Discretized multinomial distributions and Nash equilibria in anonymous games

Constantinos Daskalakis and Christos Papadimitriou

The 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pp. 25–34.

Speaker: Joseph Chuang-Chieh Lin

Institute of Information Science Academia Sinica Taiwan

17 March 2017

Outline

2 The Main Result

3 Sketch of the proofs

- The Tickle-down Process
- The Alternative Sampling of X_i
- Clustering the Random Vectors
- Discretization within a Cell
- Coupling within a Cell

Anonymous games

k-strategy anonymous games

- $(n, k, \{u_j^i\}_{i \in [n], j \in [k]})$:
 - *n*: # players;
 - k: # pure strategies per player;
 - $u_j^i:\prod_{n=1}^k\mapsto [0,1]$: utility function

•
$$\prod_{n=1}^{k} := \{(x_1, \ldots, x_k) \in ([k] \cup \{0\})^k \mid \sum_{j \in [k]} x_j = n-1\}.$$

- * All possible ways to partition n-1 players into the k strategies.
- A mixed strategy profile: {δ_i ∈ Δ^k}_{i∈[n]}, where Δ^k denotes the set of distributions over [k].

PTAS by Discretization (rough idea)

- Restrict our search to distributions with strategy probabilities being multiples of 1/z, for some integer z > 0.
- Each such quantized mixed strategy can be considered as a *pure* strategy.
 - Utilities of the resulting new game can be computed via dynamic programming.
- Search for approx. NE by solving a corresponding max-flow problem.

4 / 32

PTAS by Discretization (rough idea)

- Restrict our search to distributions with strategy probabilities being multiples of 1/z, for some integer z > 0.
- Each such quantized mixed strategy can be considered as a *pure* strategy.
 - Utilities of the resulting new game can be computed via dynamic programming.
- Search for approx. NE by solving a corresponding max-flow problem.
- We've seen this for the 2-strategy case.

Remark on the dynamic programming (e.g., 2-strategy)

Player n's expected payoff from strategy 1 (given a mixed strategy profile δ):

 $u_1^n((0, n-1)) \cdot \Pr[X = 0] + u_1^n((1, n-2)) \cdot \Pr[X = 1] + \dots + u_1^n((n-1, 0)) \cdot \Pr[X = n-1],$

X = # players playing strategy 1 under profile δ_{-n} .

Rewrite X = ∑_{i=1}ⁿ⁻¹ X_i.
X_i ∈ {0,1}: whether player i plays strategy 1.

• Consider a $(n-1) \times n$ table $T(i, \ell)$, for $i \in [n-1]$, $\ell \in \{0\} \cup [n-1]$, and $T(i, \ell) = \Pr[\sum_{j \leq i} X_j = \ell]$.

$$T(i,\ell) = \begin{cases} \delta_i(1) \cdot T(i-1,\ell-1) + \delta_i(2) \cdot T(i-1,\ell), & \text{if } 0 < \ell < i; \\ \delta_i(1) \cdot T(i-1,i-1), & \text{if } \ell = i; \\ \delta_i(2) \cdot T(i-1,0), & \text{if } \ell = 0; \\ 0, & \text{if } \ell > i. \end{cases}$$

* Namely, $\Pr[X = \ell] = T(n-1,\ell)$, $\forall \ell \in \{0\} \cup [n-1]$.

Difficulties for the general cases of k > 2

- No useful approximations like Poisson approximation for the binomial distribution are known yet.
- Binomial case is easy because it's essentially one-dimensional.
 - In the multinomial case, watching the balls in one bin provides small information about the distribution of the remaining balls in other bins.
- We need something that combines multidimensional Poisson and translated-Poisson approximations *in the same picture*.

Useful lemmas and tools

The total variation distance

 $\mathbb{P},\mathbb{Q}:$ two distributions supported by a finite set $\mathcal{A}.$

$$||\mathbb{P}-\mathbb{Q}|| \triangleq ||\mathbb{P}-\mathbb{Q}||_{\mathcal{T}V} = rac{1}{2} \cdot \sum_{lpha \in \mathcal{A}} |\mathbb{P}(lpha)-\mathbb{Q}(lpha)|\,.$$

A simple & useful lemma

Let $\{X_i\}_{i=1}^n$ and $\{Y_i\}_{i=1}^n$ be two sets of mutually independent random vectors. Then

$$\left\|\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} Y_{i}\right\| \leq \sum_{i=1}^{n} \|X_{i} - Y_{i}\|.$$

$$\left\|\sum_{i=1}^n X_i - \sum_{i=1}^n Y_i\right\| \le \Pr\left[\sum_{i=1}^n X_i \neq \sum_{i=1}^n Y_i\right] \le \sum_{i=1}^n \Pr[X_i \neq Y_i] = \sum_{i=1}^n \|X_i - Y_i\|.$$

- By the optimal coupling theorem, there exists a coupling of X_i and Y_i such that $Pr[X_i \neq Y_i] = ||X_i Y_i||$.
- Define a grand coupling of $\{X_i\}_{i=1}^n$ and $\{Y_i\}_{i=1}^n$ such that $\Pr[X_i \neq Y_i] = \sum_{i=1}^n ||X_i Y_i||, \forall i.$

$$\left|\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} Y_{i}\right| \leq \Pr\left[\sum_{i=1}^{n} X_{i} \neq \sum_{i=1}^{n} Y_{i}\right] \le \sum_{i=1}^{n} \Pr[X_{i} \neq Y_{i}] = \sum_{i=1}^{n} ||X_{i} - Y_{i}||.$$

- By the optimal coupling theorem, there exists a coupling of X_i and Y_i such that $Pr[X_i \neq Y_i] = ||X_i Y_i||$.
- Define a grand coupling of $\{X_i\}_{i=1}^n$ and $\{Y_i\}_{i=1}^n$ such that $\Pr[X_i \neq Y_i] = \sum_{i=1}^n ||X_i Y_i||, \forall i.$

$$\left|\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} Y_{i}\right| \leq \Pr\left[\sum_{i=1}^{n} X_{i} \neq \sum_{i=1}^{n} Y_{i}\right] \le \sum_{i=1}^{n} \Pr[X_{i} \neq Y_{i}] = \sum_{i=1}^{n} \|X_{i} - Y_{i}\|.$$

- By the optimal coupling theorem, there exists a coupling of X_i and Y_i such that $Pr[X_i \neq Y_i] = ||X_i Y_i||$.
- Define a grand coupling of $\{X_i\}_{i=1}^n$ and $\{Y_i\}_{i=1}^n$ such that $\Pr[X_i \neq Y_i] = \sum_{i=1}^n ||X_i Y_i||, \forall i.$

$$\left|\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} Y_{i}\right| \leq \Pr\left[\sum_{i=1}^{n} X_{i} \neq \sum_{i=1}^{n} Y_{i}\right] \le \sum_{i=1}^{n} \Pr[X_{i} \neq Y_{i}] = \sum_{i=1}^{n} \|X_{i} - Y_{i}\|.$$

- By the optimal coupling theorem, there exists a coupling of X_i and Y_i such that $Pr[X_i \neq Y_i] = ||X_i Y_i||$.
- Define a grand coupling of $\{X_i\}_{i=1}^n$ and $\{Y_i\}_{i=1}^n$ such that $\Pr[X_i \neq Y_i] = \sum_{i=1}^n ||X_i Y_i||, \forall i.$

Discretized multinomial distributions The Main Result

Lemmas for clarification

Lemma A [Daskalakis & Papadimitriou, J. Econ. Theory 2015]

Let $\{X_i\}_{i=1}^n$ and $\{Y_i\}_{i=1}^n$ be two mixed strategy profiles of an anonymous game of *n* players and *k* strategies. Then for all $i \in [n]$ and $\ell \in [k]$:

$$\left| \mathsf{E} \left[u_{\ell}^{i} \left(\sum_{j \neq i} X_{j} \right) \right] - \mathsf{E} \left[u_{\ell}^{i} \left(\sum_{j \neq i} Y_{j} \right) \right] \right| \leq 2 \left\| \sum_{j \neq i} X_{j} - \sum_{j \neq i} Y_{j} \right\|$$

Discretized multinomial distributions The Main Result

۲

A quick overview of Lemma A's proof

 $\left| \mathbf{E} \left| u_{\ell}^{i} \left(\sum_{i \neq i} X_{j} \right) \right| - \mathbf{E} \left| u_{\ell}^{i} \left(\sum_{i \neq i} Y_{j} \right) \right| \right|$ $= \left| \sum_{x \in \prod_{n=1}^{k}} u_{\ell}^{i}(x) \cdot \left(\Pr\left[\sum_{j \neq i} X_{j} = x \right] - \Pr\left[\sum_{i \neq i} Y_{j} = x \right] \right) \right|$ $\leq \sum_{x \in \prod_{n=1}^{k}} |u_{\ell}^{i}(x)| \cdot \left| \Pr\left[\sum_{j \neq i} X_{j} = x \right] - \Pr\left[\sum_{i \neq i} Y_{j} = x \right] \right|$ $\leq 2 \left\| \sum_{i \neq i} X_j - \sum_{i \neq i} Y_j \right\|.$

10 / 32

Lemma B [Daskalakis & Papadimitriou 2015]

Suppose $\{X_i\}_{i \in [n]}$ is a NE of an anonymous game of *n* players and *k* strategies, and $\{Y_i\}_{i \in [n]}$ is a mixed strategy profile satisfying:

(a.) the support of Y_i is a subset of the support of X_i , for all i;

(b.)
$$\exists \epsilon \geq 0$$
, $\left\|\sum_{j \neq i} X_j - \sum_{j \neq i} Y_j\right\| \leq \epsilon$, for all *i*.

Then, $\{Y_i\}_{i=1}^n$ is a 4 ϵ -NE.

For every ℓ in the support of Y_i :

- $\mathbf{E}[u^i_{\ell}(\sum_{j \neq i} X_j)] \ge \mathbf{E}[u^i_{\ell'}(\sum_{j \neq i} X_j)]$ for all $\ell' \in [k]$
- $\mathbf{E}[u_{\ell}^{i}(\sum_{j\neq i}Y_{j})] \ge \mathbf{E}[u_{\ell}^{i}(\sum_{j\neq i}X_{j})] 2\epsilon;$ $\mathbf{E}[u_{\ell'}^{i}(\sum_{j\neq i}X_{j})] \ge \mathbf{E}[u_{\ell'}^{i}(\sum_{j\neq i}Y_{j})] - 2\epsilon.$ (by Lemma A)

11 / 32

Lemma B [Daskalakis & Papadimitriou 2015]

Suppose $\{X_i\}_{i \in [n]}$ is a NE of an anonymous game of *n* players and *k* strategies, and $\{Y_i\}_{i \in [n]}$ is a mixed strategy profile satisfying:

(a.) the support of Y_i is a subset of the support of X_i , for all i;

(b.)
$$\exists \epsilon \geq 0$$
, $\left\|\sum_{j \neq i} X_j - \sum_{j \neq i} Y_j\right\| \leq \epsilon$, for all *i*.

Then, $\{Y_i\}_{i=1}^n$ is a 4 ϵ -NE.

For every ℓ in the support of Y_i :

- $\mathbf{E}[u^i_{\ell}(\sum_{j\neq i} X_j)] \ge \mathbf{E}[u^i_{\ell'}(\sum_{j\neq i} X_j)]$ for all $\ell' \in [k]$.
- $\mathbf{E}[u_{\ell}^{i}(\sum_{j \neq i} Y_{j})] \ge \mathbf{E}[u_{\ell}^{i}(\sum_{j \neq i} X_{j})] 2\epsilon;$ $\mathbf{E}[u_{\ell'}^{i}(\sum_{j \neq i} X_{j})] \ge \mathbf{E}[u_{\ell'}^{i}(\sum_{j \neq i} Y_{j})] - 2\epsilon.$ (by Lemma A)

11 / 32

Lemma B [Daskalakis & Papadimitriou 2015]

Suppose $\{X_i\}_{i \in [n]}$ is a NE of an anonymous game of *n* players and *k* strategies, and $\{Y_i\}_{i \in [n]}$ is a mixed strategy profile satisfying:

(a.) the support of Y_i is a subset of the support of X_i , for all i;

(b.)
$$\exists \epsilon \geq 0$$
, $\left\|\sum_{j \neq i} X_j - \sum_{j \neq i} Y_j\right\| \leq \epsilon$, for all *i*.

Then, $\{Y_i\}_{i=1}^n$ is a 4 ϵ -NE.

For every ℓ in the support of Y_i :

- $\mathbf{E}[u^i_{\ell}(\sum_{j\neq i} X_j)] \ge \mathbf{E}[u^i_{\ell'}(\sum_{j\neq i} X_j)]$ for all $\ell' \in [k]$.
- $\mathbf{E}[u_{\ell}^{i}(\sum_{j\neq i}Y_{j})] \ge \mathbf{E}[u_{\ell}^{i}(\sum_{j\neq i}X_{j})] 2\epsilon;$ $\mathbf{E}[u_{\ell'}^{i}(\sum_{j\neq i}X_{j})] \ge \mathbf{E}[u_{\ell'}^{i}(\sum_{j\neq i}Y_{j})] - 2\epsilon.$ (by Lemma A)

11 / 32

Lemma B [Daskalakis & Papadimitriou 2015]

Suppose $\{X_i\}_{i \in [n]}$ is a NE of an anonymous game of *n* players and *k* strategies, and $\{Y_i\}_{i \in [n]}$ is a mixed strategy profile satisfying:

(a.) the support of Y_i is a subset of the support of X_i , for all i;

(b.)
$$\exists \epsilon \geq 0$$
, $\left\|\sum_{j \neq i} X_j - \sum_{j \neq i} Y_j\right\| \leq \epsilon$, for all *i*.

Then, $\{Y_i\}_{i=1}^n$ is a 4 ϵ -NE.

For every ℓ in the support of Y_i :

•
$$\mathsf{E}[u^i_{\ell}(\sum_{j\neq i} X_j)] \ge \mathsf{E}[u^i_{\ell'}(\sum_{j\neq i} X_j)]$$
 for all $\ell' \in [k]$.

•
$$\mathbf{E}[u_{\ell}^{i}(\sum_{j\neq i} Y_{j})] \ge \mathbf{E}[u_{\ell}^{i}(\sum_{j\neq i} X_{j})] - 2\epsilon;$$

 $\mathbf{E}[u_{\ell'}^{i}(\sum_{j\neq i} X_{j})] \ge \mathbf{E}[u_{\ell'}^{i}(\sum_{j\neq i} Y_{j})] - 2\epsilon.$ (by Lemma A)

11 / 32

The main theorem

Theorem 2.1

• $\{p_i \in \Delta^k\}_{i=1}^n;$

•
$$\{X_i \in \mathbb{R}^k\}_{i=1}^n$$
, $\Pr[X_i = e_\ell] = p_{i,\ell}, \forall i \in [n], \ell \in [k].$

• z > 0: a positive integer.

Then $\exists \{\hat{p}_i \in \Delta^k\}_{i=1}^n$, such that: $|\hat{p}_{i,\ell} - p_{i,\ell}| = O(1/z), \, \forall i \in [n], \ell \in [k].$ 2 $\hat{p}_{i,\ell}$ is an integer multiple of $\frac{1}{2k}\frac{1}{2}$, $\forall i \in [n], \ell \in [k]$. **3** if $p_{i,\ell} = 0$, then $\hat{p}_{i,\ell} = 0$, $\forall i \in [n], \ell \in [k]$. **(4)** if $\{\hat{X}_i \in \mathcal{R}^k\}_{i=1}^n$ are independent random unit vectors s.t. $\Pr[\hat{X}_i = e_\ell] = \hat{p}_{i,\ell}$, $\forall i \in [n], \ell \in [k]$, then $\left\|\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} \hat{X}_{i}\right\| = O\left(f(k) \frac{\log z}{z^{1/5}}\right) = O(f(k) z^{-1/6}),$ and $\forall j \in [n]$, $\left\| \sum_{i \neq i} X_i - \sum_{i \neq i} \hat{X}_i \right\| = O\left(f(k) \frac{\log z}{z^{1/5}}\right) = O(f(k) z^{-1/6}),$ where f(k) is an exponential function of k.

The constructive proof for the PTAS for the k-strategy case

Theorem 2.2

There is a PTAS for finding a mixed NE for the k-strategy anonymous game.

Sketch of the proof:

- Let (p_1, \ldots, p_n) be a mixed NE of the game.
- Take $z = (f(k)/\epsilon)^6$, then $(\hat{p}_1, \dots, \hat{p}_n)$ is an $O(\epsilon)$ -NE.
- How to compute such ${\hat{p}_i}_{i=1}^n$?

Sketch of the proof of Theorem 2.2

- Remember, $\hat{p}_{i,\ell}$ is an integer multiple of $1/(2^k z)$, for each i, ℓ .
- We proceed with a related K-strategy game, for $K := (2^k z)^k = 2^{k^2} (f(k)/\epsilon)^{6k}$, and seek for its pure NE.
 - $\bullet\,$ Let ${\cal K}$ denote the set of such quantized mixed strategies.
- The payoffs resulting from the new game: translating the pure strategy profile into a mixed strategy profile of the original game.

Seeking for the assignment of strategies: the max-flow reduction

Joseph C.-C. Lin (Academia Sinica, TW) Discretized multinomial distributions

Discretized multinomial distributions Sketch of the proofs The Tickle-down Process

The trickle-down process (TDP)

10 Mar 2017 16 / 32

Discretized multinomial distributions Sketch of the proofs The Tickle-down Process

The trickle-down process (TDP)

10 Mar 2017 17 / 32

Discretized multinomial distributions Sketch of the proofs The Tickle-down Process

The properties of TDP

- All leaves have just two strategies.
- At each level, the two sets where the set of strategies is split overlap in at most one strategy.
 - The probability mass of such strategy is divided between its two copies.
- Each node of the tree $(T_i, with node set V_i)$ represents a distribution.
 - $\forall v \in V_i$, v is identified with $(S_v, p_{i,v})$, where $S_v \subseteq [k]$.
 - $p_{i,v}$: is distribution over S_v .

Discretized multinomial distributions Sketch of the proofs The Alternative Sampling of X_i

• Based on T_i , we have an alternative way to sample X_i :

Discretized multinomial distributions Sketch of the proofs The Alternative Sampling of X;

The alternative sampling of X_i

SAMPLING X_i

(Stage 1) Perform a random walk from the root T_i to the leaves:

- At every non-leaf node, the left or right child is chosen w.p. 1/2;
- $\Phi_i \in \partial T_i$: the leaf chosen by the random walk;
- (Stage 2) Let (S, p) be the label assigned to the leaf Φ_i .

•
$$S = \{\ell_1, \ell_2\};$$

• set $X_i = e_{\ell_1}$ w.p. $p(\ell_1)$, and $X_i = e_{\ell_2}$ w.p. $p(\ell_2)$.

Lemma 3.1

 $\forall i \in [n]$, the process SAMPLING X_i outputs $X_i = e_\ell$ w.p. $p_{i,\ell}, \forall \ell \in [k]$.

Discretized multinomial distributions Sketch of the proofs Clustering the Random Vectors

Clustering the random vectors by Cells

Cell

Two vectors X_i and X_j belong to the same cell if

- \exists isomorphism $f_{i,j}: V_i \mapsto V_j$ between T_i and T_j such that $\forall u \in V_i, v \in V_j$,
 - if $f_{i,j}(u) = v$, then $S_u = S_v$;
 - the elements of S_u and S_v are ordered the same way by $p_{i,u}$ and $p_{j,v}$.
- if u ∈ ∂T_i, v = f_{i,j}(u) ∈ ∂T_j, and ℓ^{*} ∈ S_u = S_v is the strategy with the smallest probability mass for both p_{i,u} and p_{j,v}, then

• either
$$p_{i,u}(\ell^*), p_{i,v}(\ell^*) \leq \frac{\lfloor z^{\alpha} \rfloor}{z}$$
 (Type A);
• or $p_{i,u}(\ell^*), p_{i,v}(\ell^*) > \frac{\lfloor z^{\alpha} \rfloor}{z}$ (Type B).

Claim 3.3

Any tree resulting from TDP has $\leq k - 1$ leaves, and the total number of cells is $\leq g(k) := k^{k^2} 2^{k-1} 2^k k!$.

10 Mar 2017

21 / 32

Discretized multinomial distributions Sketch of the proofs Clustering the Random Vectors

Clustering the random vectors by Cells

Cell

Two vectors X_i and X_j belong to the same cell if

- \exists isomorphism $f_{i,j}: V_i \mapsto V_j$ between T_i and T_j such that $\forall u \in V_i, v \in V_j$,
 - if $f_{i,j}(u) = v$, then $S_u = S_v$;
 - the elements of S_u and S_v are ordered the same way by $p_{i,u}$ and $p_{j,v}$.
- if u ∈ ∂T_i, v = f_{i,j}(u) ∈ ∂T_j, and ℓ^{*} ∈ S_u = S_v is the strategy with the smallest probability mass for both p_{i,u} and p_{j,v}, then

• either
$$p_{i,u}(\ell^*), p_{i,v}(\ell^*) \leq \frac{\lfloor z^{\alpha} \rfloor}{z}$$
 (Type A);
• or $p_{i,u}(\ell^*), p_{i,v}(\ell^*) > \frac{\lfloor z^{\alpha} \rfloor}{z}$ (Type B).

Claim 3.3

Any tree resulting from TDP has $\leq k - 1$ leaves, and the total number of cells is $\leq g(k) := k^{k^2} 2^{k-1} 2^k k!$.

10 Mar 2017 21 / 32

- 4 一司

- ∃ ►

DQA

Discretized multinomial distributions Sketch of the proofs Clustering the Random Vectors

On the number of cells and leaves

- TDP has $\leq k 1$ leaves by induction.
 - *k* = 2: True.
 - For general k, the left subtree has j strategies ⇒ ≤ j − 1 leaves the right subtree has ≤ k + 1 − j strategies ⇒ ≤ k − j leaves.
- Let T(m) denote the number of trees for some fixed set of m strategies and their ordering at the tree root.

*
$$T(m) \approx \sum_{j=2}^{m-1} j \cdot T(j) \cdot T(m+1-j) < k^{k^2}$$
.

Discretized multinomial distributions Sketch of the proofs Discretization within a Cell

Discretization within a Cell

• Denote all the isomorphic trees of a particular cell w.r.t $\mathcal{I} \subset [n]$ by \mathcal{T} .

Rounding

$$orall v \in \partial T$$
 with $S_v = \{\ell_1, \ell_2\}$, $\ell_1, \ell_2 \in [k]$, do

• Find a set of probabilities $\{q_{i,\ell_1}\}_{i\in\mathcal{I}}$ with the following properties:

•
$$\forall i \in \mathcal{I}, |q_{i,\ell_1} - p_{i,\nu}(\ell_1)| \leq 1/z;$$

• $\forall i \in \mathcal{I}, q_{i,\ell_1}$ is an integer multiple of 1/z;

•
$$|\sum_{i \in I} q_{i,\ell_1} - \sum_{i \in I} p_{i,v}(\ell_1)| \le 1/z;$$

•
$$\hat{p}_i(\ell) := \sum_{\substack{v \in \partial T \\ \ell \in S_v}} 2^{-\operatorname{depth}_T(v)} \hat{p}_{i,v}(\ell).$$

Distribution on the TDP tree leaves

Some notations

- $\Phi_i \in \partial T$: the leaf chosen by Stage 1 of SAMPLING X_i ; $\hat{\Phi}_i \in \partial T$: the leaf chosen by Stage 1 of SAMPLING \hat{X}_i ;
- Let $\Phi = (\Phi_i)_{i \in \mathcal{I}}$;

• let G denote the distribution of Φ ;

Let
$$\hat{\Phi} = (\hat{\Phi}_i)_{i \in \mathcal{I}};$$

• let \hat{G} denote the distribution of $\hat{\Phi}$;

24 / 32

Distribution on the TDP tree leaves

Some more notations

 $\forall v \in \partial T$, with $S_v = \{\ell_1, \ell_2\}$ and ordering (ℓ_1, ℓ_2) :

- $\mathcal{I}_{v} \subseteq \mathcal{I}$: the index set s.t. $i \in \mathcal{I}_{v}$ iff $i \in \mathcal{I} \land \Phi_{i} = v$; $\hat{\mathcal{I}}_{v} \subseteq \mathcal{I}$: the index set s.t. $i \in \hat{\mathcal{I}}_{v}$ iff $i \in \mathcal{I}_{v} \land \hat{\Phi}_{i} = v$;
- J_{v,1} ⊆ I_v: the index set s.t. i ∈ J_{v,1} iff i ∈ I_v ∧ X_i = e_{ℓ1};
 Let F_v denote the distribution of |J_{v,1}|.

 $\mathcal{J}_{\nu,2} \subseteq \mathcal{I}_{\nu}$: the index set s.t. $i \in \mathcal{J}_{\nu,2}$ iff $i \in \mathcal{I}_{\nu} \land X_i = e_{\ell_2}$;

• Let $\mathcal{J} := ((|\mathcal{J}_{v,1}|, |\mathcal{J}_{v,2}|))_{v \in \partial T};$

• Let F denote the distribution of \mathcal{J} ;

• Let $\hat{\mathcal{J}}_{\nu,1}$, $\hat{\mathcal{J}}_{\nu,2}$, $\hat{\mathcal{J}}$, $\hat{\mathcal{F}}_{\nu}$, and $\hat{\mathcal{F}}$ be defined similarly.

Distribution on the TDP tree leaves

Some more notations

 $\forall v \in \partial T$, with $S_v = \{\ell_1, \ell_2\}$ and ordering (ℓ_1, ℓ_2) :

- $\mathcal{I}_{v} \subseteq \mathcal{I}$: the index set s.t. $i \in \mathcal{I}_{v}$ iff $i \in \mathcal{I} \land \Phi_{i} = v$; $\hat{\mathcal{I}}_{v} \subseteq \mathcal{I}$: the index set s.t. $i \in \hat{\mathcal{I}}_{v}$ iff $i \in \mathcal{I}_{v} \land \hat{\Phi}_{i} = v$;
- J_{v,1} ⊆ I_v: the index set s.t. i ∈ J_{v,1} iff i ∈ I_v ∧ X_i = e_{ℓ1};
 Let F_v denote the distribution of |J_{v,1}|.

 $\mathcal{J}_{\nu,2} \subseteq \mathcal{I}_{\nu}$: the index set s.t. $i \in \mathcal{J}_{\nu,2}$ iff $i \in \mathcal{I}_{\nu} \land X_i = e_{\ell_2}$;

Let J := ((|J_{v,1}|, |J_{v,2}|))_{v∈∂T};
Let F denote the distribution of J;

• Let $\hat{\mathcal{J}}_{v,1}$, $\hat{\mathcal{J}}_{v,2}$, $\hat{\mathcal{J}}$, $\hat{\mathcal{F}}_{v}$, and $\hat{\mathcal{F}}$ be defined similarly.

Distribution on the TDP tree leaves

Some more notations

 $\forall v \in \partial T$, with $S_v = \{\ell_1, \ell_2\}$ and ordering (ℓ_1, ℓ_2) :

- $\mathcal{I}_{v} \subseteq \mathcal{I}$: the index set s.t. $i \in \mathcal{I}_{v}$ iff $i \in \mathcal{I} \land \Phi_{i} = v$; $\hat{\mathcal{I}}_{v} \subseteq \mathcal{I}$: the index set s.t. $i \in \hat{\mathcal{I}}_{v}$ iff $i \in \mathcal{I}_{v} \land \hat{\Phi}_{i} = v$;
- J_{v,1} ⊆ I_v: the index set s.t. i ∈ J_{v,1} iff i ∈ I_v ∧ X_i = e_{ℓ1};
 Let F_v denote the distribution of |J_{v,1}|.

 $\mathcal{J}_{\nu,2} \subseteq \mathcal{I}_{\nu}$: the index set s.t. $i \in \mathcal{J}_{\nu,2}$ iff $i \in \mathcal{I}_{\nu} \land X_i = e_{\ell_2}$;

Let J := ((|J_{v,1}|, |J_{v,2}|))_{v∈∂T};
Let F denote the distribution of J;

• Let $\hat{\mathcal{J}}_{\nu,1}$, $\hat{\mathcal{J}}_{\nu,2}$, $\hat{\mathcal{J}}$, $\hat{\mathcal{F}}_{\nu}$, and $\hat{\mathcal{F}}$ be defined similarly.

Coupling within a cell

Claim 3.4

$$\forall \theta \in (\partial T)^{\mathcal{I}}, \ G(\theta) = \hat{G}(\theta).$$

Lemma 3.5

There exists a value of α such that, for all $v \in \partial T$,

$$G\left(heta:\|F_{ extsf{v}}(\cdot\mid\Phi= heta)-\hat{F}_{ extsf{v}}(\cdot\mid\hat{\Phi}= heta)\|\leq O\left(rac{2^k\log z}{z^{1/5}}
ight)
ight)\geq 1-rac{4}{z^{1/3}},$$

where $F_{\nu}(\cdot | \Phi)$ (resp., $\hat{F}_{\nu}(\cdot | \Phi)$) denotes the conditional probability distribution of $|\mathcal{J}_{\nu,1}|$ (resp., $|\hat{\mathcal{J}}_{\nu,1}|$) given Φ .

26 / 32

Lemma 3.5

There exists a value of α such that, for all $v \in \partial T$,

$$G\left(\theta:\|F_{\nu}(\cdot\mid\Phi=\theta)-\hat{F}_{\nu}(\cdot\mid\hat{\Phi}=\theta)\|\leq O\left(\frac{2^{k}\log z}{z^{1/5}}\right)\right)\geq 1-\frac{4}{z^{1/3}},$$

where $F_{\nu}(\cdot \mid \Phi)$ (resp., $\hat{F}_{\nu}(\cdot \mid \Phi)$) denotes the conditional probability distribution of $|\mathcal{J}_{\nu,1}|$ (resp., $|\hat{\mathcal{J}}_{\nu,1}|$) given Φ .

Roughly speaking, for all v ∈ ∂T, w.p. ≥ 1 - ⁴/_{z^{1/3}} over the choices made by Stage 1 of processes {SAMPLING X_i}_{i∈I} and {SAMPLING X̂_i}_{i∈I} (assuming these processes are coupled to make the same decisions in Stage 1),

the total variation distance b/w the conditional distribution of $|\mathcal{J}_{v,1}|$ and $|\hat{\mathcal{J}}_{v,1}|$ is bounded by $O\left(\frac{2^k \log z}{z^{1/5}}\right)$.

Lemma 3.6

Lemma 5 impies
$$\|F - \hat{F}\| \le O(k \frac{2^k \log z}{z^{1/5}}).$$

• Hence,
$$\left\|\sum_{i\in\mathcal{I}}X_i-\sum_{i\in\mathcal{I}}\hat{X}_i\right\|=O(k2^k\log z\cdot z^{-1/5}).$$

10 Mar 2017 28 / 32

크

э

Proof of Lemma 3.6

• Via a union bound, we have

$$G\left(\theta:\forall \mathbf{v}\in\partial T, \|F_{\mathbf{v}}(\cdot\mid\Phi=\theta)-\hat{F}_{\mathbf{v}}(\cdot\mid\hat{\Phi}=\theta)\|\leq O\left(\frac{2^{k}\log z}{z^{1/5}}\right)\right)\geq 1-O(kz^{-1/3}).$$

• Suppose for some $\theta \in (\partial T)^{\mathcal{I}}$, the following is satisfied

$$\forall v \in \partial T, \|F_v(\cdot \mid \Phi = \theta) - \hat{F}_v(\cdot \mid \hat{\Phi} = \theta)\| \le O\left(\frac{2^k \log z}{z^{1/5}}\right).$$

$$\|F(\cdot \mid \Phi = \theta) - \hat{F}(\cdot \mid \hat{\Phi} = \theta)\| \le O\left(k \frac{2^k \log z}{z^{1/5}}\right).$$

$$G\left(\theta: \|F(\cdot \mid \Phi = \theta) - \hat{F}(\cdot \mid \hat{\Phi} = \theta)\| \le O\left(k\frac{2^k \log z}{z^{1/5}}\right) \ge 1 - O(kz^{-1/3})$$

Proof of Lemma 3.6

• Via a union bound, we have

$$G\left(\theta:\forall v\in\partial T, \|F_v(\cdot\mid\Phi=\theta)-\hat{F}_v(\cdot\mid\hat{\Phi}=\theta)\|\leq O\left(\frac{2^k\log z}{z^{1/5}}\right)\right)\geq 1-O(kz^{-1/3}).$$

• Suppose for some $\theta \in (\partial T)^{\mathcal{I}}$, the following is satisfied

$$\forall v \in \partial T, \|F_v(\cdot \mid \Phi = \theta) - \hat{F}_v(\cdot \mid \hat{\Phi} = \theta)\| \leq O\left(\frac{2^k \log z}{z^{1/5}}\right).$$

• $\{|\mathcal{J}_{\nu,1}|\}_{\nu \in \partial T}$ (resp., $\{|\hat{\mathcal{J}}_{\nu,1}|\}_{\nu \in \partial T}$) are conditionally independent given Φ (resp., $\hat{\Phi}$). By the coupling lemma,

$$\|F(\cdot \mid \Phi = \theta) - \hat{F}(\cdot \mid \hat{\Phi} = \theta)\| \le O\left(k \frac{2^k \log z}{z^{1/5}}\right).$$

Therefore,

$$G\left(\theta: \|F(\cdot \mid \Phi = \theta) - \hat{F}(\cdot \mid \hat{\Phi} = \theta)\| \le O\left(k\frac{2^k \log z}{z^{1/5}}\right) \ge 1 - O(kz^{-1/3})$$

Proof of Lemma 3.6

• Via a union bound, we have

$$G\left(\theta:\forall v\in\partial T, \|F_v(\cdot\mid\Phi=\theta)-\hat{F}_v(\cdot\mid\hat{\Phi}=\theta)\|\leq O\left(\frac{2^k\log z}{z^{1/5}}\right)\right)\geq 1-O(kz^{-1/3}).$$

• Suppose for some $\theta \in (\partial T)^{\mathcal{I}}$, the following is satisfied

$$\forall v \in \partial T, \|F_v(\cdot \mid \Phi = \theta) - \hat{F}_v(\cdot \mid \hat{\Phi} = \theta)\| \le O\left(\frac{2^k \log z}{z^{1/5}}\right).$$

• $\{|\mathcal{J}_{\nu,1}|\}_{\nu\in\partial\mathcal{T}}$ (resp., $\{|\hat{\mathcal{J}}_{\nu,1}|\}_{\nu\in\partial\mathcal{T}}$) are conditionally independent given Φ (resp., $\hat{\Phi}$). By the coupling lemma,

$$\|\boldsymbol{F}(\cdot \mid \boldsymbol{\Phi} = \theta) - \hat{\boldsymbol{F}}(\cdot \mid \hat{\boldsymbol{\Phi}} = \theta)\| \leq O\left(\frac{k \frac{2^k \log z}{z^{1/5}}}{z^{1/5}}\right).$$

Therefore

$$G\left(\theta:\|F(\cdot\mid\Phi=\theta)-\hat{F}(\cdot\mid\hat{\Phi}=\theta)\|\leq O\left(k\frac{2^{k}\log z}{z^{1/5}}\right)\right)\geq 1-O(kz^{-1/3})$$

Proof of Lemma 3.6

• Via a union bound, we have

$$G\left(\theta:\forall v\in\partial T, \|F_v(\cdot\mid\Phi=\theta)-\hat{F}_v(\cdot\mid\hat{\Phi}=\theta)\|\leq O\left(\frac{2^k\log z}{z^{1/5}}\right)\right)\geq 1-O(kz^{-1/3}).$$

• Suppose for some $\theta \in (\partial T)^{\mathcal{I}}$, the following is satisfied

$$\forall v \in \partial T, \|F_v(\cdot \mid \Phi = \theta) - \hat{F}_v(\cdot \mid \hat{\Phi} = \theta)\| \leq O\left(\frac{2^k \log z}{z^{1/5}}\right).$$

• $\{|\mathcal{J}_{\nu,1}|\}_{\nu\in\partial\mathcal{T}}$ (resp., $\{|\hat{\mathcal{J}}_{\nu,1}|\}_{\nu\in\partial\mathcal{T}}$) are conditionally independent given Φ (resp., $\hat{\Phi}$). By the coupling lemma,

$$\|F(\cdot \mid \Phi = \theta) - \hat{F}(\cdot \mid \hat{\Phi} = \theta)\| \leq O\left(k \frac{2^k \log z}{z^{1/5}}\right).$$

Therefore,

$$G\left(\theta:\|\boldsymbol{F}(\cdot\mid \Phi=\theta)-\hat{\boldsymbol{F}}(\cdot\mid \hat{\Phi}=\theta)\| \leq O\left(k\frac{2^k\log z}{z^{1/5}}\right)\right) \geq 1-O(kz^{-1/3})$$

Proof of Lemma 3.6

• Via a union bound, we have

$$G\left(\theta:\forall v\in\partial T, \|F_v(\cdot\mid\Phi=\theta)-\hat{F}_v(\cdot\mid\hat{\Phi}=\theta)\|\leq O\left(\frac{2^k\log z}{z^{1/5}}\right)\right)\geq 1-O(kz^{-1/3}).$$

• Suppose for some $\theta \in (\partial T)^{\mathcal{I}}$, the following is satisfied

$$\forall v \in \partial T, \|F_v(\cdot \mid \Phi = \theta) - \hat{F}_v(\cdot \mid \hat{\Phi} = \theta)\| \leq O\left(\frac{2^k \log z}{z^{1/5}}\right).$$

• $\{|\mathcal{J}_{\nu,1}|\}_{\nu\in\partial\mathcal{T}}$ (resp., $\{|\hat{\mathcal{J}}_{\nu,1}|\}_{\nu\in\partial\mathcal{T}}$) are conditionally independent given Φ (resp., $\hat{\Phi}$). By the coupling lemma,

$$\|F(\cdot \mid \Phi = \theta) - \hat{F}(\cdot \mid \hat{\Phi} = \theta)\| \leq O\left(k \frac{2^k \log z}{z^{1/5}}\right).$$

Therefore,

$$G\left(\theta:\|F(\cdot\mid \Phi=\theta)-\hat{F}(\cdot\mid \hat{\Phi}=\theta)\| \le O\left(k\frac{2^k\log z}{z^{1/5}}\right)\right) \ge 1-O(kz^{-1/3})$$

Proof of Lemma 3.6 (contd.)

$$\mathsf{Good} := \left\{ \theta : \theta \in (\partial T)^{\mathcal{I}}, \| F(\cdot \mid \Phi = \theta) - \hat{F}(\cdot \mid \hat{\Phi} = \theta) \| \le O\left(k\frac{2^k \log z}{z^{1/5}}\right) \right\},$$

and
$$\operatorname{Bad} = (\partial T)^{\mathcal{I}} - \operatorname{Good}$$
.
• We knew that $G(\operatorname{Bad}) \leq O(kz^{-1/3})$.

$$\|F - \hat{F}\| = \frac{1}{2} \sum_{t} |F(t) - \hat{F}(t)|$$

$$= \frac{1}{2} \sum_{t} \left| \sum_{\theta} F(t \mid \Phi = \theta) G(\Phi = \theta) - \hat{F}(t \mid \hat{\Phi} = \theta) \hat{G}(\Phi = \theta) \right|$$

$$= \frac{1}{2} \sum_{t} \left| \sum_{\theta} F(t \mid \Phi = \theta) - \hat{F}(t \mid \hat{\Phi} = \theta)) G(\theta) \right|$$

$$\le \frac{1}{2} \sum_{t} \sum_{\theta} \left| F(t \mid \Phi = \theta) - \hat{F}(t \mid \hat{\Phi} = \theta)) \right| G(\theta)$$

Proof of Lemma 3.6 (contd.)

۲

$$\begin{split} \|F - \hat{F}\| &\leq \ldots = \frac{1}{2} \sum_{t} \sum_{\theta \in \text{Good}} \left| F(t \mid \Phi = \theta) - \hat{F}(t \mid \hat{\Phi} = \theta)) \right| G(\theta) \\ &+ \frac{1}{2} \sum_{t} \sum_{\theta \in \text{Bad}} \left| F(t \mid \Phi = \theta) - \hat{F}(t \mid \hat{\Phi} = \theta)) \right| G(\theta) \\ &\leq \sum_{\theta \in \text{Good}} G(\theta) \left(\frac{1}{2} \sum_{t} \left| F(t \mid \Phi = \theta) - \hat{F}(t \mid \hat{\Phi} = \theta)) \right| \right) \\ &+ \sum_{\theta \in \text{Bad}} G(\theta) \left(\frac{1}{2} \sum_{t} \left| F(t \mid \Phi = \theta) - \hat{F}(t \mid \hat{\Phi} = \theta)) \right| \right) \\ &\leq \sum_{\theta \in \text{Good}} G(\theta) \cdot O\left(k \frac{2^k \log z}{z^{1/5}} \right) + \sum_{\theta \in \text{Bad}} G(\theta) \\ &\leq O\left(k \frac{2^k \log z}{z^{1/5}} \right) + O(kz^{-1/3}). \end{split}$$

10 Mar 2017 31 / 32

Discretized multinomial distributions

Thank you.

Joseph C.-C. Lin (Academia Sinica, TW) Discretized multinomial distributions

10 Mar 2017 32

୬ ଏ ୯ 32 / 32

10 Mar 2017

32 / 32