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Background on property testing

Try to answer “yes” or “no” for the following relaxed decision
problems by observing only a small fraction of the input.

Does the input satisfy a designated property, or

is ǫ-far from satisfying the property?
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Background on property testing (contd.)

In property testing, we use ǫ-far to say that the input is far
from a certain property.

ǫ: the least fraction of the input needs to be modified.

For example:

A sequence of integers L = (0, 2, 3, 4, 1).
Allowed operations: integer deletions
L is 0.2-far from being monotonically nondecreasing.
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The model for bounded-degree graphs

Graph model: adjacency list for graphs with vertex-degree
bounded by d .

It takes O(1) time to access to a function
fG : [n] × [d ] 7→ [n] × {+}.

The value fG (v , i) is the ith neighbor of v or a special symbol
‘+’ if v has less than i neighbors.
In this paper, d ≥ 4.

ǫ-far from satisfying a graph property P:

one has to modify > ǫdn entries in fG (i.e., > ǫdn/2 edges) to
make the input graph satisfy P.
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Background on property testing (contd.)

The complexity measure: queries.

The query complexity (say q(n, d , ǫ)) is asked to be sublinear
in |V | = n.

q(n, d , ǫ) = o(f (n)) if lim
n→∞

q(n,d,ǫ)
f (n) → 0, where ǫ and d are

viewed as constants.
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Property testers

A property tester for P is an algorithm utilizing sublinear
queries such that:

¤ if the input satisfies P:
answers “yes” with probability ≥ 2/3 (1 → one-sided error);

¤ if the input is ǫ-far from satisfying P:
answers “no” with probability ≥ 2/3.
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Background on property testing (contd.)

Unlike testing graph properties in the adjacency matrix model,
only a few, very simple graph properties are known to be
testable (i.e., query complexity is independent of n).

For most of nontrivial graph properties, super-constant lower
bounds exist.

bipartiteness: Ω(
√

n).
3-colorability: Ω(n).
acyclicity (in directed graphs): Ω(n1/3).
. . .

The focus turned on property testers with sublinear query
complexity.
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α-expanders

Definition 2.1

Let α > 0. A graph G = (V , E ) is an α-expander (The expansion
of G is α) if for every U ⊆ V with |U| ≤ n/2, it holds that
NG (U, V ) ≥ α · |U|.

For U, W ⊆ V ,
NG (U, W ) = {v ∈ W \ U : ∃u ∈ U such that (v , u) ∈ E}.

For example:

What is the expansion of Kn?
What is the expansion of Cn?
What is the lower bound on the expansion of a k-club with n
vertices?
What is the lower bound on the expansion of an s-plex with n
vertices?
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A well-known fact

Theorem 2.2 (Planar Separator Theorem (Lipton & Tarjan 1979))

Every planar graph with n vertices (n is sufficiently large) has a
subset of vertices A, where 1

3n ≤ |A| ≤ 1
2n, such that

N(A, V ) ≤ 4
√

n.

The expansion of a planar graph: O(1/
√

n).
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Algebraic notion of graph expansion

Let A(G ) be an n × n adjacency matrix of a d-regular graph
G.

Each entry (u, v) contains the number of edges in G between
u and v.

Since A(G ) is symmetric, A(G ) has n eigenvalues
µ0 ≥ µ1 ≥ . . . ≥ µn−1.

Theorem: Let α be the expansion of G. Then µ0 = d and

d − µ1

2
≤ α ≤

√

2d(d − µ1).
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Related work on testing expansion

Testing whether G is an α-expander: It’s still OPEN.

Lower bound for testing expansion: Ω(
√

n)
[Goldreich & Ron 2002].

Conjecture (Goldreich & Ron 2000)

In the bounded-degree model, a property tester for testing if a
graph G is an α-expander exists.

The focus turned to the relaxed goal: distinguish between
α-expanders and graphs that are ǫ-far from being an
α′-expander (α′ < α).
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Related work on testing expansion (contd.)

To be concise, here we omit the factors of ǫ and d .

Distinguishing between α-expanders and graphs far from
being Θ( α2

log n
)-expanders (Czumaj & Sohler; FOCS’2007).

Distinguishing between α-expanders and graphs far from
being Ω(α2)-expanders (Nachmias & Shapira; Information
and Computation 2010)
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Before we proceed with the tester . . .

For each vertex v ∈ V , we add 2d − deg(v) self-loops.

In this way, we obtain a (2d)-regualr graph.

And then, we study random walks on G .

For v ,w ∈ V , we define P(v ,w) = 1
2d

if (v ,w) ∈ E and
P(v ,w) = 0 o.w.;

We define P(v , v) =
2d−deg(v)

2d
= 1 − deg(v)

2d
for each v ∈ V .

Obviously, P(v , v) ≥ 1/2.
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2d − deg(v) self-loops are added for each v ∈ V .

P(v , w) = 1/6 if (v , w) ∈ E and 0 otherwise.
P(v , v) = 1 − deg(v)/6 for each v ∈ V .
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The expansion tester by Goldreich & Ron

A property tester of two-sided error.

Expansion-Tester(G , ℓ,m, s)
1: repeat s times;
2: Select a vertex v ∈ V uniformly at random;
3: Perform m independent random walks of length ℓ

starting from v ;
4: Count the number of pairwise collisions between

the endpoints of these m random walks;
5: if the number of pairwise collisions is > 1+7ǫ

n

(
m
2

)

6: then reject;
7: accept;
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Theorem 3.1 (Main Theorem)

Let 0 ≤ ǫ ≤ 0.025. With

s ≥ 48

ǫ
, m ≥ 12 · s · √n

ǫ2
, ℓ ≥ 16 · d2 · ln(n/ǫ)

α2
,

Algorithm Expansion-Tester

accepts every α-expander with probability ≥ 2
3 , and

rejects with probability ≥ 2
3 every graph that is ǫ-far from any

c·α2

d2·ln(n/ǫ)
-expander with probability ≥ 2

3 , where c > 0 is a

large enough constant.

The query complexity of this algorithm is O(ℓ · m · s) =

O
(

d2·ln(n/ǫ)·√n

α2·ǫ3

)

.
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The general idea of how the tester works

The graph is regular and non-bipartite, so the distribution of
the endpoint of a random walk converges to a uniform
distribution.

For peopele who are familiar with Markov chains, the above
distribution is called a stationary distribution.

The key point is how fast (i.e., the mixing time of the
corresponding Markov chain) the distribution of the endpoints
of the random walk converges to a uniform distribution.

A graph with high expansion is believed to have fast mixing
time.
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The general idea of how the tester works (contd.)

How to know that the distribution of the endpoints of the
random walk is close to the uniform distribution or not?

Repeatedly perform the random walk and count the number of
collisions.
We say that two random walks have a collision: their
endpoints are the same.

If a graph is an α-expander, then the expected number of
collisions should be small.
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The general idea of how the tester works (contd.)

For graphs far from α∗-expanders, the author showed that:

There exists a subset U ⊆ V with |U| < n/2 such that the
random walks starting from any u ∈ U requires much longer
mixing time.

When the random walks do not proceed long enough, the
variation distance between the uniform distribution and the
distribution of the endpoints of the random walk starting from
any u ∈ U is large.

The above fact implies that the expected number of collisions
of the random walks is high.
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Markov chains

Markov chain: a sequence of random variables X0, X1, X2, . . . ,
(stochastic process) with the Markov property:

Pr[Xn+1 = x | X1 = x1,X2 = x2, . . . ,Xn = xn]
= Pr[Xn+1 = x | Xn = xn].

For all i , Xi ∈ Ω, where Ω is a finite state space.

P : Ω2 7→ [0, 1] denote the matrix of the transition
probabilities.

There is an underlying graph corresponding to P.
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Markov chains (contd.)

When the underlying undirected graph is regular, connected
and non-bipartite, the Markov chain M has a stationary
distribution π, which is a uniform distribution U .

π = (πx)x∈Ω is a stationary distribution of M if
∑

j∈Ω πj = 1
and πj =

∑

i∈Ω = πi · P(i , j) for each j ∈ Ω.
That is, π = π · P

A Markov chain M is reversible if πx · P(x , y) = πy · P(y , x).

In this paper, the random walk can be viewed as a Markov
chain MG with state space Ω = V .

It is easy to see that MG is reversible and has a uniform
stationary distribution.
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Conductance of a Markov chain

Conductance is used to control the speed of convergence of a
Markov chain. Here we adapt the original definition to MG .

The conductance of MG :

ΦG = min
U⊆V ,|U|≤|V |/2

E (U, V \ U)

2d · |U| .

E (U,V \ U): the set of edges between U and V \ U.

If G is an α-expander, then ΦG ≥ α
2d .
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Variation distance

Definition 4.1 (Variation distance)

The variation distance between two probability distributions X and
Y over the same finite domain Ω is

dTV (X ,Y) =
1

2

∑

ω∈Ω

|PrX [ω] − PrY [ω]|.

Let Pt
x(y) be the probability that the Markov chain with the

initial state x ends after t steps in a state y . We define that

∆x(t) =
1

2

∑

y∈Ω

|Pt
x(y) − πy |.

to be the variation distance w.r.t. the initial state x between
Pt

x(·) and π.
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The rate of convergence & mixing time

Definition 4.2 (Rate of convergence)

The rate of convergence of a Markov chain M with initial state x
to the stationary distribution is defined as

τx(ζ) = min{t : ∆x(t
′) ≤ ζ for all t ′ ≥ t}.

We also call τx(ζ) the mixing time of the Markov chain.
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The mixing time w.r.t. the conductance & the stationary distribution

Proposition (Sinclair 1992)

M: a finite, reversible, ergodic Markov chain and P(x , x) ≥ 1/2
for all states x;
Φ: the conductance of M.
Then the mixing time of M satisfies

τx(ζ) ≤ 2Φ−2 · (ln(π−1
x + ln(ζ−1)).

Note: The Markov chain MG is “ergodic”, though we do not
introduce this term since it involves quite many concepts so
that we just ignore its definition in this talk.
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A result by Goldreich & Ron 2000

Lemma 5.1 (Goldreich & Ron 2000)

E[Xv ] =
(
m
2

)
· ||Pℓ

v ||22 and Var[Xv ] ≤ 2 · (E[Xv ])3/2.

Ci ,j ;v : indicator random variable; Ci ,j ;v = 1 iff the ith and the
jth random walks starting from v have a collision.

Xv : the number of collisions among the m random walks of
length ℓ starting from v .

Xv =
∑

1≤i<j≤m

Ci,j ;v .

Pℓ
v : the distribution of the endpoint of the random walk of

length ℓ starting from v .

||Pℓ
v ||2 =

√ ∑

w∈V

(Pℓ
v (w))2 (i.e., 2-norm).

(Pℓ
v (w))2: The probability that two random walks of length ℓ

starting from v end at the same vertex w .

33 / 43



A result by Goldreich & Ron 2000 (contd.)

(*) By setting ℓ = 16d2·ln(n/ǫ)
α2 and Sinclair’s proposition, we have

||Pℓ
v ||22 ≤ (1 + ǫ)2/n.

(**) Moreover, by Cauchy–Schwarz inequality ⇒ ||Pℓ
v ||22 ≥ 1/n.

Using (*) and Chebyshev’s inequality, we have the following
lemma.

Lemma 5.2 (Accepting expanders)

Let m ≥ 12·s·√n

ǫ2 and ℓ ≥ 16d2·ln(n/ǫ)
α2 . Then Expansion-Tester

accepts every α-expander with probability at least 2
3 .
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As to the rejections

Lemma 5.3 (Rejections)

Let 0 < ǫ < 0.1, 0 < δ < 1/2, and s ≥ 2/δ. If there exists U ⊆ V
with |U| ≥ δn, such that for every u ∈ U, dTV (Pℓ

u, U ) ≥ 1.5
√

ǫ,
then Expansion-Tester rejects with probability at least 2

3 .

Ideas of the proof.

dTV (Pℓ
u, U ) ≥ 6

√
ǫ ⇒ high expected number of collisions for

the random walks.

The expected number of collisions:
(
m
2

)
· ||Pℓ

u ||22.
We look for a probability vector Pℓ

u with the variation

distance constraint that minimizes ||Pℓ
u ||22.

Next, by the proof of Lemma 5.1, the observed number of
collisions is ≥ (1 − ǫ)

(
m
2

)
· ||Pℓ

u||22 with probability ≥ 1 − 1
3s .
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As to the rejections (contd.)

The probability vector Pℓ
u:

(
1 + 3

√
ǫ

n
, . . . ,

1 + 3
√

ǫ

n
︸ ︷︷ ︸

n/2 times

,
1 − 3

√
ǫ

n
, . . . ,

1 − 3
√

ǫ

n
︸ ︷︷ ︸

n/2 times

)

The vector of the uniform distribution U :

(
1

n
,

1

n
, . . . ,

1

n
︸ ︷︷ ︸

n times

)

We have 1
2 ·

∑

w∈V

|Pℓ
u(w) − 1/n| = 1.5

√
ǫ and ||Pℓ

u||22 = 1+9ǫ
n

.

So (1 − ǫ) ·
(
m
2

)
· ||Pℓ

u||22 ≥ (1−ǫ)(1+9ǫ)
n

·
(
m
2

)
> 1+7ǫ

n
·
(
m
2

)
.

36 / 43



Being far from α
∗-expanders

Any graph that is ǫ-far from any α∗-expander has a small cut that
separates a large set of vertices from the rest of the graph.

Lemma 5.4

Let 0 < ǫ < 1 and α∗ ≤ 0.1. If G has a subset of vertices A ⊆ V
with |A| ≤ 1

12ǫn such that G [V \ A] is an 4α∗

β -expander, then G is
not ǫ-far from any α∗-expander.

Note that β = Θ(1) is a constant concerning strong
expansion, which is ignored for this talk.

Corollary 5.5

Let G be ǫ-far from any α∗-expander with α∗ ≤ 0.1. Then there
exists A ⊆ V with 1

12ǫn ≤ |A| ≤ 1
2(1 + ǫ)n such that

|NG (A, V )| < 4α∗

β |A|.
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β |A|.
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Being far from α
∗-expanders (contd.)

Lemma 5.6

Let A be a subset of V with |A| ≤ 1
2(1 + ǫ)n and

|NG (A, V )| ≤ |A|
10(ℓ+1) . Then there exists a set U with |U| ≥ |A|/2

such that for every u ∈ U,

dTV (Pℓ
v , U ) ≥ 1 − 2ǫ

4
.

Note that 1−2ǫ
4 ≥ 1.5

√
ǫ for ǫ < 0.025.
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Being far from α
∗-expanders (contd.)

A = {v1}, NG (A, V ) = {v2, v3}.
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Being far from α
∗-expanders (contd.)

Let GA = G [A ∪ NG (A, V )]. Consider a random walk on GA.

Yi : the indicator random variable for the event that the ith
vertex of the random walk is in NG (A, V ).

Pr[Yi = 1] = |NG (A,V )|
|V (GA)|

The reason: the starting vertex is chosen uniformly at random
& the stationary distribution is uniform.

We can show that Pr [∃i ∈ {0, 1, . . . , ℓ}, Yi = 1] ≤ 1
10(ℓ+1) .
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Being far from α
∗-expanders (contd.)

The probability that an ℓ-step random walk in G starting at a
vertex chosen uniformly from A will remain in A is at least
1 − 1

10(ℓ+1) ≥ 9
10 .

Thus, there must be U ⊆ A of size ≥ |A|/2 such that a
random walk starting from a vertex in U remains in A with
probability ≥ 3

4 .
Thus, there must be U ⊆ A of size ≥ |A|/2 such that a
random walk starting from a vertex in U does NOT in A with
probability ≤ 1

4 .

In contrast to the uniform distribution: |V\A|
|V | ≥ 1−ǫ

2 .
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Putting everything together you will derive the proof of the main
theorem.
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Thank you!

43 / 43


	Background on property testing
	Testing expansion
	The property tester by Czumaj & Sohler
	Preliminaries
	The sketch of the complexity analysis
	

