Testing expansion in bounded-degree graphs

Artur Czumaj and Christian Sohler

The 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'2007) 570-578.

Speaker: Joseph, Chuang-Chieh Lin Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Department of Computer Science and Information Engineering National Chung Cheng University, Taiwan

$$
\text { June 9, } 2010
$$

Outline

1 Background on property testing

2 Testing expansion

3 The property tester by Czumaj \& Sohler

4 Preliminaries

5 The sketch of the complexity analysis

Outline

1 Background on property testing

2 Testing expansion

3 The property tester by Czumaj \& Sohler

4 Preliminaries

5 The sketch of the complexity analysis

Background on property testing

- Try to answer "yes" or "no" for the following relaxed decision problems by observing only a small fraction of the input.
- Does the input satisfy a designated property, or
- is ϵ-far from satisfying the property?

Background on property testing

- Try to answer "yes" or "no" for the following relaxed decision problems by observing only a small fraction of the input.
- Does the input satisfy a designated property, or
- is ϵ-far from satisfying the property?

Background on property testing (contd.)

■ In property testing, we use ϵ-far to say that the input is far from a certain property.

- ϵ : the least fraction of the input needs to be modified.
- For example:
- A sequence of integers $L=(0,2,3,4,1)$
- Allowed operations: integer deletions
- L is 0.2 -far from being monotonically nondecreasing.
- In property testing, we use ϵ-far to say that the input is far from a certain property.

■ ϵ : the least fraction of the input needs to be modified.

- For example:
- A sequence of integers $L=(0,2,3,4,1)$.
- Allowed operations: integer deletions
- L is 0.2 -far from being monotonically nondecreasing.

The model for bounded-degree graphs

■ Graph model: adjacency list for graphs with vertex-degree bounded by d.

- It takes $O(1)$ time to access to a function $f_{G}:[n] \times[d] \mapsto[n] \times\{+\}$.
- The value $f_{G}(v, i)$ is the i th neighbor of v or a special symbol ' + ' if v has less than i neighbors.
- In this paper, $d \geq 4$.

■ ϵ-far from satisfying a graph property \mathbb{P} :

- one has to modify > $\epsilon d n$ entries in f_{G} (i.e., $>\epsilon d n / 2$ edges) to make the input graph satisfy \mathbb{P}.

The model for bounded-degree graphs

■ Graph model: adjacency list for graphs with vertex-degree bounded by d.

- It takes $O(1)$ time to access to a function $f_{G}:[n] \times[d] \mapsto[n] \times\{+\}$.
- The value $f_{G}(v, i)$ is the i th neighbor of v or a special symbol ' + ' if v has less than i neighbors.
- In this paper, $d \geq 4$.

■ ϵ-far from satisfying a graph property \mathbb{P} :

- one has to modify $>\epsilon d n$ entries in f_{G} (i.e., $>\epsilon d n / 2$ edges) to make the input graph satisfy \mathbb{P}.

Background on property testing (contd.)

- The complexity measure: queries.
- The query complexity (say $q(n, d, \epsilon)$) is asked to be sublinear in $|V|=n$.
- $q(n, d, \epsilon)=o(f(n))$ if $\lim _{n \rightarrow \infty} \frac{q(n, d, \epsilon)}{f(n)} \rightarrow 0$, where ϵ and d are viewed as constants.

■ The complexity measure: queries.

- The query complexity (say $q(n, d, \epsilon)$) is asked to be sublinear in $|V|=n$.
- $q(n, d, \epsilon)=o(f(n))$ if $\lim _{n \rightarrow \infty} \frac{q(n, d, \epsilon)}{f(n)} \rightarrow 0$, where ϵ and d are viewed as constants.

Property testers

- A property tester for \mathbb{P} is an algorithm utilizing sublinear queries such that:
\triangleright if the input satisfies \mathbb{P} : answers "yes" with probability $\geq 2 / 3$ ($1 \rightarrow$ one-sided error);
\triangleright if the input is ϵ-far from satisfying \mathbb{P} : answers "no" with probability $\geq 2 / 3$.

Background on property testing (contd.)

- Unlike testing graph properties in the adjacency matrix model, only a few, very simple graph properties are known to be testable (i.e., query complexity is independent of n).
- For most of nontrivial graph properties, super-constant lower bounds exist.
- bipartiteness: $\Omega(\sqrt{n})$.
- 3-colorability: $\Omega(n)$.
- acyclicity (in directed graphs): $\Omega\left(n^{1 / 3}\right)$.
- ...

■ The focus turned on property testers with sublinear query complexity.

Outline

1 Background on property testing

2 Testing expansion

3 The property tester by Czumaj \& Sohler

4 Preliminaries

5 The sketch of the complexity analysis

α-expanders

Definition 2.1

Let $\alpha>0$. A graph $G=(V, E)$ is an α-expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n / 2$, it holds that $N_{G}(U, V) \geq \alpha \cdot|U|$.

- For $U, W \subseteq V$,

$$
N_{G}(U, W)=\{v \in W \backslash U: \exists u \in U \text { such that }(v, u) \in E\} .
$$

- For example:

α-expanders

Definition 2.1

Let $\alpha>0$. A graph $G=(V, E)$ is an α-expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n / 2$, it holds that $N_{G}(U, V) \geq \alpha \cdot|U|$.

- For $U, W \subseteq V$,
$N_{G}(U, W)=\{v \in W \backslash U: \exists u \in U$ such that $(v, u) \in E\}$.
- For example:
- What is the expansion of K_{n} ?

α-expanders

Definition 2.1

Let $\alpha>0$. A graph $G=(V, E)$ is an α-expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n / 2$, it holds that $N_{G}(U, V) \geq \alpha \cdot|U|$.

- For $U, W \subseteq V$,

$$
N_{G}(U, W)=\{v \in W \backslash U: \exists u \in U \text { such that }(v, u) \in E\} .
$$

- For example:
- What is the expansion of K_{n} ?
- What is the expansion of C_{n} ?
- What is the lower bound on the expansion of a k-club with n - What is the lower bound on the expansion of an s-plex with n

α-expanders

Definition 2.1

Let $\alpha>0$. A graph $G=(V, E)$ is an α-expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n / 2$, it holds that $N_{G}(U, V) \geq \alpha \cdot|U|$.

- For $U, W \subseteq V$,

$$
N_{G}(U, W)=\{v \in W \backslash U: \exists u \in U \text { such that }(v, u) \in E\} .
$$

- For example:
- What is the expansion of K_{n} ?
- What is the expansion of C_{n} ?
- What is the lower bound on the expansion of a k-club with n vertices?
- What is the lower bound on the expansion of an s-plex with n vertices?

α-expanders

Definition 2.1

Let $\alpha>0$. A graph $G=(V, E)$ is an α-expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n / 2$, it holds that $N_{G}(U, V) \geq \alpha \cdot|U|$.

- For $U, W \subseteq V$,

$$
N_{G}(U, W)=\{v \in W \backslash U: \exists u \in U \text { such that }(v, u) \in E\} .
$$

- For example:
- What is the expansion of K_{n} ?
- What is the expansion of C_{n} ?
- What is the lower bound on the expansion of a k-club with n vertices?
- What is the lower bound on the expansion of an s-plex with n vertices?

A well-known fact

Theorem 2.2 (Planar Separator Theorem (Lipton \& Tarjan 1979))

Every planar graph with n vertices (n is sufficiently large) has a subset of vertices A, where $\frac{1}{3} n \leq|A| \leq \frac{1}{2} n$, such that $N(A, V) \leq 4 \sqrt{n}$.

- The expansion of a planar graph: $O(1 / \sqrt{n})$.

Algebraic notion of graph expansion

■ Let $A(G)$ be an $n \times n$ adjacency matrix of a d-regular graph G.

- Each entry (u, v) contains the number of edges in G between u and v.
- Since $A(G)$ is symmetric, $A(G)$ has n eigenvalues $\mu_{0} \geq \mu_{1} \geq \ldots \geq \mu_{n-1}$.
- Theorem: Let α be the expansion of G. Then $\mu_{0}=d$ and

$$
\frac{d-\mu_{1}}{2} \leq \alpha \leq \sqrt{2 d\left(d-\mu_{1}\right)}
$$

Related work on testing expansion

- Testing whether G is an α-expander: It's still OPEN.
- Lower bound for testing expansion: $\Omega(\sqrt{n})$ [Goldreich \& Ron 2002].

Conjecture (Goldreich \& Ron 2000)

In the bounded-degree model, a property tester for testing if a graph G is an α-expander exists.

■ The focus turned to the relaxed goal: distinguish between α-expanders and graphs that are ϵ-far from being an α^{\prime}-expander $\left(\alpha^{\prime}<\alpha\right)$.

To be concise, here we omit the factors of ϵ and d.

- Distinguishing between α-expanders and graphs far from being $\Theta\left(\frac{\alpha^{2}}{\log n}\right)$-expanders (Czumaj \& Sohler; FOCS'2007).
- Distinguishing between α-expanders and graphs far from being $\Omega\left(\alpha^{2}\right)$-expanders (Nachmias \& Shapira; Information and Computation 2010)

To be concise, here we omit the factors of ϵ and d.

- Distinguishing between α-expanders and graphs far from being $\Theta\left(\frac{\alpha^{2}}{\log n}\right)$-expanders (Czumaj \& Sohler; FOCS'2007).
- Distinguishing between α-expanders and graphs far from being $\Omega\left(\alpha^{2}\right)$-expanders (Nachmias \& Shapira; Information and Computation 2010)

Related work on testing expansion (contd.)

To be concise, here we omit the factors of ϵ and d.

- Distinguishing between α-expanders and graphs far from being $\Theta\left(\frac{\alpha^{2}}{\log n}\right)$-expanders (Czumaj \& Sohler; FOCS'2007).
- Distinguishing between α-expanders and graphs far from being $\Omega\left(\alpha^{2}\right)$-expanders (Nachmias \& Shapira; Information and Computation 2010)

Outline

1 Background on property testing

2 Testing expansion

3 The property tester by Czumaj \& Sohler

4 Preliminaries

5 The sketch of the complexity analysis

Before we proceed with the tester

- For each vertex $v \in V$, we add $2 d-\operatorname{deg}(v)$ self-loops.
- In this way, we obtain a ($2 d$)-regualr graph.

■ And then, we study random walks on G.

- For $v, w \in V$, we define $P(v, w)=\frac{1}{2 d}$ if $(v, w) \in E$ and $P(v, w)=0$ o.w.;
- We define $P(v, v)=\frac{2 d-\operatorname{deg}(v)}{2 d}=1-\frac{\operatorname{deg}(v)}{2 d}$ for each $v \in V$.
- Obviously, $P(v, v) \geq 1 / 2$.

$2 d-\operatorname{deg}(v)$ self-loops are added for each $v \in V$.

$P(v, w)=1 / 6$ if $(v, w) \in E$ and 0 otherwise.
$P(v, v)=1-\operatorname{deg}(v) / 6$ for each $v \in V$.
$2 d-\operatorname{deg}(v)$ self-loops are added for each $v \in V$.

$P(v, w)=1 / 6$ if $(v, w) \in E$ and 0 otherwise.
$P(v, v)=1-\operatorname{deg}(v) / 6$ for each $v \in V$.

The expansion tester by Goldreich \& Ron

A property tester of two-sided error.
Expansion-Tester(G, $\ell, m, s)$
1: repeat s times;
2: \quad Select a vertex $v \in V$ uniformly at random;
3: \quad Perform m independent random walks of length ℓ starting from v;
4: Count the number of pairwise collisions between the endpoints of these m random walks;

5: if the number of pairwise collisions is $>\frac{1+7 \epsilon}{n}\binom{m}{2}$ then reject;
7: accept;

Theorem 3.1 (Main Theorem)

Let $0 \leq \epsilon \leq 0.025$. With

$$
s \geq \frac{48}{\epsilon}, m \geq \frac{12 \cdot s \cdot \sqrt{n}}{\epsilon^{2}}, \ell \geq \frac{16 \cdot d^{2} \cdot \ln (n / \epsilon)}{\alpha^{2}}
$$

Algorithm Expansion-Tester

- accepts every α-expander with probability $\geq \frac{2}{3}$, and
- rejects with probability $\geq \frac{2}{3}$ every graph that is ϵ-far from any $\frac{c \cdot a^{2}}{d^{2} \cdot \ln (n / \epsilon)}$-expander with probability $\geq \frac{2}{3}$, where $c>0$ is a large enough constant.

The query complexity of this algorithm is $O(\ell \cdot m \cdot s)=$ $O\left(\frac{d^{2} \cdot \ln (n / \epsilon) \cdot \sqrt{n}}{\alpha^{2} \cdot \epsilon^{3}}\right)$.

- The graph is regular and non-bipartite, so the distribution of the endpoint of a random walk converges to a uniform distribution.
- For peopele who are familiar with Markov chains, the above distribution is called a stationary distribution.
- The key point is how fast (i.e., the mixing time of the corresponding Markov chain) the distribution of the endpoints of the random walk converges to a uniform distribution.
- The graph is regular and non-bipartite, so the distribution of the endpoint of a random walk converges to a uniform distribution.
- For peopele who are familiar with Markov chains, the above distribution is called a stationary distribution.

■ The key point is how fast (i.e., the mixing time of the corresponding Markov chain) the distribution of the endpoints of the random walk converges to a uniform distribution.

- A graph with high expansion is believed to have fast mixing time.
- The graph is regular and non-bipartite, so the distribution of the endpoint of a random walk converges to a uniform distribution.
- For peopele who are familiar with Markov chains, the above distribution is called a stationary distribution.

■ The key point is how fast (i.e., the mixing time of the corresponding Markov chain) the distribution of the endpoints of the random walk converges to a uniform distribution.

- A graph with high expansion is believed to have fast mixing time.

■ How to know that the distribution of the endpoints of the random walk is close to the uniform distribution or not?

- Repeatedly perform the random walk and count the number of
- We say that two random walks have a collision: their endpoints are the same.
- If a graph is an α-expander, then the expected number of collisions should be small.
- How to know that the distribution of the endpoints of the random walk is close to the uniform distribution or not?
- Repeatedly perform the random walk and count the number of collisions.
- We say that two random walks have a collision: their endpoints are the same.
- If a graph is an α-expander, then the expected number of collisions should be small.

■ How to know that the distribution of the endpoints of the random walk is close to the uniform distribution or not?

- Repeatedly perform the random walk and count the number of collisions.
- We say that two random walks have a collision: their endpoints are the same.

■ If a graph is an α-expander, then the expected number of collisions should be small.

■ For graphs far from α^{*}-expanders, the author showed that: - There exists a subset $U \subseteq V$ with $|U|<n / 2$ such that the random walks starting from any $u \in U$ requires much longer mixing time.

- When the random walks do not proceed long enough, the variation distance between the uniform distribution and the distribution of the endpoints of the random walk starting from any $u \in U$ is large.

■ For graphs far from α^{*}-expanders, the author showed that:

- There exists a subset $U \subseteq V$ with $|U|<n / 2$ such that the random walks starting from any $u \in U$ requires much longer mixing time.
- When the random walks do not proceed long enough, the variation distance between the uniform distribution and the distribution of the endpoints of the random walk starting from any $u \in U$ is large.
- The above fact implies that the expected number of collisions of the random walks is high
- For graphs far from α^{*}-expanders, the author showed that:
- There exists a subset $U \subseteq V$ with $|U|<n / 2$ such that the random walks starting from any $u \in U$ requires much longer mixing time.
- When the random walks do not proceed long enough, the variation distance between the uniform distribution and the distribution of the endpoints of the random walk starting from any $u \in U$ is large.
- The above fact implies that the expected number of collisions of the random walks is high.
- For graphs far from α^{*}-expanders, the author showed that:
- There exists a subset $U \subseteq V$ with $|U|<n / 2$ such that the random walks starting from any $u \in U$ requires much longer mixing time.
- When the random walks do not proceed long enough, the variation distance between the uniform distribution and the distribution of the endpoints of the random walk starting from any $u \in U$ is large.
- The above fact implies that the expected number of collisions of the random walks is high.

Outline

1 Background on property testing

2 Testing expansion

3 The property tester by Czumaj \& Sohler

4 Preliminaries

5 The sketch of the complexity analysis

Markov chains

■ Markov chain: a sequence of random variables $X_{0}, X_{1}, X_{2}, \ldots$, (stochastic process) with the Markov property:
$\square \operatorname{Pr}\left[X_{n+1}=x \mid X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right]$
$=\operatorname{Pr}\left[X_{n+1}=x \mid X_{n}=x_{n}\right]$.

- For all $i, X_{i} \in \Omega$, where Ω is a finite state space.

■ $P: \Omega^{2} \mapsto[0,1]$ denote the matrix of the transition probabilities.

■ There is an underlying graph corresponding to P.

Markov chains

■ Markov chain: a sequence of random variables $X_{0}, X_{1}, X_{2}, \ldots$, (stochastic process) with the Markov property:

■ $\operatorname{Pr}\left[X_{n+1}=x \mid X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right]$
$=\operatorname{Pr}\left[X_{n+1}=x \mid X_{n}=x_{n}\right]$.

- For all $i, X_{i} \in \Omega$, where Ω is a finite state space.

■ $P: \Omega^{2} \mapsto[0,1]$ denote the matrix of the transition probabilities.

■ There is an underlying graph corresponding to P.

Markov chains (contd.)

- When the underlying undirected graph is regular, connected and non-bipartite, the Markov chain \mathcal{M} has a stationary distribution $\boldsymbol{\pi}$, which is a uniform distribution \mathscr{U}.
- $\boldsymbol{\pi}=\left(\pi_{x}\right)_{x \in \Omega}$ is a stationary distribution of \mathcal{M} if $\sum_{j \in \Omega} \pi_{j}=1$ and $\pi_{j}=\sum_{i \in \Omega}=\pi_{i} \cdot P(i, j)$ for each $j \in \Omega$.
- That is, $\boldsymbol{\pi}=\boldsymbol{\pi} \cdot P$

■ A Markov chain \mathcal{M} is reversible if $\pi_{x} \cdot P(x, y)=\pi_{y} \cdot P(y, x)$.

- In this paper, the random walk can be viewed as a Markov chain \mathcal{M}_{G} with state space $\Omega=V$.
- It is easy to see that \mathcal{M}_{G} is reversible and has a uniform stationary distribution.
- When the underlying undirected graph is regular, connected and non-bipartite, the Markov chain \mathcal{M} has a stationary distribution $\boldsymbol{\pi}$, which is a uniform distribution \mathscr{U}.
- $\boldsymbol{\pi}=\left(\pi_{x}\right)_{x \in \Omega}$ is a stationary distribution of \mathcal{M} if $\sum_{j \in \Omega} \pi_{j}=1$ and $\pi_{j}=\sum_{i \in \Omega}=\pi_{i} \cdot P(i, j)$ for each $j \in \Omega$.
- That is, $\boldsymbol{\pi}=\boldsymbol{\pi} \cdot P$
- A Markov chain \mathcal{M} is reversible if $\pi_{x} \cdot P(x, y)=\pi_{y} \cdot P(y, x)$.
- In this paper, the random walk can be viewed as a Markov chain \mathcal{M}_{G} with state space $\Omega=V$.
- It is easy to see that \mathcal{M}_{G} is reversible and has a uniform stationary distribution.

Conductance is used to control the speed of convergence of a Markov chain. Here we adapt the original definition to \mathcal{M}_{G}.

- The conductance of \mathcal{M}_{G} :

$$
\Phi_{G}=\min _{U \subseteq V,|U| \leq|V| / 2} \frac{E(U, V \backslash U)}{2 d \cdot|U|} .
$$

- $E(U, V \backslash U)$: the set of edges between U and $V \backslash U$.
- If G is an α-expander, then $\Phi_{G} \geq \frac{\alpha}{2 d}$.

Variation distance

Definition 4.1 (Variation distance)

The variation distance between two probability distributions \mathcal{X} and \mathcal{Y} over the same finite domain Ω is

$$
d_{T V}(\mathcal{X}, \mathcal{Y})=\frac{1}{2} \sum_{\omega \in \Omega}\left|\operatorname{Pr}_{\mathcal{X}}[\omega]-\operatorname{Pr}_{\mathcal{Y}}[\omega]\right| .
$$

- Let $P_{x}^{t}(y)$ be the probability that the Markov chain with the initial state x ends after t steps in a state y. We define that

$$
\Delta_{x}(t)=\frac{1}{2} \sum_{y \in \Omega}\left|P_{x}^{t}(y)-\pi_{y}\right|
$$

to be the variation distance w.r.t. the initial state x between $P_{x}^{t}(\cdot)$ and π.

Definition 4.2 (Rate of convergence)

The rate of convergence of a Markov chain \mathcal{M} with initial state x to the stationary distribution is defined as

$$
\tau_{x}(\zeta)=\min \left\{t: \Delta_{x}\left(t^{\prime}\right) \leq \zeta \text { for all } t^{\prime} \geq t\right\}
$$

We also call $\tau_{x}(\zeta)$ the mixing time of the Markov chain.

Proposition (Sinclair 1992)

\mathcal{M} : a finite, reversible, ergodic Markov chain and $P(x, x) \geq 1 / 2$
for all states x;
Φ : the conductance of \mathcal{M}.
Then the mixing time of \mathcal{M} satisfies

$$
\tau_{x}(\zeta) \leq 2 \Phi^{-2} \cdot\left(\ln \left(\pi_{x}^{-1}+\ln \left(\zeta^{-1}\right)\right)\right.
$$

■ Note: The Markov chain \mathcal{M}_{G} is "ergodic", though we do not introduce this term since it involves quite many concepts so that we just ignore its definition in this talk.

Outline

1 Background on property testing

2 Testing expansion

3 The property tester by Czumaj \& Sohler

4 Preliminaries

5 The sketch of the complexity analysis

A result by Goldreich \& Ron 2000

Lemma 5.1 (Goldreich \& Ron 2000)

$\mathbf{E}\left[X_{v}\right]=\binom{m}{2} \cdot\left\|P_{v}^{\ell}\right\|_{2}^{2}$ and $\operatorname{Var}\left[X_{v}\right] \leq 2 \cdot\left(\mathbf{E}\left[X_{V}\right]\right)^{3 / 2}$.

- $C_{i, j ; v}$: indicator random variable; $C_{i, j ; v}=1$ iff the i th and the j th random walks starting from v have a collision.

■ X_{v} : the number of collisions among the m random walks of length ℓ starting from v.

- $X_{v}=\sum_{1 \leq i<j \leq m} C_{i, j ; v}$.
- P_{v}^{ℓ} : the distribution of the endpoint of the random walk of length ℓ starting from v.
- $\left\|P_{v}^{\ell}\right\|_{2}=\sqrt{\sum_{w \in V}\left(P_{v}^{\ell}(w)\right)^{2}} \quad$ (i.e., 2-norm).
- $\left(P_{v}^{\ell}(w)\right)^{2}$: The probability that two random walks of length ℓ starting from v end at the same vertex w.

A result by Goldreich \& Ron 2000 (contd.)

$\left(^{*}\right)$ By setting $\ell=\frac{16 d^{2} \cdot \ln (n / \epsilon)}{\alpha^{2}}$ and Sinclair's proposition, we have $\left\|P_{v}^{\ell}\right\|_{2}^{2} \leq(1+\epsilon)^{2} / n$.
$\left({ }^{* *}\right)$ Moreover, by Cauchy-Schwarz inequality $\Rightarrow\left\|P_{v}^{\ell}\right\|_{2}^{2} \geq 1 / n$.
■ Using $\left(^{*}\right)$ and Chebyshev's inequality, we have the following lemma.

Lemma 5.2 (Accepting expanders)

Let $m \geq \frac{12 \cdot s \cdot \sqrt{n}}{\epsilon^{2}}$ and $\ell \geq \frac{16 d^{2} \cdot \ln (n / \epsilon)}{\alpha^{2}}$. Then Expansion-Tester accepts every α-expander with probability at least $\frac{2}{3}$.

As to the rejections

Lemma 5.3 (Rejections)

Let $0<\epsilon<0.1,0<\delta<1 / 2$, and $s \geq 2 / \delta$. If there exists $U \subseteq V$ with $|U| \geq \delta n$, such that for every $u \in U, d_{T V}\left(P_{u}^{\ell}, \mathscr{U}\right) \geq 1.5 \sqrt{\epsilon}$, then Expansion-Tester rejects with probability at least $\frac{2}{3}$.

Ideas of the proof.

- $d_{T V}\left(P_{u}^{\ell}, \mathscr{U}\right) \geq 6 \sqrt{\epsilon} \Rightarrow$ high expected number of collisions for the random walks.
- The expected number of collisions: $\binom{m}{2} \cdot\left\|P_{u}^{\ell}\right\|_{2}^{2}$.
- We look for a probability vector P_{u}^{ℓ} with the variation distance constraint that minimizes $\left\|P_{u}^{\ell}\right\|_{2}^{2}$.
■ Next, by the proof of Lemma 5.1, the observed number of collisions is $\geq(1-\epsilon)\binom{m}{2} \cdot\left\|P_{u}^{\ell}\right\|_{2}^{2}$ with probability $\geq 1-\frac{1}{3 s}$.

As to the rejections (contd.)

The probability vector P_{u}^{ℓ} :

$$
(\underbrace{\frac{1+3 \sqrt{\epsilon}}{n}, \ldots, \frac{1+3 \sqrt{\epsilon}}{n}}_{n / 2 \text { times }}, \underbrace{\frac{1-3 \sqrt{\epsilon}}{n}, \ldots, \frac{1-3 \sqrt{\epsilon}}{n}}_{n / 2 \text { times }})
$$

The vector of the uniform distribution \mathscr{U} :

$$
(\underbrace{\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}}_{n \text { times }})
$$

We have $\frac{1}{2} \cdot \sum_{w \in V}\left|P_{u}^{\ell}(w)-1 / n\right|=1.5 \sqrt{\epsilon}$ and $\left\|P_{u}^{\ell}\right\|_{2}^{2}=\frac{1+9 \epsilon}{n}$.
So $(1-\epsilon) \cdot\binom{m}{2} \cdot\left\|P_{u}^{\ell}\right\|_{2}^{2} \geq \frac{(1-\epsilon)(1+9 \epsilon)}{n} \cdot\binom{m}{2}>\frac{1+7 \epsilon}{n} \cdot\binom{m}{2}$.

Being far from α^{*}-expanders

Any graph that is ϵ-far from any α^{*}-expander has a small cut that separates a large set of vertices from the rest of the graph.

Lemma 5.4

Let $0<\epsilon<1$ and $\alpha^{*} \leq 0.1$. If G has a subset of vertices $A \subseteq V$ with $|A| \leq \frac{1}{12} \epsilon n$ such that $G[V \backslash A]$ is an $\frac{4 \alpha^{*}}{\beta}$-expander, then G is not ϵ-far from any α^{*}-expander.

■ Note that $\beta=\Theta(1)$ is a constant concerning strong expansion, which is ignored for this talk.

Being far from α^{*}-expanders

Any graph that is ϵ-far from any α^{*}-expander has a small cut that separates a large set of vertices from the rest of the graph.

Lemma 5.4

Let $0<\epsilon<1$ and $\alpha^{*} \leq 0.1$. If G has a subset of vertices $A \subseteq V$ with $|A| \leq \frac{1}{12} \epsilon n$ such that $G[V \backslash A]$ is an $\frac{4 \alpha^{*}}{\beta}$-expander, then G is not ϵ-far from any α^{*}-expander.

- Note that $\beta=\Theta(1)$ is a constant concerning strong expansion, which is ignored for this talk.

Corollary 5.5

Let G be ϵ-far from any α^{*}-expander with $\alpha^{*} \leq 0.1$. Then there exists $A \subseteq V$ with $\frac{1}{12} \epsilon n \leq|A| \leq \frac{1}{2}(1+\epsilon) n$ such that $\left|N_{G}(A, V)\right|<\frac{4 \alpha^{*}}{\beta}|A|$.

Being far from α^{*}-expanders (contd.)

Lemma 5.6

Let A be a subset of V with $|A| \leq \frac{1}{2}(1+\epsilon) n$ and $\left|N_{G}(A, V)\right| \leq \frac{|A|}{10(\ell+1)}$. Then there exists a set U with $|U| \geq|A| / 2$ such that for every $u \in U$,

$$
d_{T V}\left(P_{V}^{\ell}, \mathscr{U}\right) \geq \frac{1-2 \epsilon}{4}
$$

Note that $\frac{1-2 \epsilon}{4} \geq 1.5 \sqrt{\epsilon}$ for $\epsilon<0.025$.

Being far from α^{*}-expanders (contd.)

Being far from α^{*}-expanders (contd.)

$$
A=\left\{v_{1}\right\}, N_{G}(A, V)=\left\{v_{2}, v_{3}\right\} .
$$

Being far from α^{*}-expanders (contd.)

■ Let $G_{A}=G\left[A \cup N_{G}(A, V)\right]$. Consider a random walk on G_{A}.

- Y_{i} : the indicator random variable for the event that the i th vertex of the random walk is in $N_{G}(A, V)$.
- $\operatorname{Pr}\left[Y_{i}=1\right]=\frac{\left|N_{G}(A, V)\right|}{\left|V\left(G_{A}\right)\right|}$
- The reason: the starting vertex is chosen uniformly at random \& the stationary distribution is uniform.
- We can show that $\operatorname{Pr}\left[\exists i \in\{0,1, \ldots, \ell\}, Y_{i}=1\right] \leq \frac{1}{10(\ell+1)}$.

Being far from α^{*}-expanders (contd.)

- The probability that an ℓ-step random walk in G starting at a vertex chosen uniformly from A will remain in A is at least $1-\frac{1}{10(\ell+1)} \geq \frac{9}{10}$.
- Thus, there must be $U \subseteq A$ of size $\geq|A| / 2$ such that a random walk starting from a vertex in U remains in A with probability $\geq \frac{3}{4}$.
- Thus, there must be $U \subseteq A$ of size $\geq|A| / 2$ such that a random walk starting from a vertex in U does NOT in A with probability $\leq \frac{1}{4}$
- In contrast to the uniform distribution: $\frac{|V \backslash A|}{|V|} \geq \frac{1-\epsilon}{2}$

Being far from α^{*}-expanders (contd.)

- The probability that an ℓ-step random walk in G starting at a vertex chosen uniformly from A will remain in A is at least $1-\frac{1}{10(\ell+1)} \geq \frac{9}{10}$.
- Thus, there must be $U \subseteq A$ of size $\geq|A| / 2$ such that a random walk starting from a vertex in U remains in A with
- Thus, there must be $U \subseteq A$ of size $\geq|A| / 2$ such that a random walk starting from a vertex in U does NOT in A with probability $\leq \frac{1}{4}$.
- In contrast to the uniform distribution: $\frac{|V \backslash A|}{|V|} \geq \frac{1-\epsilon}{2}$.

Putting everything together you will derive the proof of the main theorem.

Thank you!

