a way to round the probabilities to multiples of $1 / z$, for any z, so that:
- the distribution of the sum of these n random variables is affected only by an additive $O(1 / \sqrt{z})$ in total variational (TV) distance.
- Such a TV distance is independent of n.
$\triangleright O\left(n^{1 / \epsilon^{2}}\right)$ PTAS to find an $O(1 / \sqrt{z})$-NE for a two-strategy anonymous game.

The total variation distance (recall)

The total variation distance

\mathbb{P}, \mathbb{Q} : two distributions supported by a finite set \mathcal{A}.

$$
\|\mathbb{P}-\mathbb{Q}\| \triangleq\|\mathbb{P}-\mathbb{Q}\|_{T V}=\frac{1}{2} \cdot \sum_{\alpha \in \mathcal{A}}|\mathbb{P}(\alpha)-\mathbb{Q}(\alpha)| .
$$

Recall: For $f:\{0, \ldots, n\} \mapsto[0,1]$,

$$
\sum_{\alpha \in \mathcal{A}} f(\alpha) \cdot(\mathbb{P}(\alpha)-\mathbb{Q}(\alpha)) \leq 2 \delta
$$

if $\|\mathbb{P}-\mathbb{Q}\| \leq \delta$.

The main theorem

Theorem 1

- $\left\{p_{i}\right\}_{i=1}^{n}$: arbitrary probabilities, $p_{i} \in[0,1]$ for $i=1, \ldots, n$.
- $\left\{X_{i}\right\}_{i=1}^{n}$: independent indicator random variables, $\mathbf{E}\left[X_{i}\right]=p_{i}$.
- $z>0$: a positive integer.

Then there exists another set of probabilities $\left\{q_{i}\right\}_{i=1}^{n}, q_{i} \in[0,1]$ for $i \in[n]$, which satisfy the following properties:
(1) $\left|q_{i}-p_{i}\right|=O(1 / z)$, for all $i \in[n]$.
(2) q_{i} is an integer multiple of $1 / z$, for all $i \in[n]$.
(3) if $\left\{Y_{i}\right\}_{i=1}^{n}$ are independent indicator random variables such that $\mathbf{E}\left[Y_{i}\right]=q_{i}$, then

$$
\left\|\sum_{i} X_{i}-\sum_{i} Y_{i}\right\|=O\left(z^{-1 / 2}\right)
$$

and for all $j \in[n]$,

$$
\left\|\sum_{i, i \neq j} X_{i}-\sum_{i, i \neq j} Y_{i}\right\|=O\left(z^{-1 / 2}\right)
$$

The constructive proof for the PTAS for the two-strategy case

Corollary 1

There is a PTAS for finding a mixed NE for the two-player anonymous game.
Sketch of the proof:

- Let $\left(p_{1}, \ldots, p_{n}\right)$ be a mixed NE of the game.
- Claim: q_{1}, \ldots, q_{n} specified by Theorem 1 constitute an $O(1 / \sqrt{z})$-approximated mixed NE.
- The absolute change of the expected utility of player i : bounded by $\left\|\sum_{j \neq i} X_{j}-\sum_{j \neq i} Y_{j}\right\|_{T V}$.
- The distribution over \prod_{n-1}^{2} defined by $\left\{p_{i}\right\}_{i=1}^{n}$ is replaced by $\left\{q_{i}\right\}_{i=1}^{n}$:
\star Recall: $\prod_{n-1}^{k}=\left\{\left(x_{1}, \ldots, x_{k}\right) \in([k] \cup\{0\})^{k} \mid \sum_{i=1}^{k} x_{i}=n-1\right\}$: the set of all the ways to partition $n-1$ players into the k strategies.
- Yet, how to compute such $\left\{q_{i}\right\}_{i=1}^{n}$?

Sketch of the proof of Corollary 1 (computation of $q_{i} ' s$)

- Remember, q_{i} is an integer multiple of $1 / z$, for each i.
- We proceed with a related $(z+1)$-strategy game, for $z=O\left(\frac{1}{\epsilon^{2}}\right)$, and seek for its pure NE.

The new $(z+1)$-strategy game

The j-th pure strategy, $j \in[z] \cup\{0\}$, corresponds to a player in the original game playing strategy 2 w.p. $\frac{j}{z}$.

- The payoffs resulting from the new game: translating the pure strategy profile into a mixed strategy profile of the original game.

Sketch of the proof of Corollary 1 (computation of $q_{i} ' s$)

- For any player i, with its strategy $j \in[z] \cup\{0\}$, and any partition $x \in \prod_{n-1}^{z+1}$, we can compute its payoff by dynamic programming [e.g., Papadimitriou @STOC 2005].
- $n^{O(z)}=n^{O(1 / \epsilon)}$ time overall.
- The remaining details are omitted.

Some naïve methods of rounding seem to fail

- Rounding to the closest multiple of $1 / z$.
- A counterexample: $p_{i}:=1 / n, \forall i$.
- The trivial rounding make $q_{i}:=0, \forall i$.
$\triangleright\left\|\sum_{i} X_{i}-\sum_{i} Y_{i}\right\|_{T V} \rightarrow 1-1 / e$ as $n \rightarrow \infty$.
- Randomized Rounding:
- Independently rounding each p_{i} to some random q_{i} which is an integer multiple of $1 / z$ such that $\mathbf{E}\left[q_{i}\right]=p_{i}$.
- Seems promising since $\mathbf{E}\left[\operatorname{Pr}\left[\sum_{i} Y_{i}=\ell\right]\right]=\operatorname{Pr}\left[\sum_{i} X_{i}=\ell\right]$ (correct expectation).
\triangleright The trouble: $\mathrm{E}\left[\operatorname{Pr}\left[\sum_{i} Y_{i}=\ell\right]\right]$ is very small.
- Concentration seems to require z scaling polynomially in n.

The intuition of Theorem 1's proof

- The distribution of $\sum_{i} X_{i}$ should be close (in TV distance) to a Poisson distribution of the same mean $\sum_{i} p_{i}$.
- Hence, if we define q_{i} 's (as multiples of $1 / z$) in such a way that the means $\sum_{i} p_{i}$ and $\sum_{i} q_{i}$ are close, then the distribution of $\sum_{i} Y_{i}$ should be close (in TV distance) to the same Poisson distribution, and hence to the distribution of $\sum_{i} X_{i}$.
- The trouble: approximation by Poisson distribution works well only when the p_{i} 's are relatively small.
\triangleright The approach:
- Use translated Poisson distributions for those p_{i} 's of intermediate values.
- Use Poisson distributions for those p_{i} 's close to 0 or 1 .

The translated Poisson distributions

The translated Poisson distributions (TP) [Röllin 2006]

We say that an integer random variable Y has a translated Poisson distribution $\mathcal{L}(Y)=\operatorname{TP}\left(\mu, \sigma^{2}\right)$ with parameters μ and σ^{2} if

$$
\mathcal{L}(Y)=\operatorname{Poisson}\left(\sigma^{2}+\left\{\mu-\sigma^{2}\right\}\right)
$$

where $\left\{\mu-\sigma^{2}\right\}$ represents the fractional part of $\mu-\sigma^{2}$.

Categories of the p_{i} 's

- First, we define the following subintervals of $[0,1]$ (for some $\alpha \in(0,1))$:
- $\mathcal{L}(z):=\left[0, \frac{\left\lfloor z^{\alpha}\right\rfloor}{z}\right)$.
- $\mathcal{M}_{1}(z):=\left[\frac{\left|z^{\alpha}\right|}{z}, \frac{z / 2}{z}\right]$.
- $\mathcal{M}_{2}(z):=\left[\frac{z / 2}{z}, 1-\frac{\left\lfloor z^{\alpha}\right\rfloor}{z}\right]$.
- $\mathcal{H}(z):=\left[1-\frac{\left\lfloor z^{\alpha} \mid\right.}{z}, 1\right]$.
- Denote by $\mathcal{L}^{*}(z):=\left\{i \mid \mathbf{E}\left[X_{i}\right] \in \mathcal{L}(z)\right\}$
- Similarly for $\mathcal{M}_{1}^{*}(z), \mathcal{M}_{2}^{*}(z)$, and $\left.\mathcal{H}^{*}(z)\right)$.

Some building blocks

Lemma 1

$$
\left\|\sum_{i \in \mathcal{L}^{*}(z)} X_{i}-\sum_{i \in \mathcal{L}^{*}(z)} Y_{i}\right\| \leq \frac{3}{z^{1-\alpha}}
$$

Lemma 2

$$
\left\|\sum_{i \in \mathcal{M}_{1}^{*}(z)} X_{i}-\sum_{i \in \mathcal{M}_{1}^{*}(z)} Y_{i}\right\| \leq O\left(z^{-(\alpha+\beta-1) / 2)}\right)+O\left(z^{-\alpha}\right)+O\left(z^{1 / 2}\right)+O\left(z^{-(1-\beta)}\right)
$$

for some $\beta \in(0,1)$ such that $\alpha+\beta>1$.

- Symmetric arguments for $\mathcal{M}_{2}^{*}(z)$ and $\mathcal{H}^{*}(z)$.

Putting everything together...

Suppose that the random variables $\left\{Y_{i}\right\}_{i}$ are mutually independent.

$$
\begin{align*}
\left\|\sum_{i} X_{i}-\sum_{i} Y_{i}\right\| & =O\left(z^{-(1-\alpha)}\right)+O\left(z^{-\frac{\alpha+\beta-1}{2}}\right) \\
& +O\left(z^{-\alpha}\right)+O\left(z^{-1 / 2}\right)+O\left(z^{-(1-\beta)}\right) \tag{*}
\end{align*}
$$

Setting $\alpha=\beta=\frac{3}{4}$, we get $\left({ }^{*}\right)=O\left(z^{-1 / 4}\right)$. More delicate arguments establish an $O\left(z^{-1 / 2}\right)$ bound.

Categorize the expectations $\left\{\mathbf{E}\left[X_{i}\right]\right\}_{i}$

$I_{j}^{*}=\left\{i \mid \mathbf{E}\left[X_{i}\right] \in I_{j}\right\}$, for $j=0, \ldots,\lfloor z / 2\rfloor$.
$\mathcal{L}^{*}(z) \cup \mathcal{M}_{1}^{*}(z)$ is partitioned into $I_{0}^{*}, I^{*} 1, \ldots, I_{\lfloor z / 2\rfloor}^{*}$

For $j \in\{0, \ldots,\lfloor z / 2\rfloor\}$ with $I_{j}^{*} \neq \emptyset$, let $I_{j}^{*}=\left\{j_{1}, j_{2}, \ldots, j_{n_{j}}\right\}$.
For all $i \in\left\{1, \ldots, n_{j}\right\}$, let $p_{i}^{j}:=\mathbf{E}\left[X_{j_{i}}\right]$ and $\delta_{i}^{j}:=p_{i}^{j}-\frac{j}{z}$.

Consider the interval $\mathcal{L}(z):=\left[0, \frac{\left|z^{\alpha}\right|}{z}\right)$

Define $Y_{i}, i \in \mathcal{L}^{*}(z)$ via the following iterative procedure.
(1) $\epsilon_{0}:=0$;
(2) for $j \leftarrow 0$ to $\left\lfloor z^{\alpha}\right\rfloor-1$:
(a) $S_{j}:=\epsilon_{j}+\sum_{i=1}^{n_{j}} \delta_{i}^{j}$;
(b) $m_{j}:=\left\lfloor\frac{S_{j}}{1 / z}\right\rfloor ; \epsilon_{j+1}:=S_{j}-m_{j} \cdot \frac{1}{2}$;
(c) set $q_{i}^{j}:=\frac{j+1}{z}$ for $i=1, \ldots, m_{j}$, and $q_{i}^{j}:=\frac{j}{z}$ for $i=m_{j}+1, \ldots, n_{j}$;
(d) for all $i \in\left\{1, \ldots, n_{j}\right\}$, let $Y_{j i}$ be a $\{0,1\}$-randmo variable with expectation q_{i}^{j};
(3) Suppose that $\left\{Y_{i}\right\}_{i \in \mathcal{L}^{*}(z)}$ are mutually independent.

* It's easy to see that $\epsilon_{j}<\frac{1}{z} \forall j$, and $m_{j} \leq n_{j}$.

Consider the interval $\mathcal{L}(z):=\left[0, \frac{\left|z^{\alpha}\right|}{z}\right)$ (contd.)

- For all j,

$$
\begin{aligned}
\sum_{i=1}^{n_{j}} q_{i}^{j} & =m_{j} \frac{j+1}{z}+\left(n_{j}-m_{j}\right) \frac{j}{z}=n_{j} \frac{j}{z}+m_{j} \frac{1}{z}=n_{j} \frac{j}{z}+S_{j}-\epsilon_{j+1} \\
& =n_{j} \frac{j}{z}+\sum_{i=1}^{n_{j}} \delta_{i}^{j}+\epsilon_{j}-\epsilon_{j+1} \\
& =\sum_{i=1}^{n_{j}} p_{i}^{j}+\epsilon_{j}-\epsilon_{j+1}
\end{aligned}
$$

Thus,

$$
\sum_{j=0}^{\left\lfloor z^{\alpha}\right\rfloor-1} \sum_{i=1}^{n_{j}} q_{i}^{j}=\sum_{j=0}^{\left\lfloor z^{\alpha}\right\rfloor-1} \sum_{i=1}^{n_{j}} p_{i}^{j}+\epsilon_{0}-\epsilon_{\left\lfloor z^{\alpha}\right\rfloor}
$$

Lemma 1.1

$$
\left.\left|\sum_{i \in \mathcal{L}^{*}(z)} \mathbf{E}\left[Y_{i}\right]-\sum_{i \in \mathcal{L}^{*}(z)} \mathbf{E}\left[X_{i}\right]\right|=\mid \sum_{i \in \mathcal{L}^{*}(z)} q_{i}-\sum_{i \in \mathcal{L}^{*}(z)} p_{i}\right] \left\lvert\, \leq \frac{1}{z} .\right.
$$

Poisson approximations

Lemma 1.2 [Barbour, Holst, Janson 1992]

Let J_{1}, \ldots, J_{n} be a sequence of indenpendent random indicators with $\mathbf{E}\left[J_{i}\right]=p_{i}$. Then

$$
\| \sum_{i=1}^{n} J_{i}-\text { Poisson }\left(\sum_{i=1}^{n} p_{i}\right) \| \leq \frac{\sum_{i=1}^{n} p_{i}^{2}}{\sum_{i=1}^{n} p_{i}} .
$$

Lemma 1.3

Let $\lambda_{1}, \lambda_{2} \in \mathbb{R}_{+} \backslash\{0\}$. Then,

$$
\left\|\operatorname{Poisson}\left(\lambda_{1}\right)-\operatorname{Poisson}\left(\lambda_{2}\right)\right\| \leq e^{\left|\lambda_{1}-\lambda_{2}\right|}-e^{-\left|\lambda_{1}-\lambda_{2}\right|}
$$

Proof of Lemma 1

Lemma 1

- By Lemma 1.2 we have

$$
\| \sum_{i \in \mathcal{L}^{*}(z)} X_{i}-\text { Poisson }\left(\sum_{i \in \mathcal{\mathcal { L } ^ { * } (z)}} p_{i}\right) \| \leq \frac{\sum_{i \in \mathcal{L}^{*}(z)} p_{i}^{2}}{\sum_{i \in \mathcal{L}^{*}(z)} p_{i}^{2}} \leq \frac{z^{\alpha}}{z}
$$

and

$$
\| \sum_{i \in \mathcal{L}^{*}(z)} Y_{i}-\text { Poisson }\left(\sum_{i \in \mathcal{L}^{*}(z)} q_{i}\right) \| \leq \frac{\sum_{i \in \mathcal{L}^{*}(z)} q_{i}^{2}}{\sum_{i \in \mathcal{L}^{*}(z)} q_{i}^{2}} \leq \frac{z^{\alpha}}{z}
$$

So,

$$
\left\|\sum_{i \in \mathcal{L}^{*}(z)} X_{i}-\sum_{i \in \mathcal{L}^{*}(z)} Y_{i}\right\| \leq \frac{2}{z^{1-\alpha}}+\left(e^{1 / z}-e^{-1 / z}\right) \leq \frac{3}{z^{1-\alpha}}
$$

Consider the interval $\mathcal{M}_{1}(z):=\left[\frac{\left\lfloor z^{\alpha}\right\rfloor}{z}, \frac{z / 2}{z}\right)$

Define $Y_{i}, i \in \mathcal{M}_{1}^{*}(z)$ via the following iterative procedure.
(1) for $j \leftarrow\left\lfloor z^{\alpha}\right\rfloor$ to $\left\lfloor\frac{z}{2}\right\rfloor$:
(a) $S_{j}:=\sum_{i=1}^{n_{j}} \delta_{i}^{j}$;
(b) $m_{j}:=\left\lfloor\frac{S_{j}}{1 / z}\right\rfloor$;
(c) set $q_{i}^{j}:=\frac{j+1}{z}$ for $i=1, \ldots, m_{j}$, and $q_{i}^{j}:=\frac{j}{z}$ for $i=m_{j}+1, \ldots, n_{j}$;
(d) for all $i \in\left\{1, \ldots, n_{j}\right\}$, let $Y_{j i}$ be a $\{0,1\}$-randmo variable with expectation q_{i}^{j};
(2) Suppose that $\left\{Y_{i}\right\}_{i \in \mathcal{M}_{1}^{*}(z)}$ are mutually independent.

Quality of the rounding procedure

$$
\zeta_{j}:=\sum_{i \in l_{j}^{l}} \mathbf{E}\left[X_{i}\right]-\sum_{\left.i \in\right|_{j} ^{*}} \mathbf{E}\left[Y_{i}\right] .
$$

Lemma 2.1

For all $j \in\left\{\left\lfloor z^{\alpha}, \ldots,\left\lfloor\frac{z}{2}\right\rfloor\right\}\right.$,
(a) $\zeta_{j}=\sum_{i=1}^{n_{j}} \delta_{i}^{j}-m_{j} \cdot \frac{1}{z}$.
(b) $0 \leq \zeta_{j} \leq \frac{1}{z}$.
(c) $\sum_{i \in l_{j}^{*}} \operatorname{Var}\left[X_{i}\right]=n_{j} \frac{j}{z}\left(1-\frac{j}{z}\right)+\left(1-\frac{2 j}{z}\right) \sum_{i=1}^{n_{j}} \delta_{i}^{j}-\sum_{i=1}^{n_{j}}\left(\delta_{i}^{j}\right)^{2}$.
(d) $\sum_{i \in l_{j}^{*}} \operatorname{Var}\left[Y_{i}\right]=n_{j} \frac{j}{z}\left(1-\frac{j}{z}\right)+m_{j} \frac{1}{z}\left(1-\frac{2 j+1}{z}\right)$.
(e) $\sum_{i \in I_{j}^{*}} \operatorname{Var}\left[X_{i}\right]-\sum_{i \in I_{j}^{*}} \operatorname{Var}\left[Y_{i}\right]=\left(1-\frac{2 j}{z}\right) \zeta_{j}+\left(m_{j} \frac{1}{z^{2}}-\sum_{i=1}^{n_{j}}\left(\delta_{i}^{j}\right)^{2}\right)$.

Proof of Lemma 2

Lemma 2

$$
\left\|\sum_{i \in \mathcal{M}_{1}^{*}(z)} X_{i}-\sum_{i \in \mathcal{M}_{1}^{*}(z)} Y_{i}\right\| \leq O\left(z^{-(\alpha+\beta-1) / 2)}\right)+O\left(z^{-\alpha}\right)+O\left(z^{1 / 2}\right)+O\left(z^{-(1-\beta)}\right)
$$

for some $\beta \in(0,1)$ such that $\alpha+\beta>1$.

- Let's distinguish two possibilities for $\left|\mathcal{M}_{1}^{*}(z)\right|$:
- $\left|\mathcal{M}_{1}^{*}(z)\right| \leq z^{\beta}$;
- $\left|\mathcal{M}_{1}^{*}(z)\right|>z^{\beta}$.
\star Recall: $\beta \in(0,1)$ such that $\alpha+\beta>1$.

Case 1 of Lemma 2's proof

Lemma 2.2

If $\left|\mathcal{M}_{1}^{*}(z)\right| \leq z^{\beta}$, then $\left\|\sum_{i \in \mathcal{M}_{1}^{*}(z)} X_{i}-\sum_{i \in \mathcal{M}_{1}^{*}(z)} Y_{i}\right\| \leq \frac{z^{\beta}}{z}=\frac{1}{z^{1-\beta}}$.

- Choose a joint distribution on $\left\{X_{i}\right\}_{i} \cup\left\{Y_{i}\right\}_{i}$ such that $\operatorname{Pr}\left[X_{i} \neq Y_{i}\right] \leq \frac{1}{2}$.

Coupling

X, Y : random variables with distribution \mathbb{P} and \mathbb{Q} on Ω respectively.
\mathbb{W} : a distribution on $\Omega \times \Omega$ is a coupling of (\mathbb{P}, \mathbb{Q}) if

- $\forall x \in \Omega, \sum_{y \in \Omega} W(x, y)=\mathbb{P}(x)$.
- $\forall y \in \Omega, \sum_{x \in \Omega} W(x, y)=\mathbb{Q}(y)$.

The coupling lemma
$\|\mathbb{P}-\mathbb{Q}\| \leq \operatorname{Pr}[X \neq Y]$.

Case 2 of Lemma 2's proof

Lemma 2.3

If $\left|\mathcal{M}_{1}^{*}(z)\right|>z^{\beta}$, then

$$
\left\|\sum_{i \in \mathcal{M}_{1}^{*}(z)} X_{i}-\sum_{i \in \mathcal{M}_{1}^{*}(z)} Y_{i}\right\| \leq O\left(z^{-\frac{\alpha+\beta-1}{2}}\right)+O\left(k^{-\alpha}\right)+O\left(k^{-\frac{1}{2}}\right)
$$

Approximations by TPs

Lemma 2.4 [Röllin 2006]

Let J_{1}, \ldots, J_{n} be a sequence of indenpendent random indicators with $\mathbf{E}\left[J_{i}\right]=p_{i}$. Then

$$
\left\|\sum_{i=1}^{n} J_{i}-T P\left(\mu, \sigma^{2}\right)\right\| \leq \frac{\sqrt{\sum_{i=1}^{n} p_{i}^{3}\left(1-p_{i}\right)}+2}{\sum_{i=1}^{n} p_{i}\left(1-p_{i}\right)} .
$$

Lemma 2.5 [Barbour \& Lindvall ©J. Theoret. Prob. 2006]

Let $\mu_{1}, \mu_{2} \in \mathbb{R}$ and $\sigma_{1}^{2}, \sigma_{2}^{2} \in \mathbb{R}_{+} \backslash\{0\}$ be such that $\left\lfloor\mu_{1}-\sigma_{1}^{2}\right\rfloor \leq\left\lfloor\mu_{2}-\sigma_{2}^{2}\right\rfloor$. Then,

$$
\left\|T P\left(\mu_{1}, \sigma_{1}^{2}\right)-T P\left(\mu_{2}, \sigma_{2}^{2}\right)\right\| \leq \frac{\left|\mu_{1}-\mu_{2}\right|}{\sigma_{1}}+\frac{\left|\sigma_{1}^{2}-\sigma_{2}^{2}\right|+1}{\sigma_{1}^{2}} .
$$

- Let
- $p_{i}:=\mathbf{E}\left[X_{i}\right], q_{i}=\mathbf{E}\left[Y_{i}\right], \forall i$;
- $\mu_{1}=\sum_{i \in \mathcal{M}_{1}^{*}} p_{i}, \mu_{2}=\sum_{i \in \mathcal{M}_{1}^{*}} q_{i}$;
- $\sigma_{1}^{2}=\sum_{i \in \mathcal{M}_{1}^{*}} p_{i}\left(1-p_{i}\right), \sigma_{2}^{2}=\sum_{i \in \mathcal{M}_{1}^{*}} q_{i}\left(1-q_{i}\right)$;

Lemma 2.6

For any $u \in\left(0, \frac{1}{2}\right)$ and any set $\left\{p_{i}\right\}_{i \in \mathcal{I}}$, where $p_{i} \in\left[u, \frac{1}{2}\right]$ for all $i \in \mathcal{I}$, then

$$
\frac{\sqrt{\sum_{i \in \mathcal{I}} p_{i}^{3}\left(1-p_{i}\right)}}{\sum_{i \in \mathcal{I}} p_{i}\left(1-p_{i}\right)} \leq \frac{1+2 u+4 u^{2}-8 u^{3}}{\sqrt{16|\mathcal{I}|\left(1-u-4 u^{2}+4 u^{3}\right)}} .
$$

Lemma 2.7

For the parameters specified above,

$$
\left\|T P\left(\mu_{1}, \sigma_{1}^{2}\right)-T P\left(\mu_{2}, \sigma_{2}^{2}\right)\right\| \leq O\left(k^{-\alpha}\right)+O\left(k^{-1 / 2}\right) .
$$

Proofs are omitted.

Thank you.

