Discretized multinomial distributions and Nash equilibria in anonymous games

Constantinos Daskalakis and Christos Papadimitriou

The 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pp. 25-34.

Speaker: Joseph Chuang-Chieh Lin

Institute of Information Science
Academia Sinica
Taiwan
17 March 2017

Outline

(1) Introduction
(2) The Main Result
(3) Sketch of the proofs

- The Tickle-down Process
- The Alternative Sampling of X_{i}
- Clustering the Random Vectors
- Discretization within a Cell
- Coupling within a Cell

Anonymous games

k-strategy anonymous games

$\left(n, k,\left\{u_{j}^{i}\right\}_{i \in[n], j \in[k]}\right)$:

- n : \# players;
- k : \# pure strategies per player;
- $u_{j}^{i}: \prod_{n-1}^{k} \mapsto[0,1]$: utility function
- $\prod_{n-1}^{k}:=\left\{\left(x_{1}, \ldots, x_{k}\right) \in([k] \cup\{0\})^{k} \mid \sum_{j \in[k]} x_{j}=n-1\right\}$.
* All possible ways to partition $n-1$ players into the k strategies.
- A mixed strategy profile: $\left\{\delta_{i} \in \Delta^{k}\right\}_{i \in[n]}$, where Δ^{k} denotes the set of distributions over [k].

PTAS by Discretization (rough idea)

- Restrict our search to distributions with strategy probabilities being multiples of $1 / z$, for some integer $z>0$.
- Each such quantized mixed strategy can be considered as a pure strategy.
- Utilities of the resulting new game can be computed via dynamic programming.
- Search for approx. NE by solving a corresponding max-flow problem.
- We've seen this for the 2-strategy case.

PTAS by Discretization (rough idea)

- Restrict our search to distributions with strategy probabilities being multiples of $1 / z$, for some integer $z>0$.
- Each such quantized mixed strategy can be considered as a pure strategy.
- Utilities of the resulting new game can be computed via dynamic programming.
- Search for approx. NE by solving a corresponding max-flow problem.
- We've seen this for the 2-strategy case.

Remark on the dynamic programming (e.g., 2-strategy)

- Player n's expected payoff from strategy 1 (given a mixed strategy profile δ):
$u_{1}^{n}((0, n-1)) \cdot \operatorname{Pr}[X=0]+u_{1}^{n}((1, n-2)) \cdot \operatorname{Pr}[X=1]+\cdots+u_{1}^{n}((n-1,0)) \cdot \operatorname{Pr}[X=n-1]$, $X=\#$ players playing strategy 1 under profile δ_{-n}.
- Rewrite $X=\sum_{i=1}^{n-1} X_{i}$.
- $X_{i} \in\{0,1\}$: whether player i plays strategy 1 .
- Consider a $(n-1) \times n$ table $T(i, \ell)$, for $i \in[n-1], \ell \in\{0\} \cup[n-1]$, and $T(i, \ell)=\operatorname{Pr}\left[\sum_{j \leq i} X_{j}=\ell\right]$.

$$
T(i, \ell)= \begin{cases}\delta_{i}(1) \cdot T(i-1, \ell-1)+\delta_{i}(2) \cdot T(i-1, \ell), & \text { if } 0<\ell<i \\ \delta_{i}(1) \cdot T(i-1, i-1), & \text { if } \ell=i \\ \delta_{i}(2) \cdot T(i-1,0), & \text { if } \ell=0 \\ 0, & \text { if } \ell>i\end{cases}
$$

\star Namely, $\operatorname{Pr}[X=\ell]=T(n-1, \ell), \forall \ell \in\{0\} \cup[n-1]$.

Difficulties for the general cases of $k>2$

- No useful approximations like Poisson approximation for the binomial distribution are known yet.
- Binomial case is easy because it's essentially one-dimensional.
- In the multinomial case, watching the balls in one bin provides small information about the distribution of the remaining balls in other bins.
- We need something that combines multidimensional Poisson and translated-Poisson approximations in the same picture.

Useful lemmas and tools

The total variation distance

\mathbb{P}, \mathbb{Q} : two distributions supported by a finite set \mathcal{A}.

$$
\|\mathbb{P}-\mathbb{Q}\| \triangleq\|\mathbb{P}-\mathbb{Q}\|_{T V}=\frac{1}{2} \cdot \sum_{\alpha \in \mathcal{A}}|\mathbb{P}(\alpha)-\mathbb{Q}(\alpha)| .
$$

A simple \& useful lemma
Let $\left\{X_{i}\right\}_{i=1}^{n}$ and $\left\{Y_{i}\right\}_{i=1}^{n}$ be two sets of mutually independent random vectors. Then

$$
\left\|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right\| \leq \sum_{i=1}^{n}\left\|X_{i}-Y_{i}\right\|
$$

Proof of the simple lemma

- By the coupling lemma, for any coupling of $\left\{X_{i}\right\}_{i=1}^{n}$ and $\left\{Y_{i}\right\}_{i=1}^{n}$,

$$
\left\|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right\| \leq \operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \neq \sum_{i=1}^{n} Y_{i}\right] \cdot \leq \sum_{i=1}^{n} \operatorname{Pr}\left[X_{i} \neq Y_{i}\right]
$$

- By the optimal coupling theorem, there exists a coupling of X_{i} and Y_{i} such that $\operatorname{Pr}\left[X_{i} \neq Y_{i}\right]=\left\|X_{i}-Y_{i}\right\|$
- Define a grand coupling of $\left\{X_{i}\right\}_{i=1}^{n}$ and $\left\{Y_{i}\right\}_{i=1}^{n}$ such that

Proof of the simple lemma

- By the coupling lemma, for any coupling of $\left\{X_{i}\right\}_{i=1}^{n}$ and $\left\{Y_{i}\right\}_{i=1}^{n}$,

$$
\left\|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right\| \leq \operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \neq \sum_{i=1}^{n} Y_{i}\right] \cdot \leq \sum_{i=1}^{n} \operatorname{Pr}\left[X_{i} \neq Y_{i}\right]
$$

- By the optimal coupling theorem, there exists a coupling of X_{i} and Y_{i} such that $\operatorname{Pr}\left[X_{i} \neq Y_{i}\right]=\left\|X_{i}-Y_{i}\right\|$.
- Define a grand coupling of $\left\{X_{i}\right\}_{i=1}^{n}$ and $\left\{Y_{i}\right\}_{i=1}^{n}$ such that $\operatorname{Pr}\left[X_{i} \neq Y_{i}\right]=\sum_{i=1}^{n}\left\|X_{i}-Y_{i}\right\|, \forall i$.

Proof of the simple lemma

- By the coupling lemma, for any coupling of $\left\{X_{i}\right\}_{i=1}^{n}$ and $\left\{Y_{i}\right\}_{i=1}^{n}$,

$$
\left\|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right\| \leq \operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \neq \sum_{i=1}^{n} Y_{i}\right] \cdot \leq \sum_{i=1}^{n} \operatorname{Pr}\left[X_{i} \neq Y_{i}\right]
$$

- By the optimal coupling theorem, there exists a coupling of X_{i} and Y_{i} such that $\operatorname{Pr}\left[X_{i} \neq Y_{i}\right]=\left\|X_{i}-Y_{i}\right\|$.
- Define a grand coupling of $\left\{X_{i}\right\}_{i=1}^{n}$ and $\left\{Y_{i}\right\}_{i=1}^{n}$ such that $\operatorname{Pr}\left[X_{i} \neq Y_{i}\right]=\sum_{i=1}^{n}\left\|X_{i}-Y_{i}\right\|, \forall i$.

Proof of the simple lemma

- By the coupling lemma, for any coupling of $\left\{X_{i}\right\}_{i=1}^{n}$ and $\left\{Y_{i}\right\}_{i=1}^{n}$,

$$
\left\|\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} Y_{i}\right\| \leq \operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \neq \sum_{i=1}^{n} Y_{i}\right] . \leq \sum_{i=1}^{n} \operatorname{Pr}\left[X_{i} \neq Y_{i}\right]=\sum_{i=1}^{n}\left\|X_{i}-Y_{i}\right\|
$$

- By the optimal coupling theorem, there exists a coupling of X_{i} and Y_{i} such that $\operatorname{Pr}\left[X_{i} \neq Y_{i}\right]=\left\|X_{i}-Y_{i}\right\|$.
- Define a grand coupling of $\left\{X_{i}\right\}_{i=1}^{n}$ and $\left\{Y_{i}\right\}_{i=1}^{n}$ such that $\operatorname{Pr}\left[X_{i} \neq Y_{i}\right]=\sum_{i=1}^{n}\left\|X_{i}-Y_{i}\right\|, \forall i$.

Lemmas for clarification

Lemma A [Daskalakis \& Papadimitriou, J. Econ. Theory 2015]

Let $\left\{X_{i}\right\}_{i=1}^{n}$ and $\left\{Y_{i}\right\}_{i=1}^{n}$ be two mixed strategy profiles of an anonymous game of n players and k strategies. Then for all $i \in[n]$ and $\ell \in[k]:$

$$
\left|\mathbf{E}\left[u_{\ell}^{i}\left(\sum_{j \neq i} X_{j}\right)\right]-\mathbf{E}\left[u_{\ell}^{i}\left(\sum_{j \neq i} Y_{j}\right)\right]\right| \leq 2\left\|\sum_{j \neq i} X_{j}-\sum_{j \neq i} Y_{j}\right\| .
$$

A quick overview of Lemma A's proof

- Observe that $\mathbf{E}\left[u_{\ell}^{i}\left(\sum_{j \neq i} X_{j}\right)\right]=\sum_{x \in \prod_{n-1}^{k}} u_{\ell}^{i}(x) \cdot \operatorname{Pr}\left[\sum_{j \neq i} X_{j}=x\right]$.
- Similarly for $\mathbf{E}\left[u_{\ell}^{i}\left(\sum_{j \neq i} Y_{j}\right)\right]$.

$$
\begin{aligned}
& \left|\mathbf{E}\left[u_{\ell}^{i}\left(\sum_{j \neq i} X_{j}\right)\right]-\mathbf{E}\left[u_{\ell}^{i}\left(\sum_{j \neq i} Y_{j}\right)\right]\right| \\
& =\left|\sum_{x \in \prod_{n-1}^{k}} u_{\ell}^{i}(x) \cdot\left(\operatorname{Pr}\left[\sum_{j \neq i} X_{j}=x\right]-\operatorname{Pr}\left[\sum_{j \neq i} Y_{j}=x\right]\right)\right| \\
& \leq \sum_{x \in \prod_{n-1}^{k}}\left|u_{\ell}^{i}(x)\right| \cdot\left|\operatorname{Pr}\left[\sum_{j \neq i} X_{j}=x\right]-\operatorname{Pr}\left[\sum_{j \neq i} Y_{j}=x\right]\right| \\
& \leq 2\left\|\sum_{j \neq i} X_{j}-\sum_{j \neq i} Y_{j}\right\|
\end{aligned}
$$

A Lemma for clarification

Lemma B [Daskalakis \& Papadimitriou 2015]

Suppose $\left\{X_{i}\right\}_{i \in[n]}$ is a NE of an anonymous game of n players and k strategies, and $\left\{Y_{i}\right\}_{i \in[n]}$ is a mixed strategy profile satisfying:
(a.) the support of Y_{i} is a subset of the support of X_{i}, for all i;
(b.) $\exists \epsilon \geq 0,\left\|\sum_{j \neq i} X_{j}-\sum_{j \neq i} Y_{j}\right\| \leq \epsilon$, for all i.

Then, $\left\{Y_{i}\right\}_{i=1}^{n}$ is a 4ϵ-NE.

For every ℓ in the support of Y_{i}

A Lemma for clarification

Lemma B [Daskalakis \& Papadimitriou 2015]

Suppose $\left\{X_{i}\right\}_{i \in[n]}$ is a NE of an anonymous game of n players and k strategies, and $\left\{Y_{i}\right\}_{i \in[n]}$ is a mixed strategy profile satisfying:
(a.) the support of Y_{i} is a subset of the support of X_{i}, for all i;
(b.) $\exists \epsilon \geq 0,\left\|\sum_{j \neq i} X_{j}-\sum_{j \neq i} Y_{j}\right\| \leq \epsilon$, for all i.

Then, $\left\{Y_{i}\right\}_{i=1}^{n}$ is a 4ϵ-NE.

For every ℓ in the support of Y_{i} :

A Lemma for clarification

Lemma B [Daskalakis \& Papadimitriou 2015]

Suppose $\left\{X_{i}\right\}_{i \in[n]}$ is a NE of an anonymous game of n players and k strategies, and $\left\{Y_{i}\right\}_{i \in[n]}$ is a mixed strategy profile satisfying:
(a.) the support of Y_{i} is a subset of the support of X_{i}, for all i;
(b.) $\exists \epsilon \geq 0,\left\|\sum_{j \neq i} X_{j}-\sum_{j \neq i} Y_{j}\right\| \leq \epsilon$, for all i.

Then, $\left\{Y_{i}\right\}_{i=1}^{n}$ is a 4ϵ-NE.

For every ℓ in the support of Y_{i} :

- $\mathbf{E}\left[u_{\ell}^{i}\left(\sum_{j \neq i} X_{j}\right)\right] \geq \mathbf{E}\left[u_{\ell^{\prime}}^{i}\left(\sum_{j \neq i} X_{j}\right)\right]$ for all $\ell^{\prime} \in[k]$.
- $\mathrm{E}\left[u_{\ell}^{i}\left(\sum_{j \neq i} Y_{j}\right)\right] \geq \mathrm{E}\left[u_{\ell}^{i}\left(\sum_{j \neq i} X_{j}\right)\right]-2 \epsilon ;$

A Lemma for clarification

Lemma B [Daskalakis \& Papadimitriou 2015]

Suppose $\left\{X_{i}\right\}_{i \in[n]}$ is a NE of an anonymous game of n players and k strategies, and $\left\{Y_{i}\right\}_{i \in[n]}$ is a mixed strategy profile satisfying:
(a.) the support of Y_{i} is a subset of the support of X_{i}, for all i;
(b.) $\exists \epsilon \geq 0,\left\|\sum_{j \neq i} X_{j}-\sum_{j \neq i} Y_{j}\right\| \leq \epsilon$, for all i.

Then, $\left\{Y_{i}\right\}_{i=1}^{n}$ is a 4ϵ-NE.

For every ℓ in the support of Y_{i} :

- $\mathbf{E}\left[u_{\ell}^{i}\left(\sum_{j \neq i} X_{j}\right)\right] \geq \mathbf{E}\left[u_{\ell^{\prime}}^{i}\left(\sum_{j \neq i} X_{j}\right)\right]$ for all $\ell^{\prime} \in[k]$.
- $\mathbf{E}\left[u_{\ell}^{i}\left(\sum_{j \neq i} Y_{j}\right)\right] \geq \mathbf{E}\left[u_{\ell}^{i}\left(\sum_{j \neq i} X_{j}\right)\right]-2 \epsilon$;

$$
\mathbf{E}\left[u_{\ell^{\prime}}^{i}\left(\sum_{j \neq i} X_{j}\right)\right] \geq \mathbf{E}\left[u_{\ell^{\prime}}^{i}\left(\sum_{j \neq i} Y_{j}\right)\right]-2 \epsilon . \text { (by Lemma A) }
$$

The main theorem

Theorem 2.1

- $\left\{p_{i} \in \Delta^{k}\right\}_{i=1}^{n}$;
- $\left\{X_{i} \in \mathbb{R}^{k}\right\}_{i=1}^{n}, \operatorname{Pr}\left[X_{i}=e_{\ell}\right]=p_{i, \ell}, \forall i \in[n], \ell \in[k]$.
- $z>0$: a positive integer.

Then $\exists\left\{\hat{p}_{i} \in \Delta^{k}\right\}_{i=1}^{n}$, such that:
(1) $\left|\hat{p}_{i, \ell}-p_{i, \ell}\right|=O(1 / z), \forall i \in[n], \ell \in[k]$.
(2) $\hat{p}_{i, \ell}$ is an integer multiple of $\frac{1}{2^{k}} \frac{1}{z}, \forall i \in[n], \ell \in[k]$.
(3) if $p_{i, \ell}=0$, then $\hat{p}_{i, \ell}=0, \forall i \in[n], \ell \in[k]$.
(4) if $\left\{\hat{X}_{i} \in \mathcal{R}^{k}\right\}_{i=1}^{n}$ are independent random unit vectors s.t. $\operatorname{Pr}\left[\hat{X}_{i}=e_{\ell}\right]=\hat{p}_{i, \ell}$, $\forall i \in[n], \ell \in[k]$, then

$$
\left\|\sum_{i} X_{i}-\sum_{i} \hat{X}_{i}\right\|=O\left(f(k) \frac{\log z}{z^{1 / 5}}\right)=O\left(f(k) z^{-1 / 6}\right)
$$

and $\forall j \in[n]$,

$$
\left\|\sum_{i \neq j} X_{i}-\sum_{i \neq j} \hat{X}_{i}\right\|=O\left(f(k) \frac{\log z}{z^{1 / 5}}\right)=O\left(f(k) z^{-1 / 6}\right)
$$

where $f(k)$ is an exponential function of k.

The constructive proof for the PTAS for the k-strategy case

Theorem 2.2

There is a PTAS for finding a mixed NE for the k-strategy anonymous game.
Sketch of the proof:

- Let $\left(p_{1}, \ldots, p_{n}\right)$ be a mixed NE of the game.
- Take $z=(f(k) / \epsilon)^{6}$, then $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right)$ is an $O(\epsilon)$-NE.
- How to compute such $\left\{\hat{p}_{i}\right\}_{i=1}^{n}$?

Sketch of the proof of Theorem 2.2

- Remember, $\hat{p}_{i, \ell}$ is an integer multiple of $1 /\left(2^{k} z\right)$, for each i, ℓ.
- We proceed with a related K-strategy game, for $K:=\left(2^{k} z\right)^{k}=2^{k^{2}}(f(k) / \epsilon)^{6 k}$, and seek for its pure NE.
- Let \mathcal{K} denote the set of such quantized mixed strategies.
- The payoffs resulting from the new game: translating the pure strategy profile into a mixed strategy profile of the original game.

Seeking for the assignment of strategies: the max-flow reduction

The trickle-down process (TDP)

The trickle-down process (TDP)

The properties of TDP

- All leaves have just two strategies.
- At each level, the two sets where the set of strategies is split overlap in at most one strategy.
- The probability mass of such strategy is divided between its two copies.
- Each node of the tree (T_{i}, with node set V_{i}) represents a distribution.
- $\forall v \in V_{i}, v$ is identified with $\left(S_{v}, p_{i, v}\right)$, where $S_{v} \subseteq[k]$.
- $p_{i, v}$: is distribution over S_{v}.
- Based on T_{i}, we have an alternative way to sample X_{i} :

The alternative sampling of X_{i}

SAMPLING X_{i}

(1) (Stage 1) Perform a random walk from the root T_{i} to the leaves:

- At every non-leaf node, the left or right child is chosen w.p. $1 / 2$;
- $\Phi_{i} \in \partial T_{i}$: the leaf chosen by the random walk;
(2) (Stage 2) Let (S, p) be the label assigned to the leaf Φ_{i}.
- $S=\left\{\ell_{1}, \ell_{2}\right\}$;
- set $X_{i}=e_{\ell_{1}}$ w.p. $p\left(\ell_{1}\right)$, and $X_{i}=e_{\ell_{2}}$ w.p. $p\left(\ell_{2}\right)$.

Lemma 3.1

$\forall i \in[n]$, the process SAMPLING X_{i} outputs $X_{i}=e_{\ell}$ w.p. $p_{i, \ell}, \forall \ell \in[k]$.

Clustering the random vectors by Cells

Cell

Two vectors X_{i} and X_{j} belong to the same cell if

- \exists isomorphism $f_{i, j}: V_{i} \mapsto V_{j}$ between T_{i} and T_{j} such that $\forall u \in V_{i}, v \in V_{j}$,
- if $f_{i, j}(u)=v$, then $S_{u}=S_{v}$;
- the elements of S_{u} and S_{v} are ordered the same way by $p_{i, u}$ and $p_{j, v}$.
- if $u \in \partial T_{i}, v=f_{i, j}(u) \in \partial T_{j}$, and $\ell^{*} \in S_{u}=S_{v}$ is the strategy with the smallest probability mass for both $p_{i, u}$ and $p_{j, v}$, then
- either $p_{i, u}\left(\ell^{*}\right), p_{i, v}\left(\ell^{*}\right) \leq \frac{1 z^{\alpha}}{z}$ (Type A);
- or $p_{i, u}\left(\ell^{*}\right), p_{i, v}\left(\ell^{*}\right)>\frac{\left\lfloor z^{\alpha} \mid\right.}{z}$ (Type B).

Any tree resulting from TDP has $\leq k-1$ leaves, and the total number of cells is $\leq g(k):=k^{k^{2}} 2^{k-1} 2^{k} k!$

Clustering the random vectors by Cells

Cell

Two vectors X_{i} and X_{j} belong to the same cell if

- \exists isomorphism $f_{i, j}: V_{i} \mapsto V_{j}$ between T_{i} and T_{j} such that $\forall u \in V_{i}, v \in V_{j}$,
- if $f_{i, j}(u)=v$, then $S_{u}=S_{v}$;
- the elements of S_{u} and S_{v} are ordered the same way by $p_{i, u}$ and $p_{j, v}$.
- if $u \in \partial T_{i}, v=f_{i, j}(u) \in \partial T_{j}$, and $\ell^{*} \in S_{u}=S_{v}$ is the strategy with the smallest probability mass for both $p_{i, u}$ and $p_{j, v}$, then
- either $p_{i, u}\left(\ell^{*}\right), p_{i, v}\left(\ell^{*}\right) \leq \frac{\left\lfloor z^{\alpha}\right\rfloor}{z}$ (Type A);
- or $p_{i, u}\left(\ell^{*}\right), p_{i, v}\left(\ell^{*}\right)>\frac{\left\lfloor z^{\alpha}\right\rfloor}{z}$ (Type B).

Claim 3.3

Any tree resulting from TDP has $\leq k-1$ leaves, and the total number of cells is $\leq g(k):=k^{k^{2}} 2^{k-1} 2^{k} k!$.

On the number of cells and leaves

- TDP has $\leq k-1$ leaves by induction.
- $k=2$: True.
- For general k, the left subtree has j strategies $\Rightarrow \leq j-1$ leaves the right subtree has $\leq k+1-j$ strategies $\Rightarrow \leq k-j$ leaves.
- Let $T(m)$ denote the number of trees for some fixed set of m strategies and their ordering at the tree root.

$$
\star T(m) \approx \sum_{j=2}^{m-1} j \cdot T(j) \cdot T(m+1-j)<k^{k^{2}} .
$$

Discretization within a Cell

- Denote all the isomorphic trees of a particular cell w.r.t $\mathcal{I} \subset[n]$ by T.

Rounding

$\forall v \in \partial T$ with $S_{v}=\left\{\ell_{1}, \ell_{2}\right\}, \ell_{1}, \ell_{2} \in[k]$, do
(1) Find a set of probabilities $\left\{q_{i, \ell_{1}}\right\}_{i \in \mathcal{I}}$ with the following properties:

- $\forall i \in \mathcal{I},\left|q_{i, \ell_{1}}-p_{i, v}\left(\ell_{1}\right)\right| \leq 1 / z ;$
- $\forall i \in \mathcal{I}, q_{i, \ell_{1}}$ is an integer multiple of $1 / z$;
- $\left|\sum_{i \in \mathcal{I}} q_{i, \ell_{1}}-\sum_{i \in \mathcal{I}} p_{i, v}\left(\ell_{1}\right)\right| \leq 1 / z ;$
(2) $\forall i \in \mathcal{I}$, set $\hat{p}_{i, v}\left(\ell_{1}\right):=q_{i, \ell_{1}}, \hat{p}_{i, v}\left(\ell_{2}\right):=1-q_{i, \ell_{1}}$.
- $\hat{p}_{i}(\ell):=\sum_{\substack{v \in \partial T \\ \ell \in S_{v}}} 2^{- \text {depth }_{T}(v)} \hat{p}_{i, v}(\ell)$.

Distribution on the TDP tree leaves

Some notations

- $\Phi_{i} \in \partial T$: the leaf chosen by Stage 1 of SAMPLING X_{i}; $\hat{\Phi}_{i} \in \partial T$: the leaf chosen by Stage 1 of SAMPLING \hat{X}_{i};
- Let $\Phi=\left(\Phi_{i}\right)_{i \in \mathcal{I}}$;
- let G denote the distribution of Φ;

Let $\hat{\Phi}=\left(\hat{\Phi}_{i}\right)_{i \in \mathcal{I}}$;

- let \hat{G} denote the distribution of $\hat{\Phi}$;

Distribution on the TDP tree leaves

Some more notations

$\forall v \in \partial T$, with $S_{v}=\left\{\ell_{1}, \ell_{2}\right\}$ and ordering $\left(\ell_{1}, \ell_{2}\right)$:

- $\mathcal{I}_{v} \subseteq \mathcal{I}$: the index set s.t. $i \in \mathcal{I}_{v}$ iff $i \in \mathcal{I} \wedge \Phi_{i}=v$;
$\hat{\mathcal{I}}_{v} \subseteq \mathcal{I}$: the index set s.t. $i \in \hat{\mathcal{I}}_{v}$ iff $i \in \mathcal{I}_{v} \wedge \hat{\Phi}_{i}=v$;
- $\mathcal{J}_{v, 1} \subseteq \mathcal{I}_{v}$: the index set s.t. $i \in \mathcal{J}_{v, 1}$ iff $i \in \mathcal{I}_{v} \wedge X_{i}=e_{\ell_{1}}$;
- Let F_{v} denote the distribution of $\left|\mathcal{J}_{v, 1}\right|$
$\mathcal{J}_{v, 2} \subseteq \mathcal{I}_{v}$: the index set s.t. $i \in \mathcal{J}_{v, 2}$ iff $i \in \mathcal{I}_{v} \wedge X_{i}=e_{\ell_{2}}$;
- Let $\mathcal{J}:=\left(\left(\left|\mathcal{J}_{v, 1}\right|,\left|\mathcal{J}_{v, 2}\right|\right)\right)_{v \in \partial T}$;
- Let F denote the distribution of \mathcal{J}

Distribution on the TDP tree leaves

Some more notations

$\forall v \in \partial T$, with $S_{v}=\left\{\ell_{1}, \ell_{2}\right\}$ and ordering $\left(\ell_{1}, \ell_{2}\right)$:

- $\mathcal{I}_{v} \subseteq \mathcal{I}$: the index set s.t. $i \in \mathcal{I}_{v}$ iff $i \in \mathcal{I} \wedge \Phi_{i}=v$;
$\hat{\mathcal{I}}_{v} \subseteq \mathcal{I}$: the index set s.t. $i \in \hat{\mathcal{I}}_{v}$ iff $i \in \mathcal{I}_{v} \wedge \hat{\Phi}_{i}=v$;
- $\mathcal{J}_{v, 1} \subseteq \mathcal{I}_{v}$: the index set s.t. $i \in \mathcal{J}_{v, 1}$ iff $i \in \mathcal{I}_{v} \wedge X_{i}=e_{\ell_{1}}$;
- Let F_{v} denote the distribution of $\left|\mathcal{J}_{v, 1}\right|$.
$\mathcal{J}_{v, 2} \subseteq \mathcal{I}_{v}$: the index set s.t. $i \in \mathcal{J}_{v, 2}$ iff $i \in \mathcal{I}_{v} \wedge X_{i}=e_{\ell_{2}}$;
- Let $\mathcal{J}:=\left(\left(\left|\mathcal{J}_{v, 1}\right|,\left|\mathcal{J}_{v, 2}\right|\right)\right)_{v \in \partial T}$;
- Let F denote the distribution of \mathcal{J};
- Let $\hat{\mathcal{J}}_{v, 1}, \hat{\mathcal{J}}_{V, 2}, \hat{\mathcal{J}}_{,} \hat{F}_{V}$, and \hat{F} be defined similarly.

Distribution on the TDP tree leaves

Some more notations

$\forall v \in \partial T$, with $S_{v}=\left\{\ell_{1}, \ell_{2}\right\}$ and ordering $\left(\ell_{1}, \ell_{2}\right)$:

- $\mathcal{I}_{v} \subseteq \mathcal{I}$: the index set s.t. $i \in \mathcal{I}_{v}$ iff $i \in \mathcal{I} \wedge \Phi_{i}=v$;
$\hat{\mathcal{I}}_{v} \subseteq \mathcal{I}$: the index set s.t. $i \in \hat{\mathcal{I}}_{v}$ iff $i \in \mathcal{I}_{v} \wedge \hat{\Phi}_{i}=v$;
- $\mathcal{J}_{v, 1} \subseteq \mathcal{I}_{v}$: the index set s.t. $i \in \mathcal{J}_{v, 1}$ iff $i \in \mathcal{I}_{v} \wedge X_{i}=e_{\ell_{1}}$;
- Let F_{v} denote the distribution of $\left|\mathcal{J}_{v, 1}\right|$.
$\mathcal{J}_{v, 2} \subseteq \mathcal{I}_{v}$: the index set s.t. $i \in \mathcal{J}_{v, 2}$ iff $i \in \mathcal{I}_{v} \wedge X_{i}=e_{\ell_{2}}$;
- Let $\mathcal{J}:=\left(\left(\left|\mathcal{J}_{v, 1}\right|,\left|\mathcal{J}_{v, 2}\right|\right)\right)_{v \in \partial T}$;
- Let F denote the distribution of \mathcal{J};
- Let $\hat{\mathcal{J}}_{\mathrm{v}, 1}, \hat{\mathcal{J}}_{\mathrm{v}, 2}, \hat{\mathcal{J}}, \hat{F}_{\mathrm{v}}$, and \hat{F} be defined similarly.

Coupling within a cell

Claim 3.4

$\forall \theta \in(\partial T)^{\mathcal{I}}, G(\theta)=\hat{G}(\theta)$.

Lemma 3.5

There exists a value of α such that, for all $v \in \partial T$,

$$
G\left(\theta:\left\|F_{v}(\cdot \mid \Phi=\theta)-\hat{F}_{v}(\cdot \mid \hat{\Phi}=\theta)\right\| \leq O\left(\frac{2^{k} \log z}{z^{1 / 5}}\right)\right) \geq 1-\frac{4}{z^{1 / 3}}
$$

where $F_{v}(\cdot \mid \Phi)\left(\right.$ resp., $\left.\hat{F}_{v}(\cdot \mid \Phi)\right)$ denotes the conditional probability distribution of $\left|\mathcal{J}_{v, 1}\right|$ (resp., $\left.\left|\hat{\mathcal{J}}_{v, 1}\right|\right)$ given Φ.

Lemma 3.5

There exists a value of α such that, for all $v \in \partial T$,

$$
G\left(\theta:\left\|F_{v}(\cdot \mid \Phi=\theta)-\hat{F}_{v}(\cdot \mid \hat{\Phi}=\theta)\right\| \leq O\left(\frac{2^{k} \log z}{z^{1 / 5}}\right)\right) \geq 1-\frac{4}{z^{1 / 3}}
$$

where $F_{v}(\cdot \mid \Phi)$ (resp., $\hat{F}_{v}(\cdot \mid \Phi)$) denotes the conditional probability distribution of $\left|\mathcal{J}_{v, 1}\right|$ (resp., $\left|\hat{\mathcal{J}}_{v, 1}\right|$) given Φ.

- Roughly speaking, for all $v \in \partial T$, w.p. $\geq 1-\frac{4}{z^{1 / 3}}$ over the choices made by Stage 1 of processes $\left\{\text { SAMPLING } X_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\text { SAMPLING } \hat{X}_{i}\right\}_{i \in \mathcal{I}}$ (assuming these processes are coupled to make the same decisions in Stage 1),
the total variation distance b / w the conditional distribution of $\left|\mathcal{J}_{v, 1}\right|$ and $\left|\hat{\mathcal{J}}_{v, 1}\right|$ is bounded by $O\left(\frac{2^{k} \log z}{z^{1 / 5}}\right)$.

Lemma 3.6

Lemma 5 impies $\|F-\hat{F}\| \leq O\left(\frac{2^{k} \log z}{z^{1 / 5}}\right)$.

- Hence, $\left\|\sum_{i \in \mathcal{I}} X_{i}-\sum_{i \in \mathcal{I}} \hat{X}_{i}\right\|=O\left(k 2^{k} \log z \cdot z^{-1 / 5}\right)$.

Proof of Lemma 3.6

- Via a union bound, we have

$$
G\left(\theta: \forall v \in \partial T,\left\|F_{v}(\cdot \mid \Phi=\theta)-\hat{F}_{v}(\cdot \mid \hat{\Phi}=\theta)\right\| \leq O\left(\frac{2^{k} \log z}{z^{1 / 5}}\right)\right) \geq 1-O\left(k z^{-1 / 3}\right) .
$$

- Suppose for some $\theta \in(\partial T)^{\mathcal{I}}$, the following is satisfied
$\left\{\left|\mathcal{J}_{v, 1}\right|\right\}_{v \in \partial T}$ (resp., $\left\{\left|\hat{\mathcal{J}}_{v, 1}\right|\right\}_{v \in \partial T}$) are conditionally independent given Φ (resp. Φ). By the coupling lemma,

Proof of Lemma 3.6

- Via a union bound, we have

$$
G\left(\theta: \forall v \in \partial T,\left\|F_{v}(\cdot \mid \Phi=\theta)-\hat{F}_{v}(\cdot \mid \hat{\Phi}=\theta)\right\| \leq O\left(\frac{2^{k} \log z}{z^{1 / 5}}\right)\right) \geq 1-O\left(k z^{-1 / 3}\right)
$$

- Suppose for some $\theta \in(\partial T)^{\mathcal{I}}$, the following is satisfied

$$
\forall v \in \partial T,\left\|F_{v}(\cdot \mid \Phi=\theta)-\hat{F}_{v}(\cdot \mid \hat{\Phi}=\theta)\right\| \leq O\left(\frac{2^{k} \log z}{z^{1 / 5}}\right) .
$$

- $\left\{\mid \mathcal{J}_{v, 1}\right\}_{v \in \partial T}$ (resp., $\left\{\left|\hat{\mathcal{J}}_{v, 1}\right|\right\}_{v \in \partial T}$) are conditionally independent given Φ (resp. $\hat{\phi})$. By the coupling lemma,

Coupling within a Cell

Proof of Lemma 3.6

- Via a union bound, we have

$$
G\left(\theta: \forall v \in \partial T,\left\|F_{v}(\cdot \mid \Phi=\theta)-\hat{F}_{v}(\cdot \mid \hat{\Phi}=\theta)\right\| \leq O\left(\frac{2^{k} \log z}{z^{1 / 5}}\right)\right) \geq 1-O\left(k z^{-1 / 3}\right)
$$

- Suppose for some $\theta \in(\partial T)^{\mathcal{I}}$, the following is satisfied

$$
\forall v \in \partial T,\left\|F_{v}(\cdot \mid \Phi=\theta)-\hat{F}_{v}(\cdot \mid \hat{\Phi}=\theta)\right\| \leq O\left(\frac{2^{k} \log z}{z^{1 / 5}}\right) .
$$

- $\left\{\left|\mathcal{J}_{V, 1}\right|\right\}_{v \in \partial T}$ (resp., $\left\{\left|\hat{\mathcal{J}}_{v}, 1\right|\right\}_{v \in \partial T}$) are conditionally independent given Φ (resp., $\hat{\Phi}$). By the coupling lemma,

$$
\|F(\cdot \mid \Phi=\theta)-\hat{F}(\cdot \mid \hat{\Phi}=\theta)\| \leq O\left(k \frac{2^{k} \log z}{z^{1 / 5}}\right) .
$$

- Therefore,

Proof of Lemma 3.6

- Via a union bound, we have

$$
G\left(\theta: \forall v \in \partial T,\left\|F_{v}(\cdot \mid \Phi=\theta)-\hat{F}_{v}(\cdot \mid \hat{\Phi}=\theta)\right\| \leq O\left(\frac{2^{k} \log z}{z^{1 / 5}}\right)\right) \geq 1-O\left(k z^{-1 / 3}\right)
$$

- Suppose for some $\theta \in(\partial T)^{\mathcal{I}}$, the following is satisfied

$$
\forall v \in \partial T,\left\|F_{v}(\cdot \mid \Phi=\theta)-\hat{F}_{v}(\cdot \mid \hat{\Phi}=\theta)\right\| \leq O\left(\frac{2^{k} \log z}{z^{1 / 5}}\right)
$$

- $\left\{\left|\mathcal{J}_{v, 1}\right|\right\}_{v \in \partial T}$ (resp., $\left\{\left|\hat{\mathcal{J}}_{\mathcal{V}, 1}\right|\right\}_{v \in \partial T}$) are conditionally independent given Φ (resp., $\hat{\Phi}$). By the coupling lemma,

$$
\|F(\cdot \mid \Phi=\theta)-\hat{F}(\cdot \mid \hat{\Phi}=\theta)\| \leq O\left(k \frac{2^{k} \log z}{z^{1 / 5}}\right) .
$$

- Therefore,

$$
G\left(\theta:\|F(\cdot \mid \Phi=\theta)-\hat{F}(\cdot \mid \hat{\Phi}=\theta)\| \leq O\left(k \frac{2^{k} \log z}{z^{1 / 5}}\right)\right) \geq 1-O\left(k z^{-1 / 3}\right)
$$

Proof of Lemma 3.6

- Via a union bound, we have

$$
G\left(\theta: \forall v \in \partial T,\left\|F_{v}(\cdot \mid \Phi=\theta)-\hat{F}_{v}(\cdot \mid \hat{\Phi}=\theta)\right\| \leq O\left(\frac{2^{k} \log z}{z^{1 / 5}}\right)\right) \geq 1-O\left(k z^{-1 / 3}\right)
$$

- Suppose for some $\theta \in(\partial T)^{\mathcal{I}}$, the following is satisfied

$$
\forall v \in \partial T,\left\|F_{v}(\cdot \mid \Phi=\theta)-\hat{F}_{v}(\cdot \mid \hat{\Phi}=\theta)\right\| \leq O\left(\frac{2^{k} \log z}{z^{1 / 5}}\right)
$$

- $\left\{\left|\mathcal{J}_{v, 1}\right|\right\}_{v \in \partial T}$ (resp., $\left\{\left|\hat{\mathcal{J}}_{\mathcal{V}, 1}\right|\right\}_{v \in \partial T}$) are conditionally independent given Φ (resp., $\hat{\Phi}$). By the coupling lemma,

$$
\|F(\cdot \mid \Phi=\theta)-\hat{F}(\cdot \mid \hat{\Phi}=\theta)\| \leq O\left(k \frac{2^{k} \log z}{z^{1 / 5}}\right) .
$$

- Therefore,

$$
G\left(\theta:\|F(\cdot \mid \Phi=\theta)-\hat{F}(\cdot \mid \hat{\Phi}=\theta)\| \leq O\left(k \frac{2^{k} \log z}{z^{1 / 5}}\right)\right) \geq 1-O\left(k z^{-1 / 3}\right)
$$

Proof of Lemma 3.6 (contd.)

$$
\text { Good }:=\left\{\theta: \theta \in(\partial T)^{\mathcal{I}},\|F(\cdot \mid \Phi=\theta)-\hat{F}(\cdot \mid \hat{\Phi}=\theta)\| \leq O\left(k \frac{2^{k} \log z}{z^{1 / 5}}\right)\right\}
$$

and Bad $=(\partial T)^{\mathcal{I}}-$ Good.

- We knew that $G(\mathrm{Bad}) \leq O\left(k z^{-1 / 3}\right)$.

$$
\begin{aligned}
\|F-\hat{F}\| & =\frac{1}{2} \sum_{t}|F(t)-\hat{F}(t)| \\
& =\frac{1}{2} \sum_{t}\left|\sum_{\theta} F(t \mid \Phi=\theta) G(\Phi=\theta)-\hat{F}(t \mid \hat{\Phi}=\theta) \hat{G}(\Phi=\theta)\right| \\
& \left.\left.=\frac{1}{2} \sum_{t} \right\rvert\, \sum_{\theta} F(t \mid \Phi=\theta)-\hat{F}(t \mid \hat{\Phi}=\theta)\right) G(\theta) \mid \\
& \left.\left.\leq \frac{1}{2} \sum_{t} \sum_{\theta} \right\rvert\, F(t \mid \Phi=\theta)-\hat{F}(t \mid \hat{\Phi}=\theta)\right) \mid G(\theta)
\end{aligned}
$$

Proof of Lemma 3.6 (contd.)

$$
\begin{aligned}
\|F-\hat{F}\| \leq & \left.\left.\ldots=\frac{1}{2} \sum_{t} \sum_{\theta \in \operatorname{Good}} \right\rvert\, F(t \mid \Phi=\theta)-\hat{F}(t \mid \hat{\Phi}=\theta)\right) \mid G(\theta) \\
& \left.\left.+\frac{1}{2} \sum_{t} \sum_{\theta \in \operatorname{Bad}} \right\rvert\, F(t \mid \Phi=\theta)-\hat{F}(t \mid \hat{\Phi}=\theta)\right) \mid G(\theta) \\
\leq & \left.\left.\sum_{\theta \in \operatorname{Good}} G(\theta)\left(\left.\frac{1}{2} \sum_{t} \right\rvert\, F(t \mid \Phi=\theta)-\hat{F}(t \mid \hat{\Phi}=\theta)\right) \right\rvert\,\right) \\
& \left.\left.+\sum_{\theta \in \operatorname{Bad}} G(\theta)\left(\left.\frac{1}{2} \sum_{t} \right\rvert\, F(t \mid \Phi=\theta)-\hat{F}(t \mid \hat{\Phi}=\theta)\right) \right\rvert\,\right) \\
\leq & \sum_{\theta \in \operatorname{Good}} G(\theta) \cdot O\left(k \frac{2^{k} \log z}{z^{1 / 5}}\right)+\sum_{\theta \in \text { Bad }} G(\theta) \\
\leq & O\left(k \frac{2^{k} \log z}{z^{1 / 5}}\right)+O\left(k z^{-1 / 3}\right) .
\end{aligned}
$$

Thank you.

