Testing if a bounded-degree graph has a simple k-path

Joseph Chuang-Chieh Lin

Manuscript.

Speaker: Joseph Chuang-Chieh Lin Advisor: Professor Maw-Shang Chang

Department of Computer Science and Information Engineering National Chung Cheng University. Taiwan

7 June 2011

1 / 20

Outline

- Introduction
 - Property testing
 - Fixed-parameter algorithms
 - Parameterized property testers
 - Our contribution
- 2 Parameterized property testers for $\mathcal{P}_{k\text{-path}}$
 - An $O(4^k k^8/(\epsilon^4 d^3))$ parameterized tester
 - An $O(d^{k-2}/\epsilon)$ parameterized property tester

Outline

- Introduction
 - Property testing
 - Fixed-parameter algorithms
 - Parameterized property testers
 - Our contribution
- 2 Parameterized property testers for $\mathcal{P}_{k ext{-path}}$
 - An $O(4^k k^8/(\epsilon^4 d^3))$ parameterized tester
 - An $O(d^{k-2}/\epsilon)$ parameterized property tester

Background of property testing

- General notion: Rubinfeld & Sudan [SIAM J. Comput. 1996].
 - Graph property testing: Goldreich, Goldwasser & Ron [J. ACM 1998].

Task: Fulfill the following requirements in o(|I|) time.

- If I is far from satisfying \mathcal{P}

Background of property testing

- General notion: Rubinfeld & Sudan [SIAM J. Comput. 1996].
 - Graph property testing: Goldreich, Goldwasser & Ron [J. ACM 1998].

Task of property testing

Input: An input object I and a designated property \mathcal{P}

Task: Fulfill the following requirements in o(|I|) time.

- If I satisfies P
 - \Rightarrow answer "yes" with probability $\geq \frac{2}{3}$;
- If I is far from satisfying \mathcal{P}
 - \Rightarrow answer "no" with probability $\geq \frac{2}{3}$.
- Property testers: algorithms accomplishing the above task.

Background of property testing

- General notion: Rubinfeld & Sudan [SIAM J. Comput. 1996].
 - Graph property testing: Goldreich, Goldwasser & Ron [J. ACM 1998].

Task of property testing

Input: An input object I and a designated property \mathcal{P}

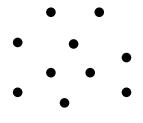
Task: Fulfill the following requirements in o(|I|) time.

- If I satisfies P
 - \Rightarrow answer "yes" with probability $\geq \frac{2}{3}$;
- If I is far from satisfying \mathcal{P}
 - \Rightarrow answer "no" with probability $\geq \frac{2}{3}$.
- Property testers: algorithms accomplishing the above task.

Background of property testing (contd.)

- In property testing, we use ϵ -far to say that the input is far from a certain property.
- \bullet ϵ : the least fraction of the input needs to be modified.
- For example, given a sequence of integers L = (0, 2, 3, 4, 1) is 0.2-far from being monotonically nondecreasing.

- Property: emptiness
 - \triangleright i.e., being P_2 -free.
- Graph model: the sparse model.
 - adjacency-list for graphs with vertex degree bounded by d
 - * $f_G: V(G) \times [d] \mapsto V(G) \cup \emptyset$
- Task: testing if a graph is empty.



- Property: emptiness
 - \triangleright i.e., being P_2 -free.
- Graph model: the sparse model.
 - adjacency-list for graphs with vertex degree bounded by d
 - * $f_G: V(G) \times [d] \mapsto V(G) \cup \emptyset$
- Task: testing if a graph is empty.

Time complexity: $O(1/\epsilon)$.

How can it be done?

An easy example of graph property testing (contd.)

```
Emptiness-Tester(G)
```

- 1. repeat
 - a. pick a vertex v and $i \in \{1, ..., d\}$ uniformly at random;
 - b. if $f_G(v,i) \neq \emptyset$ then $/* \exists$ an edge incident to v */return "no":
- 2. **until** $2/\epsilon$ times;
- return "yes";

An easy example of graph property testing (contd.)

 ϵ -far from being empty: $\geq \epsilon dn$ entries are not \varnothing .

$$\Pr[f_G(v,i) \neq \varnothing] \ge \epsilon dn/dn = \epsilon$$
 for random $v \in V$ and $i \in \{1, ..., d\}$.

- $Pr[Emptiness-Tester\ returns\ "yes" | G is empty] = 1.$
- $Pr[Emptiness-Tester\ returns\ "yes" | G is \epsilon-far\ from\ being\ empty]$

An easy example of graph property testing (contd.)

 ϵ -far from being empty: $\geq \epsilon dn$ entries are not \varnothing .

$$\Pr[f_G(v,i) \neq \varnothing] \ge \epsilon dn/dn = \epsilon$$
 for random $v \in V$ and $i \in \{1, ..., d\}$.

- Pr[Emptiness-Tester returns "yes" | G is empty] = 1.
- **Pr**[Emptiness-Tester returns "yes" | G is ϵ -far from being empty] $= (1 - \epsilon)^{2/\epsilon} < e^{-2} < 1/3.$

Fixed-parameter algorithms

Fixed-parameter algorithms

Input: A problem instance I and a parameter $k \in \mathbb{Z}^+$.

Requirement: Solving the problem in $O(f(k)\operatorname{poly}(n))$ time.

• f(k): a function solely depending on k.

Parameterized property testers

Parameterized property testers

Input: A input object I, a designated property \mathcal{P} , $\epsilon > 0$, and a parameter $k \in \mathbb{Z}^+$.

Requirement: Testing if I has the property \mathcal{P} with time complexity $O(f(k, 1/\epsilon))$.

• $f(k, 1/\epsilon)$: a function solely depending on k and ϵ .

Our contribution

- The notion of parameterized property testing.
- Two parameterized property testers for testing if a graph has a simple *k*-path in the sparse model.
 - The time complexities:

$$O(4^k k^8/(\epsilon^4 d^3))$$
 and $O(d^{k-2}/\epsilon)$.

Outline

- Introduction
 - Property testing
 - Fixed-parameter algorithms
 - Parameterized property testers
 - Our contribution
- 2 Parameterized property testers for $\mathcal{P}_{k\text{-path}}$
 - An $O(4^k k^8/(\epsilon^4 d^3))$ parameterized tester
 - An $O(d^{k-2}/\epsilon)$ parameterized property tester

$\mathcal{P}_{k\text{-path}}$: \exists a simple k-path in the graph

- k-path: a path of length k-1.
 - $\triangleright \mathcal{P}_{k-path}$: the property that a graph has a simple k-path.

The k-path problem

Input: A graph G = (V, E) and an integer k**Task:** Determine if G has a simple k-path.

- The k-path problem is **NP**-complete.
 - k = n: the Hamiltonian Path problem.

A randomized fixed-parameter algorithm looking for a k-path

Theorem 2.1 (Kneis et al. 2006)

Let G be the input graph. There exists an $O(4^k \cdot poly(n, k))$ algorithm such that

- it finds a k-path in G with probability > 3/4 if G has one;
- it returns "no" if G does not have any k-path.
- Actually, the factor poly $(n, k) = O(k^{\lg 3} k^2 \cdot dn^4)$.
- Denote by A such an algorithm.

Our first parameterized tester for $\mathcal{P}_{k ext{-path}}$

k-Path-FPT-Tester1(G,k)

- 1. **if** $k-1 \le \epsilon dn$ **then** /* G is ϵ -close to $\mathcal{P}_{k\text{-path}}$ */
 - a. return "yes";
- 2. else /* $n < (k-1)/\epsilon d$ */
 - a. run the randomized fixed-parameter algorithm A;
 - b. if A finds a simple k-path then return "yes"; else return "no";
- 3. end if

Theorem 2.2

Algorithm k-Path-PT-Tester1 is an $O(4^k k^8/(\epsilon^4 d^3))$ parameterized property tester for \mathcal{P}_{k-path} .

- Any graph is ϵ -close to $\mathcal{P}_{k\text{-path}}$ when $k-1 \leq \epsilon dn$.
- $k-1 > \epsilon dn \Rightarrow n < k/(\epsilon d)$.
 - The complexity of Algorithm A:

$$O(4^k \cdot k^{\lg 3} k^2 \cdot d(k/\epsilon d)^4) = O(4^k k^8/(\epsilon^4 d^3)).$$

Another parameterized property tester for $\mathcal{P}_{k-\text{path}}$

k-Path-FPT-Tester2(G,k)

- 1. **if** $k-1 \le \epsilon dn$ **then** /* G is ϵ -close to $\mathcal{P}_{k\text{-path}}$ */
 - a. return "yes";
- 2. else /* $n < (k-1)/\epsilon d$ */
 - a. repeat
 - i. choose a vertex v from G uniformly at random;
 - ii. perform a BFS starting from v until all the vertices of distance $\leq k-1$ from ν are visited;
 - iii. if a simple k-path is found then return "yes";
 - b. until $\frac{2}{\epsilon d}$ times;
 - c. return "no";
- 3. end if

k-path testing Parameterized property testers for \mathcal{P} k-path An $O(d^{k-2}/\epsilon)$ parameterized property tester

Theorem 2.3

Algorithm k-Path-PT-Tester2 is an $O(d^{k-2}/\epsilon)$ parameterized property tester for \mathcal{P}_{k-path} .

Consider the case that $k-1 > \epsilon dn$.

- G satisfies \mathcal{P}_{k-path} :
 - Pr[a randomly chosen vertex is on a simple k-path] $\geq k/n > \epsilon d$.
 - Pr[No such a vertex found in the $2/(\epsilon d)$ repetitions]

Consider the case that $k-1 > \epsilon dn$.

- G satisfies \mathcal{P}_{k-path} :
 - **Pr**[a randomly chosen vertex is on a simple k-path] $\geq k/n > \epsilon d$.
 - **Pr**[No such a vertex found in the $2/(\epsilon d)$ repetitions] $< (1 - \epsilon d)^{2/\epsilon d} < e^{-2} < 1/3.$
- G is ϵ -far from $\mathcal{P}_{k\text{-path}}$:

Consider the case that $k-1 > \epsilon dn$.

- G is ϵ -far from $\mathcal{P}_{k\text{-path}}$:
 - Each connected component in G has diameter < k 2.
 - The breadth-first search never finds a simple k-path.

Consider the case that $k - 1 > \epsilon dn$.

- G satisfies $\mathcal{P}_{k\text{-path}}$:
 - a Pr[No such a vertex found in the 2/(cd) repetitions]
- G is ϵ -far from $\mathcal{P}_{k\text{-path}}$:
 - Each connected component in G has diameter $\leq k-2$.
 - The breadth-first search never finds a simple *k*-path.
- The complexity: $O(d^{k-1} \cdot 2/(\epsilon d))$.

Consider the case that $k-1 > \epsilon dn$.

• G satisfies $\mathcal{P}_{k\text{-path}}$:

- G is ϵ -far from $\mathcal{P}_{k\text{-path}}$
 - Each connected component in G has diameter ≤ k − 2.
 The breadth-first search never finds a simple k-path.
- The complexity: $O(d^{k-1} \cdot 2/(\epsilon d))$.

Thank you.

