Testing expansion in bounded-degree graphs

Artur Czumaj and Christian Sohler

The 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'2007) 570–578.

Speaker: Joseph, Chuang-Chieh Lin Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

June 9, 2010

- 1 Background on property testing
- 2 Testing expansion
- 3 The property tester by Czumaj & Sohler

4 Preliminaries

5 The sketch of the complexity analysis

イロン イロン イヨン イヨン 三日

2/43

1 Background on property testing

2 Testing expansion

3 The property tester by Czumaj & Sohler

4 Preliminaries

5 The sketch of the complexity analysis

・ロ ・ < 回 ・ < 目 ・ < 目 ・ 目 ・ う へ で 4/43

- Try to answer "yes" or "no" for the following *relaxed* decision problems by observing only a small fraction of the input.
 - Does the input satisfy a designated property, or
 - is ϵ -far from satisfying the property?

- Try to answer "yes" or "no" for the following *relaxed* decision problems by observing only a small fraction of the input.
 - Does the input satisfy a designated property, or
 - is *ϵ*-far from satisfying the property?

- In property testing, we use ε-far to say that the input is far from a certain property.
- ϵ : the least fraction of the input needs to be modified.
- For example:
 - A sequence of integers L = (0, 2, 3, 4, 1).
 - Allowed operations: integer deletions
 - L is 0.2-far from being monotonically nondecreasing.

イロン イロン イヨン イヨン 三日

6/43

- In property testing, we use ε-far to say that the input is far from a certain property.
- ϵ : the least fraction of the input needs to be modified.
- For example:
 - A sequence of integers L = (0, 2, 3, 4, 1).
 - Allowed operations: integer deletions
 - *L* is 0.2-far from being monotonically nondecreasing.

(日) (四) (E) (E) (E) (E) (E)

6/43

The model for bounded-degree graphs

- Graph model: adjacency list for graphs with vertex-degree bounded by *d*.
 - It takes O(1) time to access to a function $f_G : [n] \times [d] \mapsto [n] \times \{+\}.$
 - The value $f_G(v, i)$ is the *i*th neighbor of v or a special symbol '+' if v has less than *i* neighbors.
 - In this paper, $d \ge 4$.
- ϵ -far from satisfying a graph property \mathbb{P} :
 - one has to modify > \epsilon dn entries in f_G (i.e., > \epsilon dn/2 edges) to make the input graph satisfy P.

The model for bounded-degree graphs

- Graph model: adjacency list for graphs with vertex-degree bounded by *d*.
 - It takes O(1) time to access to a function $f_G : [n] \times [d] \mapsto [n] \times \{+\}.$
 - The value $f_G(v, i)$ is the *i*th neighbor of v or a special symbol '+' if v has less than *i* neighbors.
 - In this paper, $d \ge 4$.
- ϵ -far from satisfying a graph property \mathbb{P} :
 - one has to modify > \epsilon dn entries in f_G (i.e., > \epsilon dn/2 edges) to make the input graph satisfy P.

- The complexity measure: queries.
- The query complexity (say q(n, d, ε)) is asked to be sublinear in |V| = n.
 - $q(n, d, \epsilon) = o(f(n))$ if $\lim_{n \to \infty} \frac{q(n, d, \epsilon)}{f(n)} \to 0$, where ϵ and d are viewed as constants.

- The complexity measure: queries.
- The query complexity (say q(n, d, ε)) is asked to be sublinear in |V| = n.
 - $q(n, d, \epsilon) = o(f(n))$ if $\lim_{n \to \infty} \frac{q(n, d, \epsilon)}{f(n)} \to 0$, where ϵ and d are viewed as constants.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

8/43

- A property tester for P is an algorithm utilizing sublinear queries such that:
 - ▷ if the input satisfies \mathbb{P} : answers "yes" with probability $\geq 2/3$ (1 \rightarrow one-sided error);

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

9/43

▷ if the input is ϵ -far from satisfying \mathbb{P} : answers "no" with probability $\geq 2/3$.

- Unlike testing graph properties in the adjacency matrix model, only a few, very simple graph properties are known to be testable (i.e., query complexity is independent of n).
- For most of nontrivial graph properties, super-constant lower bounds exist.
 - bipartiteness: $\Omega(\sqrt{n})$.
 - 3-colorability: $\Omega(n)$.
 - acyclicity (in directed graphs): $\Omega(n^{1/3})$.
 - • •
- The focus turned on property testers with sublinear query complexity.

1 Background on property testing

2 Testing expansion

3 The property tester by Czumaj & Sohler

4 Preliminaries

5 The sketch of the complexity analysis

Let $\alpha > 0$. A graph G = (V, E) is an α -expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n/2$, it holds that $N_G(U, V) \geq \alpha \cdot |U|$.

■ For $U, W \subseteq V$, $N_G(U, W) = \{v \in W \setminus U : \exists u \in U \text{ such that } (v, u) \in E\}.$

For example:

- What is the expansion of K_n ?
- What is the expansion of C_n ?
- What is the lower bound on the expansion of a k-club with n vertices?
- What is the lower bound on the expansion of an s-plex with n vertices?

Let $\alpha > 0$. A graph G = (V, E) is an α -expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n/2$, it holds that $N_G(U, V) \geq \alpha \cdot |U|$.

■ For $U, W \subseteq V$, $N_G(U, W) = \{v \in W \setminus U : \exists u \in U \text{ such that } (v, u) \in E\}.$

For example:

- What is the expansion of K_n ?
- What is the expansion of C_n ?
- What is the lower bound on the expansion of a k-club with n vertices?
- What is the lower bound on the expansion of an s-plex with n vertices?

Let $\alpha > 0$. A graph G = (V, E) is an α -expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n/2$, it holds that $N_G(U, V) \geq \alpha \cdot |U|$.

- For $U, W \subseteq V$, $N_G(U, W) = \{v \in W \setminus U : \exists u \in U \text{ such that } (v, u) \in E\}.$
- For example:
 - What is the expansion of K_n?
 - What is the expansion of C_n ?
 - What is the lower bound on the expansion of a *k*-club with *n* vertices?
 - What is the lower bound on the expansion of an *s*-plex with *n* vertices?

Let $\alpha > 0$. A graph G = (V, E) is an α -expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n/2$, it holds that $N_G(U, V) \geq \alpha \cdot |U|$.

- For $U, W \subseteq V$, $N_G(U, W) = \{v \in W \setminus U : \exists u \in U \text{ such that } (v, u) \in E\}.$
- For example:
 - What is the expansion of K_n?
 - What is the expansion of *C_n*?
 - What is the lower bound on the expansion of a *k*-club with *n* vertices?
 - What is the lower bound on the expansion of an *s*-plex with *n* vertices?

Let $\alpha > 0$. A graph G = (V, E) is an α -expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n/2$, it holds that $N_G(U, V) \geq \alpha \cdot |U|$.

- For $U, W \subseteq V$, $N_G(U, W) = \{v \in W \setminus U : \exists u \in U \text{ such that } (v, u) \in E\}.$
- For example:
 - What is the expansion of K_n?
 - What is the expansion of *C_n*?
 - What is the lower bound on the expansion of a *k*-club with *n* vertices?
 - What is the lower bound on the expansion of an *s*-plex with *n* vertices?

Theorem 2.2 (Planar Separator Theorem (Lipton & Tarjan 1979))

Every planar graph with n vertices (n is sufficiently large) has a subset of vertices A, where $\frac{1}{3}n \le |A| \le \frac{1}{2}n$, such that $N(A, V) \le 4\sqrt{n}$.

• The expansion of a planar graph: $O(1/\sqrt{n})$.

Algebraic notion of graph expansion

- Let A(G) be an n × n adjacency matrix of a d-regular graph G.
 - Each entry (u, v) contains the number of edges in G between u and v.
- Since A(G) is symmetric, A(G) has n eigenvalues $\mu_0 \ge \mu_1 \ge \ldots \ge \mu_{n-1}$.
- **<u>Theorem</u>**: Let α be the expansion of G. Then $\mu_0 = d$ and

$$\frac{d-\mu_1}{2} \leq \alpha \leq \sqrt{2d(d-\mu_1)}.$$

イロト 不得下 イヨト イヨト 二日

14/43

• Testing whether G is an α -expander: It's still OPEN.

• Lower bound for testing expansion: $\Omega(\sqrt{n})$ [Goldreich & Ron 2002].

Conjecture (Goldreich & Ron 2000)

In the bounded-degree model, a property tester for testing if a graph G is an α -expander exists.

• The focus turned to the relaxed goal: distinguish between α -expanders and graphs that are ϵ -far from being an α' -expander ($\alpha' < \alpha$).

To be concise, here we omit the factors of ϵ and d.

- Distinguishing between α-expanders and graphs far from being Θ(^{α²}/_{log n})-expanders (Czumaj & Sohler; FOCS'2007).
- Distinguishing between α -expanders and graphs far from being $\Omega(\alpha^2)$ -expanders (Nachmias & Shapira; Information and Computation 2010)

To be concise, here we omit the factors of ϵ and d.

- Distinguishing between α-expanders and graphs far from being Θ(^{α²}/_{log n})-expanders (Czumaj & Sohler; FOCS'2007).
- Distinguishing between α-expanders and graphs far from being Ω(α²)-expanders (Nachmias & Shapira; Information and Computation 2010)

To be concise, here we omit the factors of ϵ and d.

- Distinguishing between α-expanders and graphs far from being Θ(^{α²}/_{log n})-expanders (Czumaj & Sohler; FOCS'2007).
- Distinguishing between α-expanders and graphs far from being Ω(α²)-expanders (Nachmias & Shapira; Information and Computation 2010)

イロト イロト イヨト イヨト 二日

16/43

1 Background on property testing

2 Testing expansion

3 The property tester by Czumaj & Sohler

4 Preliminaries

5 The sketch of the complexity analysis

- For each vertex $v \in V$, we add $2d \deg(v)$ self-loops.
 - In this way, we obtain a (2*d*)-regualr graph.
- And then, we study random walks on G.
 - For $v, w \in V$, we define $P(v, w) = \frac{1}{2d}$ if $(v, w) \in E$ and P(v, w) = 0 o.w.;

■ We define
$$P(v, v) = \frac{2d - \deg(v)}{2d} = 1 - \frac{\deg(v)}{2d}$$
 for each $v \in V$.
■ Obviously, $P(v, v) \ge 1/2$.

◆□ → ◆□ → ◆注 → ◆注 → □ 注

18/43

 $2d - \deg(v)$ self-loops are added for each $v \in V$.

P(v, w) = 1/6 if $(v, w) \in E$ and 0 otherwise. $P(v, v) = 1 - \deg(v)/6$ for each $v \in V$. $2d - \deg(v)$ self-loops are added for each $v \in V$.

P(v, w) = 1/6 if $(v, w) \in E$ and 0 otherwise. $P(v, v) = 1 - \deg(v)/6$ for each $v \in V$. A property tester of two-sided error.

Expansion-Tester(G, ℓ, m, s)

- 1: repeat s times;
- 2: Select a vertex $v \in V$ uniformly at random;
- Perform *m* independent random walks of length *l* starting from *v*;
- 4: Count the number of pairwise collisions between the endpoints of these *m* random walks;
- 5: **if** the number of pairwise collisions is $> \frac{1+7\epsilon}{n} {m \choose 2}$
- 6: then reject;
- 7: accept;

Theorem 3.1 (Main Theorem)

Let $0 \le \epsilon \le 0.025$. With

$$s \geq rac{48}{\epsilon}, m \geq rac{12 \cdot s \cdot \sqrt{n}}{\epsilon^2}, \ell \geq rac{16 \cdot d^2 \cdot \ln(n/\epsilon)}{lpha^2},$$

Algorithm Expansion-Tester

- accepts every α -expander with probability $\geq \frac{2}{3}$, and
- rejects with probability $\geq \frac{2}{3}$ every graph that is ϵ -far from any $\frac{c \cdot \alpha^2}{d^2 \cdot \ln(n/\epsilon)}$ -expander with probability $\geq \frac{2}{3}$, where c > 0 is a large enough constant.

The query complexity of this algorithm is $O(\ell \cdot m \cdot s) = O\left(\frac{d^2 \cdot \ln(n/\epsilon) \cdot \sqrt{n}}{\alpha^2 \cdot \epsilon^3}\right).$

The general idea of how the tester works

- The graph is regular and non-bipartite, so the distribution of the endpoint of a random walk converges to a uniform distribution.
 - For peopele who are familiar with Markov chains, the above distribution is called a **stationary distribution**.
- The key point is how fast (i.e., the mixing time of the corresponding Markov chain) the distribution of the endpoints of the random walk converges to a uniform distribution.
- A graph with high expansion is believed to have fast mixing time.

The general idea of how the tester works

- The graph is regular and non-bipartite, so the distribution of the endpoint of a random walk converges to a uniform distribution.
 - For peopele who are familiar with Markov chains, the above distribution is called a **stationary distribution**.
- The key point is how fast (i.e., the mixing time of the corresponding Markov chain) the distribution of the endpoints of the random walk converges to a uniform distribution.
- A graph with high expansion is believed to have fast mixing time.

The general idea of how the tester works

- The graph is regular and non-bipartite, so the distribution of the endpoint of a random walk converges to a uniform distribution.
 - For peopele who are familiar with Markov chains, the above distribution is called a **stationary distribution**.
- The key point is how fast (i.e., the mixing time of the corresponding Markov chain) the distribution of the endpoints of the random walk converges to a uniform distribution.
- A graph with high expansion is believed to have fast mixing time.

- How to know that the distribution of the endpoints of the random walk is close to the uniform distribution or not?
 - Repeatedly perform the random walk and count the number of collisions.
 - We say that two random walks have a collision: their endpoints are the same.
- If a graph is an α -expander, then the expected number of collisions should be small.

- How to know that the distribution of the endpoints of the random walk is close to the uniform distribution or not?
 - Repeatedly perform the random walk and count the number of collisions.
 - We say that two random walks have a collision: their endpoints are the same.
- If a graph is an α -expander, then the expected number of collisions should be small.

- How to know that the distribution of the endpoints of the random walk is close to the uniform distribution or not?
 - Repeatedly perform the random walk and count the number of collisions.
 - We say that two random walks have a collision: their endpoints are the same.
- If a graph is an α-expander, then the expected number of collisions should be small.

• For graphs far from α^* -expanders, the author showed that:

- There exists a subset U ⊆ V with |U| < n/2 such that the random walks starting from any u ∈ U requires much longer mixing time.</p>
- When the random walks do not proceed long enough, the **variation distance** between the uniform distribution and the distribution of the endpoints of the random walk starting from any $u \in U$ is large.
- The above fact implies that the expected number of collisions of the random walks is high.

- For graphs far from α^* -expanders, the author showed that:
 - There exists a subset U ⊆ V with |U| < n/2 such that the random walks starting from any u ∈ U requires much longer mixing time.</p>
 - When the random walks do not proceed long enough, the **variation distance** between the uniform distribution and the distribution of the endpoints of the random walk starting from any $u \in U$ is large.
 - The above fact implies that the expected number of collisions of the random walks is high.

- For graphs far from α^* -expanders, the author showed that:
 - There exists a subset U ⊆ V with |U| < n/2 such that the random walks starting from any u ∈ U requires much longer mixing time.</p>
 - When the random walks do not proceed long enough, the **variation distance** between the uniform distribution and the distribution of the endpoints of the random walk starting from any $u \in U$ is large.
 - The above fact implies that the expected number of collisions of the random walks is high.

- For graphs far from α^* -expanders, the author showed that:
 - There exists a subset U ⊆ V with |U| < n/2 such that the random walks starting from any u ∈ U requires much longer mixing time.</p>
 - When the random walks do not proceed long enough, the **variation distance** between the uniform distribution and the distribution of the endpoints of the random walk starting from any $u \in U$ is large.
 - The above fact implies that the expected number of collisions of the random walks is high.

- 1 Background on property testing
- 2 Testing expansion
- 3 The property tester by Czumaj & Sohler

4 Preliminaries

5 The sketch of the complexity analysis

・ロ ・ < 回 ト < 三 ト < 三 ト ミ の へ ペ 25 / 43 Markov chain: a sequence of random variables X₀, X₁, X₂,..., (stochastic process) with the Markov property:

•
$$\Pr[X_{n+1} = x \mid X_1 = x_1, X_2 = x_2, \dots, X_n = x_n]$$

= $\Pr[X_{n+1} = x \mid X_n = x_n].$

- For all $i, X_i \in \Omega$, where Ω is a finite state space.
- P : Ω² → [0, 1] denote the matrix of the transition probabilities.
 - There is an underlying graph corresponding to *P*.

Markov chain: a sequence of random variables X₀, X₁, X₂,..., (stochastic process) with the Markov property:

•
$$\Pr[X_{n+1} = x \mid X_1 = x_1, X_2 = x_2, \dots, X_n = x_n]$$

= $\Pr[X_{n+1} = x \mid X_n = x_n].$

- For all $i, X_i \in \Omega$, where Ω is a finite state space.
- P : Ω² → [0, 1] denote the matrix of the transition probabilities.
 - There is an underlying graph corresponding to *P*.

Markov chains (contd.)

- When the underlying undirected graph is regular, connected and non-bipartite, the Markov chain *M* has a stationary distribution π, which is a uniform distribution *U*.
 - π = (π_x)_{x∈Ω} is a stationary distribution of M if Σ_{j∈Ω} π_j = 1 and π_j = Σ_{i∈Ω} = π_i · P(i,j) for each j ∈ Ω.
 That is, π = π · P
- A Markov chain \mathcal{M} is reversible if $\pi_x \cdot P(x, y) = \pi_y \cdot P(y, x)$.
- In this paper, the random walk can be viewed as a Markov chain M_G with state space Ω = V.
 - It is easy to see that M_G is reversible and has a uniform stationary distribution.

- When the underlying undirected graph is regular, connected and non-bipartite, the Markov chain *M* has a stationary distribution π, which is a uniform distribution *U*.
 - π = (π_x)_{x∈Ω} is a stationary distribution of M if Σ_{j∈Ω} π_j = 1 and π_j = Σ_{i∈Ω} = π_i · P(i,j) for each j ∈ Ω.
 That is, π = π · P
- A Markov chain \mathcal{M} is reversible if $\pi_x \cdot P(x, y) = \pi_y \cdot P(y, x)$.
- In this paper, the random walk can be viewed as a Markov chain \mathcal{M}_G with state space $\Omega = V$.
 - It is easy to see that \mathcal{M}_G is reversible and has a uniform stationary distribution.

Conductance is used to control the speed of convergence of a Markov chain. Here we adapt the original definition to \mathcal{M}_G .

• The conductance of
$$\mathcal{M}_{\mathcal{G}}$$
:

$$\Phi_G = \min_{U \subseteq V, |U| \le |V|/2} \frac{E(U, V \setminus U)}{2d \cdot |U|}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

28 / 43

• $E(U, V \setminus U)$: the set of edges between U and $V \setminus U$.

• If G is an α -expander, then $\Phi_G \geq \frac{\alpha}{2d}$.

Definition 4.1 (Variation distance)

The variation distance between two probability distributions ${\cal X}$ and ${\cal Y}$ over the same finite domain Ω is

$$d_{TV}(\mathcal{X},\mathcal{Y}) = rac{1}{2} \sum_{\omega \in \Omega} |\mathbf{Pr}_{\mathcal{X}}[\omega] - \mathbf{Pr}_{\mathcal{Y}}[\omega]|.$$

Let P^t_x(y) be the probability that the Markov chain with the initial state x ends after t steps in a state y. We define that

$$\Delta_x(t) = \frac{1}{2} \sum_{y \in \Omega} |P_x^t(y) - \pi_y|.$$

to be the variation distance w.r.t. the initial state x between $P_x^t(\cdot)$ and π .

Definition 4.2 (Rate of convergence)

The rate of convergence of a Markov chain \mathcal{M} with initial state x to the stationary distribution is defined as

$$\tau_{\mathsf{x}}(\zeta) = \min\{t : \Delta_{\mathsf{x}}(t') \leq \zeta \text{ for all } t' \geq t\}.$$

We also call $\tau_x(\zeta)$ the mixing time of the Markov chain.

Proposition (Sinclair 1992)

 \mathcal{M} : a finite, reversible, ergodic Markov chain and $P(x,x) \ge 1/2$ for all states x;

 Φ : the conductance of \mathcal{M} .

Then the mixing time of $\mathcal M$ satisfies

$$\tau_x(\zeta) \le 2\Phi^{-2} \cdot (\ln(\pi_x^{-1} + \ln(\zeta^{-1}))).$$

■ **Note:** The Markov chain *M*_G is "ergodic", though we do not introduce this term since it involves quite many concepts so that we just ignore its definition in this talk.

- 1 Background on property testing
- 2 Testing expansion
- 3 The property tester by Czumaj & Sohler

4 Preliminaries

5 The sketch of the complexity analysis

A result by Goldreich & Ron 2000

Lemma 5.1 (Goldreich & Ron 2000)

 $\mathsf{E}[X_v] = \binom{m}{2} \cdot ||P_v^\ell||_2^2 \text{ and } \mathsf{Var}[X_v] \le 2 \cdot (\mathsf{E}[X_v])^{3/2}.$

- C_{i,j;v}: indicator random variable; C_{i,j;v} = 1 iff the *i*th and the *j*th random walks starting from v have a collision.
- X_v: the number of collisions among the *m* random walks of length ℓ starting from v.

•
$$X_{\nu} = \sum_{1 \leq i < j \leq m} C_{i,j;\nu}.$$

P^ℓ_v: the distribution of the endpoint of the random walk of length ℓ starting from v.

•
$$||P_v^{\ell}||_2 = \sqrt{\sum_{w \in V} (P_v^{\ell}(w))^2}$$
 (i.e., 2-norm).

(P^ℓ_v(w))²: The probability that two random walks of length ℓ starting from v end at the same vertex w.

A result by Goldreich & Ron 2000 (contd.)

(*) By setting $\ell = \frac{16d^2 \cdot \ln(n/\epsilon)}{\alpha^2}$ and Sinclair's proposition, we have $||P_v^{\ell}||_2^2 \le (1+\epsilon)^2/n$.

(**) Moreover, by Cauchy–Schwarz inequality $\Rightarrow ||P_v^\ell||_2^2 \ge 1/n.$

 Using (*) and Chebyshev's inequality, we have the following lemma.

Lemma 5.2 (Accepting expanders)

Let $m \geq \frac{12 \cdot s \cdot \sqrt{n}}{\epsilon^2}$ and $\ell \geq \frac{16d^2 \cdot \ln(n/\epsilon)}{\alpha^2}$. Then Expansion-Tester accepts every α -expander with probability at least $\frac{2}{3}$.

Lemma 5.3 (Rejections)

Let $0 < \epsilon < 0.1$, $0 < \delta < 1/2$, and $s \ge 2/\delta$. If there exists $U \subseteq V$ with $|U| \ge \delta n$, such that for every $u \in U$, $d_{TV}(P_u^{\ell}, \mathscr{U}) \ge 1.5\sqrt{\epsilon}$, then Expansion-Tester rejects with probability at least $\frac{2}{3}$.

Ideas of the proof.

- $d_{TV}(P_u^{\ell}, \mathscr{U}) \ge 6\sqrt{\epsilon} \Rightarrow$ high expected number of collisions for the random walks.
 - The expected number of collisions: $\binom{m}{2} \cdot ||P_{\mu}^{\ell}||_{2}^{2}$.
 - We look for a probability vector P^ℓ_u with the variation distance constraint that minimizes ||P^ℓ_u||²₂.
- Next, by the proof of Lemma 5.1, the observed number of collisions is $\geq (1 \epsilon) {m \choose 2} \cdot ||P_u^{\ell}||_2^2$ with probability $\geq 1 \frac{1}{3s}$.

As to the rejections (contd.)

The probability vector P_{μ}^{ℓ} :

The vector of the uniform distribution \mathscr{U} :

$$(\underbrace{\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}}_{n \text{ times}})$$

We have $\frac{1}{2} \cdot \sum_{w \in V} |P_u^{\ell}(w) - 1/n| = 1.5\sqrt{\epsilon}$ and $||P_u^{\ell}||_2^2 = \frac{1+9\epsilon}{n}$. So $(1-\epsilon) \cdot {m \choose 2} \cdot ||P_u^{\ell}||_2^2 \ge \frac{(1-\epsilon)(1+9\epsilon)}{n} \cdot {m \choose 2} > \frac{1+7\epsilon}{n} \cdot {m \choose 2}$. Any graph that is ϵ -far from any α^* -expander has a small cut that separates a large set of vertices from the rest of the graph.

Lemma 5.4

Let $0 < \epsilon < 1$ and $\alpha^* \le 0.1$. If G has a subset of vertices $A \subseteq V$ with $|A| \le \frac{1}{12}\epsilon n$ such that $G[V \setminus A]$ is an $\frac{4\alpha^*}{\beta}$ -expander, then G is not ϵ -far from any α^* -expander.

Note that β = Θ(1) is a constant concerning strong expansion, which is ignored for this talk.

Corollary 5.5

Let *G* be ϵ -far from any α^* -expander with $\alpha^* \leq 0.1$. Then there exists $A \subseteq V$ with $\frac{1}{12}\epsilon n \leq |A| \leq \frac{1}{2}(1+\epsilon)n$ such that $|N_G(A, V)| < \frac{4\alpha^*}{\beta}|A|$.

Any graph that is ϵ -far from any α^* -expander has a small cut that separates a large set of vertices from the rest of the graph.

Lemma 5.4

Let $0 < \epsilon < 1$ and $\alpha^* \le 0.1$. If G has a subset of vertices $A \subseteq V$ with $|A| \le \frac{1}{12}\epsilon n$ such that $G[V \setminus A]$ is an $\frac{4\alpha^*}{\beta}$ -expander, then G is not ϵ -far from any α^* -expander.

Note that β = Θ(1) is a constant concerning strong expansion, which is ignored for this talk.

Corollary 5.5

Let G be ϵ -far from any α^* -expander with $\alpha^* \leq 0.1$. Then there exists $A \subseteq V$ with $\frac{1}{12}\epsilon n \leq |A| \leq \frac{1}{2}(1+\epsilon)n$ such that $|N_G(A, V)| < \frac{4\alpha^*}{\beta}|A|$.

Lemma 5.6

Let A be a subset of V with $|A| \leq \frac{1}{2}(1+\epsilon)n$ and $|N_G(A, V)| \leq \frac{|A|}{10(\ell+1)}$. Then there exists a set U with $|U| \geq |A|/2$ such that for every $u \in U$,

$$d_{TV}(\mathsf{P}^\ell_v,\mathscr{U}) \geq rac{1-2\epsilon}{4}$$

・ロト ・回ト ・ヨト ・ヨト

38 / 43

Note that $\frac{1-2\epsilon}{4} \ge 1.5\sqrt{\epsilon}$ for $\epsilon < 0.025$.

Being far from α^* -expanders (contd.)

 $A = \{v_1\}, N_G(A, V) = \{v_2, v_3\}.$

Being far from α^* -expanders (contd.)

 $A = \{v_1\}, N_G(A, V) = \{v_2, v_3\}.$

- Let $G_A = G[A \cup N_G(A, V)]$. Consider a random walk on G_A .
- Y_i : the indicator random variable for the event that the *i*th vertex of the random walk is in $N_G(A, V)$.

•
$$\Pr[Y_i = 1] = \frac{|N_G(A, V)|}{|V(G_A)|}$$

• The reason: the starting vertex is chosen uniformly at random & the stationary distribution is uniform.

40/43

• We can show that $\Pr[\exists i \in \{0, 1, ..., \ell\}, Y_i = 1] \le \frac{1}{10(\ell+1)}$.

- The probability that an ℓ -step random walk in G starting at a vertex chosen uniformly from A will remain in A is at least $1 \frac{1}{10(\ell+1)} \ge \frac{9}{10}$.
 - Thus, there must be $U \subseteq A$ of size $\geq |A|/2$ such that a random walk starting from a vertex in U remains in A with probability $\geq \frac{3}{4}$.
 - Thus, there must be $U \subseteq A$ of size $\geq |A|/2$ such that a random walk starting from a vertex in U does **NOT** in A with probability $\leq \frac{1}{4}$.
 - In contrast to the uniform distribution: $\frac{|V \setminus A|}{|V|} \ge \frac{1-\epsilon}{2}$.

Being far from α^* -expanders (contd.)

- The probability that an ℓ -step random walk in G starting at a vertex chosen uniformly from A will remain in A is at least $1 \frac{1}{10(\ell+1)} \ge \frac{9}{10}$.
 - Thus, there must be $U \subseteq A$ of size $\geq |A|/2$ such that a random walk starting from a vertex in U remains in A with probability $\geq \frac{3}{4}$.
 - Thus, there must be $U \subseteq A$ of size $\geq |A|/2$ such that a random walk starting from a vertex in U does **NOT** in A with probability $\leq \frac{1}{4}$.

41 / 43

In contrast to the uniform distribution: $\frac{|V \setminus A|}{|V|} \ge \frac{1-\epsilon}{2}$.

Putting everything together you will derive the proof of the main theorem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

42 / 43

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

43 / 43